Invertible Neural BRDF
for Object Inverse Rendering

Supplementary Material

Zhe Chen, Shohei Nobuhara, and Ko Nishino

Kyoto University, Kyoto, Japan
zchen@vision.ist.i.kyoto-u.ac.jp {nob,kon}@i.kyoto-u.ac.jp
https://vision.ist.i.kyoto-u.ac.jp

Abstract. In this supplementary material, we show additional experi-
mental results on
— in-depth comparison with Georgoulis et al. TPAMI 2017,
— reflectance estimation with iBRDF,
— illumination estimation with deep illumination prior, and
— joint estimatation of reflectance and illumination both for synthetic
and real images.

1 Comparison with Georgoulis et al. TPAMI 2017 [15]

As we stated in the main manuscript, “Georgoulis et al. [15] extend their prior
work [38] to jointly estimate geometry, material and illumination. The method,
however, assumes Phong BRDF which significantly restricts its applicability to
real-world materials.” For this reason, their data are selectively of shiny material.
Furthermore, the method consists of two steps in which the first step predicts
a reflectance map from the input image and the second step decomposes the
reflectance map into Phong parameters and an environment map. As our goal is
fundamentally different, in that we jointly estimate an arbitrary BRDF and nat-
ural illumination directly from the input image albeit of an object with known
geometry, our method is compared with the reflectance map decomposition net-
work in [15].

Since we thoroughly evaluate our method’s effectiveness on synthetic data
in the main manuscript and in the following sections, we focus on comparing
our method to the reflectance map decomposition on the real data of [15]. Fig.
1 shows comparisons of the estimated reflectance and illumination side-by-side
with their results. We show results of rendered sphere of estimated illumination
with mirror reflection (mirror) and rendered sphere of the estimated BRDF with
a different illumination (nat. illum.). We omit comparison on rendered spheres of
the estimated illumination with different known BRDF from the input as we be-
lieve they are misleading. As Lombardi and Nishino [26] showed, the reflectance
and illumination are estimated up to the highest frequencies of either. As such,
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Fig.1: Comparison with DeLightNet [15]. The illumination estimate is shown
as a rendered mirror sphere (mirror) and the reflectance estimate is shown as
a sphere rendered under a different natural illumination (nat. illum.) from the
input image (input). Our results capture finer details of the BRDF and the
illumination demonstrating more robust and accurate decoupling of the two
from object appearance.

relighting using the illumination estimate with another BRDF would not accu-
rately capture the true accuracy of the illumination estimate as that BRDF will
attenuate the illumination esimate’s frequency properties. Furthermore, neither
the paper nor the code mentions which BRDFs were used to render these relit
spheres, which prevents us from making a comparison.

Overall, judging from the sphere renderings of the estimated BRDF with a
different illumination, our BRDF estimates qualitatively appear more accurate
and faithful to the underlying reflectance of the input image as well as ground
truth (e.g., higher frequency details of illumination estimates). Our method is a
physically-based reconstruction, that decouples the reflectance and illumination
of object appearance. In contrast, the method of [15] is a learned decomposition
on tens of thousands of images, fundamentally bound by the combinations seen
in the training data. Our method does not involve any learning, other than the
BRDF model itself. We believe these two methods complement each other and
can be used in conjunction, perhaps to obtain a quick learning-based initial-
ization and then a physically-based decoupling for complex surfaces and envi-
ronments that are rarely accurately represented with the Phong model. Table
1 shows quantitative comparison of 91 combinations of those we could identify
(on the project web page—it is not clear what the remaining 9 are) among the
100 in [15]. For direct comparison to [15], we calculate the metrics in the log
space defined by log (z + 1.0) as the original paper rather than log () as used
in other parts of our paper. Note that there is a fundamental ambiguity in the
scale between the recovered illumination and BRDF in addition to the color. The
network in [15] recovers the parameters of an analytical reflectance model (i.e.,
Phong), not the radiance distribution of the BRDF, which implicitly avoids this
scale ambiguity. In our case, it is hard to determine the scale difference. Instead,
we multiply the rendering by a scale factor that minimizes the MSE between the
recovery and the ground truth. Note that this post-processing does not affect
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Mirror Nat. Illum.
method Log RMSE DSSIM|Log RMSE DSSIM
Gerogoulis et al. [15] 0.933 0.365 1.110 0.186
ours (w/ scale correction) 0.744 0.369 0.340 0.179
ours (w/o scale correction) 0.926 0.369 0.932 0.179

Table 1: Mean Log RMSE and mean DSSIM errors of illumination estimates
(mirror) and reflectance estimates (nat. illum.). Our method also quantitatively
outperforms that of [15].

the properties of the recovered BRDF and illumination. As such the comparison
is fair. As shown in Table 1, we achieve lower errors in all metrics, especially
for the log RMSE, even without scale correction. These results show that our
estimation matches the characteristics of the ground truth very well.

2 Reflectance Estimation with iBRDF

In the main manuscript, we validated the effectiveness of the invertibile neural
BRDF for single-image BRDF estimation by showing the log RMSE errors of
the accuracy of BRDF estimation for each of the 100 different materials in the
MERL database rendered under 5 different known natural illuminations, i.e.,
total 500 tests (Fig. 3(a) of main manuscript). The results show that the BRDF
can be estimated accurately regardless of the surrounding illumination. Here,
in Fig. 2, in addition to Fig. 3(b) of the main manuscript, we show additional
estimation results as spheres rendered with different point source directions us-
ing the recovered BRDF put side-by-side with the ground truth. The recovered
BRDF renderings match the ground truth measured BRDF well, even when the
illumination differs, demonstrating the ability of iBRDF to robustly recover the
full reflectance from partial angular observations in the input image.

