Exploiting the Latent Structures

of 3D Geometry and Appearance

Ko Nishino

Dept. of Computer Science
Drexel University

Our Visual World is Intricate

But Our World is Structured

In the Geometry

Geometric Scale Variability

- Scales of local 3D geometric structures
 - Natural support sizes of "structures"
 - Relative variation within an object
 - Scales that are relevant (observable)

- Hidden dimension of 3D geometry
 - Characterizes the overall structure
 - Reveals hierarchical structure

Related Work

- Multi-scale features and descriptors
 - [Li & Guskov 05] [Gelfand et al. 05] [Lalonde et al. 05]
 [Dinh & Kropac 06] [Pauly et al. 06] [Skelly & Sclaroff 07] ...
- Mesh smoothing
 - [Taubin 95] [Desbrun et al. 99] [Eck et al. 02] [Jones et al. 03]
- Range image characterization
 - [Ponce & Brady 85] [Morita 99] [Mokhtarian 01]
- Mesh saliency
 - [Lee, Varshney, and Jacobs 05]

Image Scale-Space

- Simulate how the scene would look like at different distances (w/o the subsampling)
- Gaussian scale-space [Lindeberg 90]...
 - Diffusion equation

$$\frac{\partial I}{\partial t} = \frac{1}{2} \nabla^2 I$$

Scale-space axioms, esp., the causality assumption

Geometric Scale-Space?

The evolution of surface geometry as its high-frequency variations are suppressed

- 3D points define the sampling not the signal
 - The actual geometry should not change
 - Evolution on the surface not the embedding

cf. [Lee, Varshney, and Jacobs 05]

- Surface geometry in its rawest form
 - Surface normals inherently intrinsic to the surface
 - Distances measured on the surface

Representing Surface Geometry

- 2D surface normal map
 - Reparametrize vertices and interpolate

$$\phi:\mathcal{D} o\mathcal{M}$$
 [Floater et al. 05, Yoshizawa et al. 04]

Distortion

$$\varepsilon(\mathbf{u}) = \frac{1}{|\mathcal{A}(\mathbf{u})|} \sum_{\mathbf{v} \in \mathcal{A}(\mathbf{u})} \frac{\parallel \mathbf{u} - \mathbf{v} \parallel}{\parallel \phi(\mathbf{u}) - \phi(\mathbf{v}) \parallel} \ \mathbf{u} = (s, t) \in \mathcal{D}$$

Distance Metric

Approximate geodesic distance

$$d(\mathbf{u}, \mathbf{v}) \approx \sum_{\mathbf{u}_i \in \mathcal{P}(\mathbf{u}, \mathbf{v}), \neq \mathbf{v}} \frac{\varepsilon(\mathbf{u}_i)^{-1} + \varepsilon(\mathbf{u}_{i+1})^{-1}}{2} \| \mathbf{u}_i - \mathbf{u}_{i+1} \|$$

Range Images

- Main form of geometric data in computer vision
- Already 2D embeddings
 - Perspective/Orthographic projection

Geometric Scale-Space Operator

$$\min_{\mathbf{N}:\mathbb{R}^2 o\mathbb{S}^2}\int\int_D\|\nabla\mathbf{N}\|^2\ dsdt$$

2-harmonic flow [Tang et al. 00]

$$\frac{\partial N_i}{\partial t} = \nabla^2 N_i + N_i \parallel \nabla \mathbf{N} \parallel^2 \quad (i = x, y, z)$$

- Geodesic Gaussian smoothing
 - Gaussian smoothing of normals in the 2D domain
 - Renormalization after each step
- Causality not guaranteed but rarely violated

Geometric Scale-Space $\sigma = 3$ $\sigma = 7$ $\sigma = 0$ $\sigma = 5$

Features: Corners

- Gram matrix of gradients of the normal map
 - ullet Gradients derived based on normal curvature in s,t
 - First eigenvalue as the corner response
 - Corners on edges pruned using 2nd-order deriv's

Scale Selection (cf. [Lindeberg 98])

