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Our Visual World is Intricate




YN NOY
AL A

7™ °

=
ST

- ———=7 Z

~ <{ < ~ et .
= lxuﬁthn,vwmhMﬂuA\Aw < z
lﬁ./,l» \ln. ..Ix

)

Ao r.nu_nn\m\h.nhxm\n) — fw.ms
—LOIIIO G G,fla.rb,um 7 s
T LZZ7Z \I‘V‘N%w\_ﬁ ; ¢
T A A = n_|hww /rL_Ir
M 3
SWaWa W a) P B W e W s
e el e e
— D RO e T, TS

j
|

©
D
.
-
o
O
-
-
o
V)
o
g o)
—
=
.
-
O
o
-
(a8

T
) SN L5747 W




eometry

Ansel Adams




Geometric Scale Variability

= Scales of local 3D geometric structures
= Natural support sizes of “structures”
= Relative variation within an object
= Scales that are relevant (observable)

= Hidden dimension of 3D geometry §
= Characterizes the overall structure

= Reveals hierarchical structure

3D model courtesy of USC ICT Graphics Lab




Related Work

Multi-scale features and descriptors
= [Li & Guskov 05] [Gelfand et al. 05] [Lalonde et al. 05]
[Dinh & Kropac 06] [Pauly et al. 06] [Skelly & Sclaroff 07] ...

Mesh smoothing
= [Taubin 95] [Desbrun et al. 99] [Eck et al. 02] [Jones et al. 03]

Range image characterization
= [Ponce & Brady 85] [Morita 99] [Mokhtarian 01]

Mesh saliency
= [Lee, Varshney, and Jacobs 05]




Image Scale-Space

= Simulate how the scene would look like at
different distances (w/o the subsampling)

= Gaussian scale-space [Lindeberg 90]..

= Diffusion equation
o 1_,
— — IV?g
ot 2v : :
= Scale-space axioms, esp., the causality assumption




~ Geometric Scale-Space?
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The evolution of surface geometry
as its high-frequency variations are suppressed

= 3D points define the sampling not the signal
= The actual geometry should not change

= Evolution on the surface not the embedding
cf. [Lee, Varshney, and Jacobs 05]

= Surface geometry in its rawest form
= Surface normals inherently intrinsic to the surface
= Distances measured on the surface




Representing Surface Geometry
\ 3 T -

= 2D surface normal map

= Reparametrize vertices and interpolate

¢ . D — M [Floater et al. 05, Yoshizawa et al. 04]
= Distortion
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Distance Metric
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P(U, V) — [u7 uji, U2, Uus, V]

= Approximate geodesic distance

e(u;) ! +e(uigq) !
d(u,v) ~ E : ; | wy — it ||
uiEP(u,V),#V




Range Images

= Main form of geometric data in computer vision

= Already 2D embeddings
= Perspective/Orthographic projection




Geometric Scale-Space Operator

min // | VN ||# dsdt
N:R2—-§2 D

= 2-harmonic flow [Tang et al. 00]
ON,
Ot

= Geodesic Gaussian smoothing

= V°N; + N; || VN ||? (i =z,y,z)

= Gaussian smoothing of normals in the 2D domain
= Renormalization after each step

= Causality not guaranteed but rarely violated




Geometric Scale-Space




Features: Corners

= Gram matrix of gradients of the normal map
= Gradients derived based on normal curvature in s, ¢

= First eigenvalue as the corner response

= Corners on edges pruned using 2"9-order deriv’s




Scale Selection (. [Lindeberg 98])

= |dentify the “natural scale” of each feature
= Normalize derivatives by weighting with o and o7
= Maximum feature response across all scales







Scale-Dependent Features




Scale-Dependent
Local Shape Descriptors

= Encode the local geometric structure that give
rise to each scale-dependent corner

= Exponential map to encode local normals

= Geodesic radius proportional to scale of corner
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Scale-Dependent

Local Shape Descriptors
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Scale-Invariant Matching




Fully-Automatic Multi-View Registration

Our Result After ICP  After Surface Recon.
cf. [Huber and Hebert 03]  [Nishino et al. 02] [Kazhdan et al. 06]




Fully-Automatic Multi-View Registration

cf. [Huber & Hebert 03] [Makadia et al. 06]