3 Illumination Estimation with Deep Illumination Prior

We validated the effectiveness of the deep illumination prior by showing sam-
ples of the ground truth and estimated illumination without and with the deep
illumination prior in the main manuscript (Fig. 4). Here we show additional
quantitative analysis. We rendered images of spheres with all the 100 different
BRDFs of the MERL database under 15 different natural illuminations captured
as HDR environment maps. Fig. 3 shows the relative log RMSE of the estimated
illumination with (solid cirles) and without (dashed) the deep illumination prior
for all 1500 combinations. We use relative log RMSE, i.e., the log RMSE nor-
malized by the difference between the brightest and the dimmest point in the
illumination, since HDR environment maps have different dynamic ranges. For
all combinations, except for some involving matte materials, which results in
smooth rather than structurally clear (see Fig. 4 of main manuscript) estimated
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Fig.2: Additional results of reflectance estimation from a single image with
known illumination. The estimated reflectance match the ground truth (left
most) well for all different illuminations (right five).

illumination that RMSE favors, as well as a handful of other combinations in the
total of 1500, the deep illumination prior achieves higher accuracy of illumination
estimates. Table 2 shows the mean relative log RMSE errors of the estimated
illumination with and without the deep illumination prior. For all illumination,
on average across different BRDFs, the deep illumination prior was effective in
achieving more accurate illumination estimation. These results show that the
deep illumination prior effectively constraints the optimization to recover accu-
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Relative log RMSE

Fig.3: Relative log-space RMSE errors of estimated illumination with (solid
curve with circles) and without (dashed curve) deep illumination prior for 15
different natural illumination recovered from 100 different BRDFs. For most
combinations of illumination and material, the RMSE when estimated with the
deep illumination prior is lower, demonstrating the effectiveness of the prior.

rate, dense non-parametric representations of a wide variety of complex, natural
illumination.

4 Joint Estimation of Reflectance and Illumination

We demonstrated the effectiveness of the proposed inverse rendering framework
using the invertible neural BRDF, its embedding space, and the deep illumina-
tion prior on synthetic input images in Fig. 5(a) of the main manuscript. Here
we show additional results including quantitative analysis. We rendered a total
of 1500 images of spheres rendered with the 100 MERL BRDFs under 15 dif-
ferent environment maps, and used each as an input to our inverse rendering

environment map| beach|building|campus|doge2| ennis|galileo|glacier
without prior 0.077| 0.110] 0.058| 0.243|0.066| 0.071| 0.252
with prior 0.073| 0.101] 0.053|0.216| 0.068|0.065| 0.207
environment map| grace|grace new kitchen| pisa| rnlist peters| uffizi|uffizi large
without prior 0.059 0.082| 0.084| 0.177| 0.097 0.076| 0.062 0.060
with prior 0.057 0.083| 0.074|0.174|0.089| 0.069|0.059 0.058
Table 2: Mean relative log-space RMSE errors of estimated illumination without
and with the deep illumination prior. For every illumination, the use of the prior
leads to lower error.
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method. Fig. 4(a) shows the log-space RMSE of estimated BRDF, and Fig. 4(b)
shows the relative log-space RMSE of estimated illumination for all the 1500
combinations of reflectance and illumination. The BRDF estimates are particu-
larly accurate for most materials (about 90%) considering the fact that widely
used “Lambertian + Cook-Torrance” reflectance model approaches log RMSE
of 2 (Fig. 2 of main manuscript). The errors of illumination estimates also stay
within reasonable range from the illumination estimation errors when the BRDF
is known (Fig. 3. Note that the input, BRDF, and illumination estimates are all
in high dynamic range, and small discrepancies in bright highlights can cause
large RMSE errors. These results demonstrate the robustness of our inverse ren-
dering method, the expressiveness of our invertible neurla BRDF model, and
effectiveness of the deep illumination prior.

Finally, we show the remaining results on images of real objects taken un-
der natural illumination from the Objects Under Natural Illumination Database
[26]. When combined with Fig. 5(b) in the main manuscript, Fig. 5 shows all the
results of jointly estimating the BRDF and illumination using input images in
the database. The illumination is not as clear as those recovered from synthetic
object appearance. This, however, is mainly attributed to the fact that real ob-
jects, especially those consisting of flat surfaces like the milk jug, only reflect a
portion of the surrounding environment into the camera. Fig. 6 shows relative
log-space RMSE errors of the illumination estimates. The recovered reflectance
properties are consistent across results from different illumination, except for the
color shifts due to the inherent ambiguity (especially apparent when the object
is white). Baking this color constancy problem into the inverse rendering pro-
cess is left as future work. The errors are larger than the synthetic case, which is
also mainly caused by the partial observation captured in the input images. The
characteristics of the illumination estimates where the object surface normals
partially cover appear consistent across different objects for each environment.
Overall, the illumination estimates are quantitatively and qualitatively reason-
able, and the BRDF estimates realistic. Note that there are no ground truth
measurements for the BRDF, and due to slight errors in geometric calibration
of the dataset, direct relighting comparisons were not plausible. These results
demonstrate the robustness and accuracy of our method applied to real scenes.
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(b) Relative log-space RMSE of estimated illumination

Fig. 4: Log-space RMSE of jointly estimated reflectance and illumination using
the conditional invertible neural BRDF and deep illumination prior for 1500
different combinations of 100 MERL BRDF's and 15 environmentmaps. The blue
curve in (a) is the BRDF fit of conditional iBRDF for reference. These extensive
results demonstrate the effectiveness of our proposed models and method (see
main text).
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Fig. 5: Remaining results of joint estimation of reflectance and illumination from
images of real objects [26].
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Fig. 6: Relative
timation of Objects Under Natural Illumination Database [26].
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