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Abstract

Cast shadows produce troublesome effects for video

surveillance systems, typically for object tracking from a fixed

viewpoint, since it yields appearance variations of objects de-

pending on whether they are inside or outside the shadow.

To robustly eliminate these shadows from image sequences as

a preprocessing stage for robust video surveillance, we pro-

pose a framework based on the idea of intrinsic images. Un-

like previous methods for deriving intrinsic images, we derive

time-varying reflectance images and corresponding illumina-

tion images from a sequence of images. Using obtained illu-

mination images, we normalize the input image sequence in

terms of incident lighting distribution to eliminate shadow ef-

fects. We also propose an illumination normalization scheme

which can potentially run in real time, utilizing the illumi-

nation eigenspace, which captures the illumination variation

due to weather, time of day etc., and a shadow interpolation

method based on shadow hulls. This paper describes the the-

ory of the framework with simulation results, and shows its

effectiveness with object tracking results on real scene data

sets for traffic monitoring.

1 Introduction

Video surveillance systems involving object detection

and tracking require robustness against illumination changes

caused by variation of, for instance, weather conditions. An-

noying obstacles include not only the change of illumination

conditions, but also the large shadows cast by surrounding

structures, i.e. large buildings and tall trees. Since most vi-

sual tracking algorithms rely on the appearance of the tar-

get object, typically using color, texture and feature points as

cues, these shadows degrade the quality of tracking. In urban

scenes, where building robust traffic monitoring systems is of

special interest, it is usual to have large shadows cast by tall

buildings surrounding the road, e.g. Figure 2 (a) below. Build-

ing a robust video surveillance system under such an environ-

ment is a challenging task. To make the system insensitive to

dramatic change of illumination conditions and robust against

large static cast shadows, it would be valuable to cancel out

those illumination effects from the image sequence. Our goal
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Figure 1: System diagram for illumination-normalization.

is to “normalize” the input image sequence in terms of the dis-

tribution of incident lighting to remove illumination effects in-

cluding shadow effects. We should note that our method does

not consider shadows cast by moving objects but those cast

by static objects such as buildings and trees. To achieve this

goal, we propose an approach based on intrinsic images. Our

method is composed of two parts as shown in Figure 1.

The first part is the estimation of intrinsic images, which is

an off-line process, depicted in Figure 1 A. In this part, first,

the scene background image sequence is estimated to remove

moving objects from the input image sequence. Using this

background image sequence, we then derive intrinsic images

using our estimation method which is extended from Weiss’s

method [1]. Using estimated illumination images, which is

a part of intrinsic images, we are able to robustly cancel out

the illumination effects from input images of the same scene,

enabling many vision algorithms such as tracking to run ro-

bustly. After the derivation, we construct a database using

PCA, which we refer to as illumination eigenspace, which

captures the variation of lighting conditions in the illumination

images. The database is used for the following direct estima-

tion method.



The second part is direct estimation of illumination im-

ages, shown in Figure 1 B. Using the pre-constructed illumi-

nation eigenspace, we estimate an illumination image directly

from an input image. To obtain accurate illumination images,

shadow interpolation using shadow hulls is accomplished.

In the remainder of this paper, we first overview related

work in Section 1.1, and in Section 2, we propose a method

to derive time-varying reflectance images R(x, y, t) and cor-

responding illumination images L(x, y, t). Derivation of the

illumination-invariant images using the illumination images

L(x, y, t) is described in Section 3. In Section 4, we propose a

method to estimate R and L directly from an input image us-

ing PCA. In addition, to obtain more accurate illumination im-

ages, we use a shadow hull based interpolation method, which

is described in Section 4.1. Experimental results are described

in Section 5. Finally, we conclude the paper in Section 6.

1.1 Related Work

Barrow and Tenenbaum proposed to consider every retinal

image as a composition of a set of latent images, which they

refer to as intrinsic images [2]. One type of the intrinsic im-

ages, R, contains the reflectance values of the scene, while the

other type, L, contains the illumination intensities, and their

relationship can be described by I = R ·L. Since illumination

images, L, represent the distribution of incident lighting onto

the scene while reflectance images, R, depict the surface re-

flectance properties of the scene, this representation becomes

useful to analyze and manipulate the reflectance/lighting prop-

erties of the captured scene.

While decomposing a single image into intrinsic images,

namely a reflectance image and an illumination image, re-

mains a difficult problem [2, 4, 5], deriving intrinsic images

from image sequences has seen great success. Recently, Weiss

developed an ML estimation framework [1] to estimate a sin-

gle reflectance image and multiple illumination images from

a series of images captured from a fixed view point but under

significant lighting condition variation. Finlayson et al. [14]

proposed a similar approach to ours independently. They de-

rive the scene texture edges from the lighting-invariant image,

and by subtracting those edges from the raw input images, they

successfully derive shadow-free images of the scene. We also

take advantage of the fact that the reflectance image essen-

tially models the scene texture in a manner invariant to light-

ing conditions. We accomplish edge substitution between the

reflectance image and illumination images, enabling robust

derivation of scene-texture-free illumination images.