Scale-Invariant
Fully-Automatic Multi-View Registration




Multiple 3D Objects

from A Mixed Set of Range Images
= Automatically discovers 3D object from a p|Ie
= A la “Recognising Panoramas” [Brown 03] |

= But 3D and outside-in (i ‘




Multiple 3D Objects

from A Mixed Set of Range Images
" Scale-invariant matching




Scale-Hierarchical 3D Object Recognition
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Radiometric Scene Decomposition

Geometry Material (Reflectance) lllumination




The Role of Reflectance

image = fmaterial (illumination, geometry)

= Complex interplay of light with the surface
= Material determines the interaction (reflectance)

for . {(image) = {illumination}|geometry

= Object recognition based on materials
Tracking and navigation under varying illumination
Geometry reconstruction of arbitrary objects
Image synthesis of complex real-world scenes




Representing Reflectance

= Lambertian (occasionally with Torrance-Sparrow)
= Prevalent in all radiometric decomposition methods
= Current tradeoff of accuracy vs. analytical simplicity

= Parametric models
= Low-dimensional analytic form
= Limited expressiveness

= Non-parametric models
= Great for accuracy
= Cursed by its high dimensionality

MERL Isotropic BRDF Database

Enable exploitation of the intrinsic structure of the space of materials




BRDF As A Directional Statistics Dist.

dL(0,, ¢o)
dE(0;, ¢;)

fr(0o, i, |0 — &il)

= Half-way vector reparametrization [Rusinkiewicz 98]

" BRDF fr(907¢039i7¢i) —
= |sotropy

fr(On, on|04)




BRDF As A Directional Statistics Dist.

= Conventional dir. stat. dists.
= Defined on a unit sphere

= VVon Mises-Fisher
K

exp |k cos 0y,]

47 sinh Kk —90° g,  90°

= Hemispherical Exponential Power Distribution

C(k,7) (exp [k cos] Op] — 1)

Scale parameter (albedo) T
Shape parameter (kurtosis)

v — 0 : Lambertian |
v — o0 : Perfect mirror _gp°




Directional Statistics BRDF Model

= Real-world reflectance exhibit compound dists.

= Model with a Hemi-EPD Mixture Model
K

fr(‘ghv ¢h’(9d) — Zexp { (k) COS’Y Hh} —1

k=1
= Unnormalized to model measured data




Fitting DSBRDF

fr(On, dn104) ZGXP{ ) cos™ 0, | —

= Canonical est. algorithm based on EM

= E-step: Estimate responsibilities (relative mixture
weights)

= M-step: Maximize likelihood of each lobe

= Determination of the # of lobes
= Student’s t-test




Modeling Real-World Isotropic BRDFs

—90°  p(Op, ¢n, = 00 =0




Modeling Real-World Isotropic BRDFs
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Reflectance Lobe Decomposition




Reflectance Lobe Decomposition




Optimal Number of Lobes
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The Space of Isotropic BRDFs




Joint Estimation
of Reflectance and lllumination

Strong constraints
on reflectance
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Geometry Material (Reflectance) lllumination




A Probabilistic Formulation

I oObserved INERE

Praa

Reﬂectance Layer IIIumlnatlon Layer

Factorial Markov random field

argg%xp(R, L|I) x p(I|R, L)‘p(R)p(L)




Unary Reflectance Prior

m Lobe 1
m Lobe 2
Lobe 3
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Clique Reflectance Prior

p(R) = Hp(rx) llp(rxv L/ N (x))

= Conventional priors on DSBRDF parameters
]2

= Gaussian: smooth exp [yx — Vx
= L1: piecewise smooth exp [yx — 7x/|
= Potts model: piecewise constant ¢ (yx — Vx’)

= Separate prior on each reflectance lobe
= E.g., Potts on 15t lobe and L1 for others




Probabilistic Factorization
of Reflectance and lllumination

arggl%xp(R, L|I) < p(I|R,L)p(R)p(L)

E-Step |

R L
argmax p(I|R, L)p(R) argmax p(I|L, R)p(L)

M-Step argmaXP(HRa I_‘)

X c.f. [Kim & Zabih 02]




(Preliminary) Decomposition Results




Summary

= Exploit latent structures of visual data!
= Enables new applications

= Provides new insights/approaches to long-standing
problems

= The Scale Variability in Geometry
= Geometric scale-space
= Scale-dependent/invariant features and descriptors
= Fully automatic multi-object registration

= The Space of Reflectance in Appearance
= Directional statistics BRDF model
= The space of reflectance and its stat. characterization
= Probabilistic factorization of reflectance and illumination




Other Latent Structures

In the Video
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Anomaly Detection in Crowds
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Membrane Nonrigid Registration
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Structures Embedded in Visual Data

= We live in a structured world

= Visual data are projections of those structures

= Manifest beyond what is visible to the naked
eyes

= Not just those of the images
= Natural image statistics, geometric context, etc.