- Identify the "natural scale" of each feature
 - lacktriangle Normalize derivatives by weighting with σ^{γ} and $\sigma^{2\gamma}$
 - Maximum feature response across all scales

Scale-Dependent Features

Scale-Dependent Features

Scale-Dependent Local Shape Descriptors

- Encode the local geometric structure that give rise to each scale-dependent corner
 - Exponential map to encode local normals
 - Geodesic radius proportional to scale of corner

Scale-Dependent Local Shape Descriptors

Scale-Invariant Local Shape Descriptors

Scale-Hierarchical Matching

Scale-Invariant Matching

Fully-Automatic Multi-View Registration

Input

Our Result

cf. [Huber and Hebert 03]

After ICP

[Nishino et al. 02]

After Surface Recon.

[Kazhdan et al. 06]

Fully-Automatic Multi-View Registration

Scale-Invariant Fully-Automatic Multi-View Registration

Range images with different global scales

Multiple 3D Objects from A Mixed Set of Range Images

Automatically discovers 3D object from a pile

Multiple 3D Objects from A Mixed Set of Range Images

Scale-Hierarchical 3D Object Recognition

In the Appearance

Radiometric Scene Decomposition

The Role of Reflectance

 $\overline{\text{image}} = f_{\mathbf{material}}(\overline{\text{illumination, geometry}})$

- Complex interplay of light with the surface
- Material determines the interaction (reflectance)

 $f_{\mathbf{material}}^{-1}(\mathbf{image}) = \{\mathbf{illumination}, \mathbf{geometry}\}$

- Object recognition based on materials
- Tracking and navigation under varying illumination
- Geometry reconstruction of arbitrary objects
- Image synthesis of complex real-world scenes

Representing Reflectance

- Lambertian (occasionally with Torrance-Sparrow)
 - Prevalent in all radiometric decomposition methods
 - Current tradeoff of accuracy vs. analytical simplicity
- Parametric models
 - Low-dimensional analytic form
 - Limited expressiveness
- Non-parametric models
 - Great for accuracy
 - Cursed by its high dimensionality

MERL Isotropic BRDF Database

Enable exploitation of the intrinsic structure of the space of materials

BRDF As A Directional Statistics Dist.

- BRDF $f_r(heta_o,\phi_o; heta_i,\phi_i)=rac{dL(heta_o,\phi_o)}{dE(heta_i,\phi_i)}$
- Isotropy $f_r(heta_o, heta_i, |\phi_o \phi_i|)$
- Half-way vector reparametrization [Rusinkiewicz 98]

$$f_r(\theta_o, \phi_o | \theta_i)$$
 $\omega_o = (\theta_o, \phi_o), \omega_i = (\theta_i, \phi_i)$ $f_r(\theta_h, \phi_h | \theta_d)$

BRDF As A Directional Statistics Dist.

- Conventional dir. stat. dists.
 - Defined on a unit sphere
 - Von Mises-Fisher

$$\frac{\kappa}{4\pi\sinh\kappa}\exp\left[\kappa\cos\theta_h\right]$$

Hemispherical Exponential Power Distribution

$$C(\kappa, \gamma) \left(\exp\left[\kappa \cos^{\gamma} \theta_{h}\right] - 1\right)$$

Scale parameter (albedo)

Shape parameter (kurtosis)

$$\gamma o 0$$
: Lambertian

$$\gamma
ightarrow \infty$$
 : Perfect mirror

Directional Statistics BRDF Model

- Real-world reflectance exhibit compound dists.
- Model with a Hemi-EPD Mixture Model

$$f_r(\theta_h, \phi_h | \theta_d) = \sum_{k=1}^K \exp\left[\kappa^{(k)} \cos^{\gamma^{(k)}} \theta_h\right] - 1$$

Unnormalized to model measured data

Fitting DSBRDF

$$f_r(\theta_h, \phi_h | \theta_d) = \sum_{k=1}^K \exp\left[\kappa^{(k)} \cos^{\gamma^{(k)}} \theta_h\right] - 1$$