Several other work on shadow detection have been pro-

posed. Deterministic model-based approaches to detect

shadow regions are proposed by Kilger [6] and Koller et al. [7]

that exploit gray level, local and static features. In statistical

approaches, Stauder et al. [8] and Jiang et al. [9] proposed

a non-parametric approaches independently that use color,

global and dynamic features for enhancing object detection.

2 Intrinsic image estimation
Weiss’s method to derive intrinsic images is useful for dif-

fuse scenes, however, it has a problem when applied to scenes

containing non-Lambertian surfaces. Weiss’s method implic-

itly assumes the scene is composed of Lambertian surfaces,

and this assumption is inevitable from the definition of the

reflectance image which has to be independent from illumi-

nation changes. For real world scene, we cannot expect the

assumption to hold. A typical example is white lines on the

road surface, which show variable reflection with respect to

illumination changes. Therefore, while the time invariant re-

flectance image R(x, y), derived by Weiss’s framework, rea-

sonably describes the scene texture without lighting effects,

the estimated illumination images L(x, y, t) tend to contain

considerable amount of scene texture. Those scene textures

should not really be a component of the “illumination” image,

since illumination images should represent the distribution of

incident lighting. These annoying scene textures in illumina-

tion images arise at scene regions where surfaces of different

reflectance properties meet. Therefore it is necessary to as-

sume a set of time-varying reflectance images R(x, y, t) in-

stead of a single one.

Our estimation method is based on Weiss’s method. We

first estimate Weiss’s reflectance image to use it as a scene

texture image. We denote Weiss’s reflectance image and il-

lumination image with subscript w, i.e. Rw and Lw , and

our reflectance image and illumination image, R and L re-

spectively. First, we apply Weiss’s ML estimation method

to the image sequence to derive a single reflectance image,

Rw(x, y), and a set of illumination images, Lw(x, y, t). Our

goal is to derive time-varying, i.e. lighting condition depen-

dent, reflectance images R(x, y, t) and corresponding illumi-

nation images L(x, y, t) that do not contain scene texture.

I(x, y, t) = R(x, y, t) · L(x, y, t) (1)

We use lower-case letters to denote variables in log domain,

e.g. r represents the logarithm of R. With n-th derivative fil-

ters fn, a filtered reflectance image rwn is computed by taking

median along the time axis of fn ?i(x, y, t) where ? represents

convolution. We used two derivative filters, i.e. f0 = [0 1 −1]
and f1 = [0 1 −1]T . With those filters, input images are

decomposed into intrinsic images by Weiss’s method as de-

scribed in Equation (2). The method is based on the statistics

of natural images [3].

r̂wn(x, y) = mediant{fn ? i(x, y, t)} (2)

The filtered illumination images lwn(x, y, t) are then com-

puted by using estimated filtered reflectance image rwn.

l̂wn(x, y, t) = fn ? i(x, y, t) − r̂wn(x, y) (3)

To be precise, l is computed by l = i − r in the unfiltered

domain in Weiss’s original work while we estimate l in the

derivative domain for the following edge-based manipulation.



(a) (b) (c) (d) (e)

Figure 2: (a) an input image i(x, y, t), (b)Weiss’s reflectance image rw(x, y), (c) Weiss’s illumination image lw(x, y, t), (d) our

time-varying reflectance image r(x, y, t), (e) our illumination image l(x, y, t).

We use the output of Weiss’s method as initial values of

our intrinsic image estimation. As mentioned above, the goal

of our method is to derive time-dependent reflectance im-

ages R(x, y, t) and their corresponding illumination images

L(x, y, t). The basic idea of the method is to estimate time-

varying reflectance components by canceling the scene texture

from Weiss’s illumination images. To factor the scene textures

out from the illumination images and associate them with re-

flectance images, we use the texture edges of rw. We take

a straightforward way to remove texture edges from lw and

derive illumination images l(x, y, t) with the following Equa-

tion (4) (5).

ln(x, y, t) =

{

0 if|rwn(x, y)| > T
lwn(x, y, t) otherwise

(4)

rn(x, y, t)=

{

rwn(x, y) + lwn(x, y, t) if|rwn| > T
rwn(x, y) otherwise

(5)

where T represents a threshold value. While we currently

manually set the threshold value T used to detect texture edges

in rwn, we found the procedure is not so sensitive to the thresh-

old as long as it covers texture edges well. Since the operation

is linear, the following equation is immediately confirmed.

fn ? i(x, y, t) = rwn(x, y) + lwn(x, y, t)
= rn(x, y, t) + ln(x, y, t) (6)

Finally, time-varying reflectance images r(x, y, t) and scene

texture-free illumination images l(x, y, t) are recovered from

filtered reflectance rn and illumination images ln through the

following deconvolution process, which is the same to Weiss’s

method.