= Exploit the structure in some way

= Novel approaches to long-standing problems
= Novel applications of visual data

What structure!?




Beyond Disc Topology

= Cut and embed
= Cut through featureless regions
= Use complementary cuts to account for seam
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Features: Edges

= Zero-crossings of Laplacian

= Prune edges on flat/slow regions using gradient
magnitudes




Scale-Dependent
cal Shape Descriptors




Fully-Automatic Multi-View Registration

Scale-hierarchical pairwise alignments
MST on the resulting graph (cf. [Huber and Hebert 03))
Robust Multiview ICP to refine [nishino et al. 02]

Possion surface reconstruction [kazhdan et al. 06]




Scale-Dependent Matching

Exploit the hierarchy induced by scale
Match from coarse to fine
Match between the same scales
Normalized cross-correlation as similarity metric

RANSAC at each scale w/ area of overlap as error
MEENIE

Bootstrap by taking in all matches that agree
with the current transformation estimate when
moving down another scale
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Model and Scene Representation

Scale-dependent/invariant shape descriptors
consolidated from different views




Scale-Hierarchical Matching

= Scale-constrained Interpretation Tree c. [Grimson etal.]
= Matches restricted to same relative scale

= Coarse-to-fine priority

Prune based on
* Similarity
* Transformation error

Grow to pre-determined depth

Pick the hypothesis with maximum relative
overlap area




Scale-Hierarchical 3D Object Recognition

= Consistent global scales




Scale-Hierarchical 3D Object Recognition
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= 5 models 50 scenes with varying occlusion and clutter [Mian et al. 06]
= Over all recognition rate 93.58%
" For up to 84% occlusion

1. Ours 97.5%

2. Tensor Matching [Mian et al. 06] 96.6%

3. Spin Images [Johnson and Hebert 99] 87.8%




Scale-Hierarchical 3D Object Recognition

= |nconsistent global scales




Scale-Hierarchical 3D Object Recognition
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5 models scaled between 60-150% in 47 real +18 synthetic scenes
" Finds similarity transformation
= Over all recognition rate 88.5%
= First systematic study of scale-invariant 3D object recognition




Real-World Reflectance is Rarely
Lambertian plus Torrance-Sparrow
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MERL Isotropic BRDF Database




Optimal Number of Lobes
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Relative RMS Error for 100 BRDFs

=" Comparable to nonparametric model [Romeiro et al. 08]
= With a much smaller footprint

Data courtesy of MERL Isotropic BRDF Database




Nonparametric vs. DSBRDF

0.5

Nonparametric tabulation

. — — — DSBRDF

S
o
—
| -
(WH]
%)
p=
oc
)
>
5
0
]
oc

Subsampling Rate
" Nonparametric representations are susceptible

to reduced sampling




Radiometric Scene Decomposition

Strong constraints
on reflectance

material
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Geometry Material (Reflectance) lllumination




Unary Reflectance Prior

p(R) = | [lplex)|] [ p(rs: rxrenx))

m Lobe 1
m Lobe 2
Lobe 3

— Lobe 1 (EPD)
— Lobe 2 (EPD)
Lobe 3 (EPD)

frequency

p(rx) — p(’{x)p(/yx)

exp {Ii(k) cos™ Hh} —1




Probabilistic Factorization
of Reflectance and lllumination

arggl%xp(R, L|I) < p(I|R,L)p(R)p(L)

= Likelihood p(I|R, L)
» DSBRDF model with Gaussian noise N(0, X)

= Reflectance Priors p(R))
= Unary: 1D/2D priors on DSBRDF parameters
= Clique: Gaussian, L1, or Potts on DSBRDF parameters

= lllumination Prior p(L)
= Clique: Gaussian, L1, or Potts for env. lighting