- Canonical est. algorithm based on EM
 - E-step: Estimate responsibilities (relative mixture weights)
 - M-step: Maximize likelihood of each lobe
- Determination of the # of lobes
 - Student's t-test

Modeling Real-World Isotropic BRDFs

Modeling Real-World Isotropic BRDFs

Reflectance Lobe Decomposition

Reflectance Lobe Decomposition

Optimal Number of Lobes

The Space of Isotropic BRDFs

Joint Estimation of Reflectance and Illumination

Strong constraints on reflectance

 $f_{\mathbf{material}}^{-1}(\mathbf{image}) = \{\mathbf{illumination}, \mathbf{geometry}\}$

Geometry

Material (Reflectance)

Illumination

A Probabilistic Formulation

Factorial Markov random field

$$\underset{\mathbf{R}, \mathbf{L}}{\operatorname{argmax}} p(\mathbf{R}, \mathbf{L} | \mathbf{I}) \propto p(\mathbf{I} | \mathbf{R}, \mathbf{L}) p(\mathbf{R}) p(\mathbf{L})$$

Unary Reflectance Prior

$$p(\mathbf{R}) = \prod p(\mathbf{r}_{\mathbf{x}}) \prod p(\mathbf{r}_{\mathbf{x}}, \mathbf{r}_{\mathbf{x}' \in \mathcal{N}(\mathbf{x})})$$

$$p(\mathbf{r}_{\mathbf{x}}) = p(\kappa_{\mathbf{x}}, \gamma_{\mathbf{x}})$$

$$p(\mathbf{r}_{\mathbf{x}}) = p(\kappa_{\mathbf{x}})p(\gamma_{\mathbf{x}})$$

Clique Reflectance Prior

$$p(\mathbf{R}) = \prod p(\mathbf{r}_{\mathbf{x}}) \prod p(\mathbf{r}_{\mathbf{x}}, \mathbf{r}_{\mathbf{x}' \in \mathcal{N}(\mathbf{x})})$$

- Conventional priors on DSBRDF parameters
 - lacksquare Gaussian: smooth $\left[\exp \left[\gamma_{\mathbf{x}} \gamma_{\mathbf{x}'}
 ight]^2 \right]$
 - L1: piecewise smooth $|\exp|\gamma_{\mathbf{x}} \gamma_{\mathbf{x}'}|$
 - Potts model: piecewise constant $\delta\left(\gamma_{\mathbf{x}}-\gamma_{\mathbf{x}'}\right)$
- Separate prior on each reflectance lobe
 - E.g., Potts on 1st lobe and L1 for others

Probabilistic Factorization of Reflectance and Illumination

 $\underset{\mathbf{R}, \mathbf{L}}{\operatorname{argmax}} p(\mathbf{R}, \mathbf{L} | \mathbf{I}) \propto p(\mathbf{I} | \mathbf{R}, \mathbf{L}) p(\mathbf{R}) p(\mathbf{L})$

M-Step

 $\underset{\mathbf{\Sigma}}{\operatorname{argmax}} p(\mathbf{I}|\bar{\mathbf{R}}, \bar{\mathbf{L}})$

(Preliminary) Decomposition Results

Summary

- Exploit latent structures of visual data!
 - Enables new applications
 - Provides new insights/approaches to long-standing problems
- The Scale Variability in Geometry
 - Geometric scale-space
 - Scale-dependent/invariant features and descriptors
 - Fully automatic multi-object registration
- The Space of Reflectance in Appearance
 - Directional statistics BRDF model
 - The space of reflectance and its stat. characterization
 - Probabilistic factorization of reflectance and illumination

Other Latent Structures

In the Video -

Anomaly Detection in Crowds

Tracking in Crowds

In a Single Image -

Defogging

Membrane Nonrigid Registration

Eye

Acknowledgements

- Students/Collaborators
 - Louis Kratz, Prabin Bariya, Geoffrey Oxholm,
 Stephen Lombardi, and Ian Johnston @ Drexel
 - Kenji Hara @ Kyushu
- Support
 - National Science Foundation
 - Nippon Telephone and Telegraph

http://www.cs.drexel.edu/~kon/

Structures Embedded in Visual Data

- We live in a structured world
 - Visual data are projections of those structures
 - Manifest beyond what is visible to the naked eyes
 - Not just those of the images
 - Natural image statistics, geometric context, etc.
- Exploit the structure in some way
 - Novel approaches to long-standing problems
 - Novel applications of visual data

What structure!?

