
Drexel University, Department of Computer Science Technical Report DU-CS-13-02

An Implementation of Bayesian Defogging

Gabriel Schwartz
Drexel University

gbs25@cs.drexel.edu

Ko Nishino
Drexel University
kon@cs.drexel.edu

Abstract

In this report, we present an implementation of the
Bayesian defogging method described in Nishino et al. [6].
In our previous work, we propose a defogging method that
factors a foggy image into albedo and depth layers. By re-
covering these latent layers, we may remove the effects of
fog on an image. Here we describe a new implementation
that dispenses with a time-consuming graph-cuts optimiza-
tion in favor of a non-linear optimizer. This solution enables
us to apply the same model to larger images in less time.

1. Introduction
First introduced in Kratz and Nishino [5], with further

details in Nishino et al. [6], we propose to model the foggy
image formation process as a combination of statistically
independent latent albedo and depth layers. We represent
this process using a factorial Markov random field (FMRF),
and perform inference on the model to obtain estimates for
the albedo and depth layers.

The results from our past work show that the FMRF for-
mulation is a good model for foggy images, achieving high-
quality results in challenging scenes. The main drawback
of the approach was its long running time.

In this report, we describe an implementation of
Bayesian defogging using non-linear optimization in lieu
of graph cuts. As shown in Figure 1, this implementation
accurately reproduces the original results. The non-linear
optimization achieves an accurate result in far less time, en-
abling application to large images. We have made our im-
plementation available at http://www.cs.drexel.
edu/~kon/defog.

2. FMRF Inference via Non-Linear Optimiza-
tion

Our new implementation employs a fast non-linear
solver and closed-form gradient computations to find good
local minima for the FMRF energy function. We use a non-
linear solver that allows us to provide explicit gradient in-

Figure 1. Reproduction of previous results. The columns contain,
from left to right: the input image, our factorization result from
this method, and the results of the previous method using graph
cuts. These results were obtained in 57s for a 465 × 384 pixel
image, while a graph cuts implementation takes 3700s (over an
hour). This comparison shows that we may accurately reproduce
the original results much more quickly.

formation to aid in fast convergence. Furthermore, we per-
form the optimization in a continuous space of albedo and
depth values as opposed to the discrete range of [0, 255]
in the graph-cuts setting. Multiscale optimization is used
when necessary to allow initial estimates to be modified by
changes with a large spatial extent.

2.1. Stability Modifications

In the interests of stability, we slightly modify the equa-
tions underlying the original FMRF model. Previously, the
likelihood was defined as the following normal distribution:

N
(

ln (1− IN)

∣∣∣∣ ln (1− ρ̃ (x)) + d̃ (x) , σ2

)
,

where IN = I|L∞|
ηL∞

with η chosen to minimize the number
of invalid pixels. Both of these introduce numerical issues
in the non-linear optimization process as they are not well-
defined near extreme albedo and depth values.

To address stability in the likelihood, we use the original
image formation definition of Equation 7 in [6] to obtain the

http://www.cs.drexel.edu/~kon/defog
http://www.cs.drexel.edu/~kon/defog

following :

N
(
IN

∣∣∣∣ ρ̃ (x) e−d̃(x) +
(

1− e−d̃(x)
)
, σ2

)
,

with IN = I
L∞

max
(

I
L∞

)
. Even for depth values at∞ or

albedo values of 1, the likelihood is still defined.
As a final step, we may remove the parameter σ2 from

the optimization process. In the non-linear optimization set-
ting, each of the distribution variances for the likelihood and
priors acts as a weight on the corresponding term of the en-
ergy function. We may obtain an equivalent solution by di-
viding two of the weights by the third. This eliminates one
hyper-parameter without changing global or local minima.

2.2. Computing Gradients

The optimal estimates for albedo and depth values mini-
mize the FMRF energy function, which is now:

ρ̃∗, d̃∗ = arg min
ρ̃,d̃

E

E =
∥∥Ce−D +

(
1− e−D

)
− IN

∥∥2

2
+ (1)

α
∑
i

∑
j∈Ωi

|ρ̃i − ρ̃j |γ

λ
+

ξ
∑
i

∑
j∈Ωi


∣∣∣d̃i − d̃j∣∣∣ Laplace Prior(
d̃i − d̃j

)2

Gaussian Prior
,

with C and D representing the albedo and depth layers with
pixels ρ̃i and d̃i respectively. Ωi is the 4-connected neigh-
borhood around pixel i. α and ξ are user-specified prior
weights.

In order to apply most non-linear optimization algo-
rithms efficiently, we must be able to compute the gradi-
ent of the energy function in Equation 1 w.r.t. each of the
parameters. In this case, the parameters are the latent vari-
ables in the albedo and depth layers. For conciseness, we
may define the three terms in the FMRF energy function E
as a likelihood term and two prior terms:

E = EL + αEC + ξED . (2)

The following equations provide closed form expres-
sions for the gradients of each term of the energy function
E w.r.t. parameters ρ̃ and d̃:

∂EL
∂C

= 2e−D
(
Ce−D +

(
1− e−D

)
− I
)

∂EC
ρ̃i

=
∑
j∈Ωi

sgn (ρ̃i − ρ̃j)
γ |ρ̃i − ρ̃j |γ−1

λ

∂EL
∂D

= −2 (C− 1) e−D
(
Ce−D +

(
1− e−D

)
− I
)

∂ED

∂d̃i
=

∑
j∈Ωi

sgn
(
d̃i − d̃j

)
Laplace Prior

2
(
d̃i − d̃j

)
Gaussian Prior

.