Beyond Disc Topology

- Cut and embed
 - Cut through featureless regions
 - Use complementary cuts to account for seam

Geometric Scale-Space

Features: Edges

- Zero-crossings of Laplacian
 - Prune edges on flat/slow regions using gradient magnitudes

Scale-Dependent Local Shape Descriptors

Fully-Automatic Multi-View Registration

- 1. Scale-hierarchical pairwise alignments
- 2. MST on the resulting graph (cf. [Huber and Hebert 03])
- 3. Robust Multiview ICP to refine [Nishino et al. 02]
- 4. Possion surface reconstruction [Kazhdan et al. 06]

Scale-Dependent Matching

- Exploit the hierarchy induced by scale
 - Match from coarse to fine
 - Match between the same scales
 - Normalized cross-correlation as similarity metric
 - RANSAC at each scale w/ area of overlap as error measure
 - Bootstrap by taking in all matches that agree with the current transformation estimate when moving down another scale

3D Object Recognition

Model and Scene Representation

Scale-dependent/invariant shape descriptors consolidated from different views

Scale-Hierarchical Matching

- Scale-constrained Interpretation Tree c.f. [Grimson et al.]
 - Matches restricted to same relative scale

Consistent global scales

- 5 models 50 scenes with varying occlusion and clutter [Mian et al. 06]
- Over all recognition rate 93.58%
- For up to 84% occlusion
 - 1. Ours 97.5%
 - 2. Tensor Matching [Mian et al. 06] 96.6%
 - 3. Spin Images [Johnson and Hebert 99] 87.8%

Inconsistent global scales

- 5 models scaled between 60-150% in 47 real +18 synthetic scenes
 - Finds similarity transformation
- Over all recognition rate 88.5%
- First systematic study of scale-invariant 3D object recognition

Real-World Reflectance is Rarely Lambertian plus Torrance-Sparrow

Optimal Number of Lobes

Relative RMS Error for 100 BRDFs

- Comparable to nonparametric model [Romeiro et al. 08]
 - With a much smaller footprint

Nonparametric vs. DSBRDF

 Nonparametric representations are susceptible to reduced sampling

Radiometric Scene Decomposition

Unary Reflectance Prior

$$p(\mathbf{R}) = \prod p(\mathbf{r}_{\mathbf{x}}) \prod p(\mathbf{r}_{\mathbf{x}}, \mathbf{r}_{\mathbf{x}' \in \mathcal{N}(\mathbf{x})})$$

$$p(\mathbf{r_x}) = p(\kappa_x, \gamma_x)$$

$$p(\mathbf{r_x}) = p(\kappa_x) p(\gamma_x)$$

$$f_r(\theta_h, \phi_h | \theta_d) = \sum_{k=1}^K \exp\left[\kappa^{(k)} \cos^{\gamma^{(k)}} \theta_h\right] - 1$$

Probabilistic Factorization of Reflectance and Illumination

$$\underset{\mathbf{R}, \mathbf{L}}{\operatorname{argmax}} p(\mathbf{R}, \mathbf{L} | \mathbf{I}) \propto p(\mathbf{I} | \mathbf{R}, \mathbf{L}) p(\mathbf{R}) p(\mathbf{L})$$

- lacktriangle Likelihood $p(\mathbf{I}|\mathbf{R},\mathbf{L})$
 - DSBRDF model with Gaussian noise $N(0, \Sigma)$
- lacktriangle Reflectance Priors $p(\mathbf{R})$
 - Unary: 1D/2D priors on DSBRDF parameters
 - Clique: Gaussian, L1, or Potts on DSBRDF parameters
- lacktriangle Illumination Prior $p({f L})$
 - Clique: Gaussian, L1, or Potts for env. lighting