The gradients of the likelihood term w.r.t C and D can be
expressed in an element-wise fashion for the entire image
at once; the prior gradient terms are defined on a per-pixel
basis.

2.3. Multiscale Optimization

Though the depth priors are intended to create large, con-
sistent depth regions (as found in natural images), they are
only defined in a 4-connected neighborhood around each
pixel. While this poses less of a problem in a graph-cuts
setting, non-linear optimization may take many iterations to
effect a change with large spatial extent in regions of high
texture. We employ a multiscale coarse-to-fine optimization
process to solve this problem. Starting at a coarse scale,
we may obtain an estimate for depth that satisfies the priors
without time-consuming extra optimization iterations. This
coarse estimate becomes the initial value for finer scale op-
timization. We start the coarsest scale with the initial esti-
mate of [6].

2.4. Minimization

Though we no longer use graph-cuts, the logic behind
the alternating minimization strategy in our original method
still applies. We use the initial depth estimate described
in [6] and start by estimating albedo. The optimization con-
tinues optimizing depth and albedo in alternation.

For the optimization implementation, we rely on the
Scipy [4] interface to the L-BFGS-B algorithm [3]. L-
BFGS-B is a fast, memory-efficient non-linear optimizer
that relies on an approximation of the Hessian matrix ob-
tained from first-order derivatives. If available, our im-
plementation uses Theano [1], a symbolic math expression
compiler, to define and evaluate the energy function and its
gradients. This allows for transparent use of available GPU
hardware.

3. Experimental Results
Using the graph-cuts optimization approach, our previ-

ous method took a full 22 minutes to perform inference on
a 180 × 120 pixel image. Our non-linear optimization ap-
proach finds a solution for the same image in only 19.4s,

2

a 68× speedup. On larger images, the speedup is compa-
rable: optimization for a 465 × 384 pixel image takes 57s
with the non-linear approach compared to 3700s with the
original graph-cuts solver.

The original long runtime is not due to the formulation,
but rather the choice of optimization algorithm (graph cuts).
The computational complexity of graph cuts depends on the
chosen max-flow solver [2]. The user may, however, specify
any arbitrary energy function; the optimization must thus
work with only one parameter at a time. By comparison,
BFGS operations can be broken down into simple linear al-
gebra operations and can be accelerated with tuned BLAS
libraries and GPU gradient computations.

Figures 2 and 3 compare the results from this implemen-
tation with those of our original method. Each column con-
tains the input image, the new optimization results and the
original optimization results respectively. Our new recov-
ered albedo and depth images are faithful to the original
algorithm. At the same time we may obtain these results
significantly faster than with a graph-cuts optimization.

4. Software Package
We have made our Python implementation of this

method available at http://www.cs.drexel.edu/
~kon/defog. To run the implementation, you will need
Python, Numpy1, Scipy2, and optionally, Theano3. To fac-
tor an image into albedo and depth layers using default pa-
rameters, run

./defog.py image.png
Output is saved to image_albedo.png and
image_depth.png.

If you would like to specify prior weights, airlight color
and other options, a list of parameters is available by run-
ning

./defog.py -h.
Parameters used to obtain our results with this code may

also be found on the software package website. Please cite
this report, as well as [5, 6], in any publications derived
from this work.

1http://www.numpy.org
2http://www.scipy.org
3http://deeplearning.net/software/theano/

References
[1] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pas-

canu, G. Desjardins, J. Turian, D. Warde-Farley, and
Y. Bengio. Theano: a CPU and GPU Math Expression
Compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), 2010. 2

[2] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate
energy minimization via graph cuts. In Proceedings
of the Seventh IEEE International Conference on Com-
puter Vision, volume 1, pages 1222–1239, 1999. 3

[3] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A
Limited-Memory Algorithm for Bound Constrained
Optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208, 1994. 2

[4] E. Jones, T. Oliphant, and P. P. et al. SciPy: Open source
scientific tools for Python, 2001–. 2

[5] L. Kratz and K. Nishino. Factoring Scene Albedo and
Depth from a Single Foggy Image. In ICCV, pages
1701–1708, 2009. 1, 3

[6] K. Nishino, L. Kratz, and S. Lombardi. Bayesian De-
fogging. IJCV, 98(3):263–278, 2012. 1, 2, 3

3

http://www.cs.drexel.edu/~kon/defog
http://www.cs.drexel.edu/~kon/defog
http://www.numpy.org
http://www.scipy.org
http://deeplearning.net/software/theano/

Figure 2. Comparison with previous results. The columns contain, from left to right: input image, our new result, and the original graph-cuts
solution. These comparisons show that the new approach quickly reproduces the original results.

4

Figure 3. Additional comparisons. As is evident in street scene and the hay cones image above, we may achieve a more complete depth
reconstruction as we do not limit depth values to a discrete set.

5

	. Introduction
	. FMRF Inference via Non-Linear Optimization
	. Stability Modifications
	. Computing Gradients
	. Multiscale Optimization
	. Minimization

	. Experimental Results
	. Software Package