(r̂, l̂) = g ?
(

∑

n

fr
n ? (r̂n, l̂n)

)

(7)

where fr
n is the reversed filter of fn, and g is the filter which

satisfies the following equation.

g ?
(

∑

n

fr
n ? fn

)

= δ (8)

To demonstrate the effectiveness of our method for deriv-

ing time-dependent intrinsic images, we rendered a CG scene

which contains cast shadows and surface patches with dif-

ferent reflectance properties, which is analogous to real road

surfaces, e.g. white lines on a pedestrian crossing. Fig-

ure 2 shows a side-by-side comparison of the results apply-

ing Weiss’s method and our method. The first row is the CG

scene, where the scene has the property that the histogram of

derivative-filtered output is sparse, which is the required prop-

erty of the ML estimation based decomposition method and

also is the statistics usually found in natural images. As can

be seen clearly, texture edges are successfully removed from

our illumination image while they obviously remain in Weiss’s

illumination image. Considering an illumination image to be

an image which represents the distributionof incident lighting,

our illumination image is much better since incident lighting

has nothing to do with the scene reflectance properties.

3 Shadow Removal

Using the obtained scene illumination images by our

method, the input image sequence can be normalized in terms

of illumination.

To estimate the intrinsic images of the scene where video

surveillance systems are to be applied, it is necessary to re-

move moving objects from the input image sequence because

our method requires the scene to be static. Therefore we first

create background images in each short time range (∆T ) in the

input image sequence, assuming that the illumination does not

vary in that short time period. We simply use the average im-

age of the short input sequence as the background image, but

of course the more complicated methods would give the better



Figure 3: An input image I (left) and the illuminance-invariant

image N (right).

background images [10]. These background images B(x, y, t)
are used for the estimation of intrinsic images. Using the es-

timation method described in the former section, each image

in the background image sequence is decomposed into corre-

sponding reflectance images R(x, y, t) and illumination im-

ages L(x, y, t).

B(x, y, t) = R(x, y, t) · L(x, y, t) (9)

Once decomposed into intrinsic images, any image whose

illumination condition is captured in the series of B(x, y, t)
can be normalized with regards to its illuminationcondition by

simply dividing the input image I(x, y, t) by its corresponding

estimated illumination image L(x, y, t). Through the normal-

ization, cast shadows are also removed from the input images.

Since the incident lighting effects are fully captured in illu-

mination images L(x, y, t), the normalization by dividingwith

L corresponds to removing the incident lighting distribution

from the input image sequence. Let us denote the resulting

illuminance-invariant image with N (x, y, t), that can be de-

rived by the following equation.

N (x, y, t) = I(x, y, t) / L(x, y, t) (10)

Figure 3 shows the result of our normalization method. The

left-hand side figure shows the input image I and the right fig-

ure represents the illuminance-invariant image N . Note shad-

ows of the buildings are removed in N .

Since we consider the time-dependent reflectance values,

accurate normalization of incident lighting can be done com-

pared to using Weiss’s illumination images. Figure 4 depicts

the difference between using our illumination image l (the left

image of each pair) and using Weiss’s illumination image lw
(the right image of each pair). As can be seen in the im-

ages, white lines appear over the trucks in every right-hand

side image. On the other hand, when using our illumination

images, the ghost white lines are almost vanished as seen in

every left-hand side image. This is because our method han-

dles reflectance variation properly while the reflectance values

are fixed in Weiss’s method.

4 Illumination eigenspace for direct estimation

of illumination images
The intrinsic image estimation method described in the for-

mer section is fully off-line because of the computational cost.

(a) (a’) (b) (b’)

Figure 4: The difference of the normalization results between

using our illumination images L and Weiss’s illumination im-

age Lw . The left images of each pair, (a) and (b), show the

results using our illumination image L, and the right ones,

(a’) and (b’), are the results using Weiss’s illumination image

Lw .

However, realtime processing is required for practical use. In

this section, we describe our approach for realtime derivation

of illumination images for shadow removal. Our method first

stores a lot of illumination images captured under different il-

lumination conditions. Using stored illumination images, re-

altime estimation of illumination image from an input image

is accomplished.

We propose illumination eigenspace to model variations of

illumination images of the scene. The illumination eigenspace

is an eigenspace into which only illumination effects are trans-

formed. We use PCA to construct the illumination eigenspace

of a target scene, in our case, the crossroad shown in Figure 5.

PCA is widely used in signal processing, statistics, and neural

computing. The basic idea in PCA is to find the basic compo-

nents [s1, s2, ..., sn] that explain the maximum amount of vari-

ance possible by n linearly transformed components. Figure 6

shows the hyper-plane constructed by mapping illumination

images onto the eigenspace using all eigenvectors.

In our case, we mapped Lw(x, y, t) into the illumina-

tion eigenspace, instead of mapping L(x, y, t). This is be-

cause, when given an input image, the reflectance image

Rw(x, y) is useful to eliminate the scene texture by com-

puting I(x, y, t)/Rw(x, y), and the resulting image becomes

Lw(x, y, t). We keep the mapping between Lw(x, y, t) and

L(x, y, t) to derive final L(x, y, t) estimates. First, an illumi-

nation space matrix is constructed by subtracting L̄w , which is

the average of all Lw , i.e. L̄w = 1
n

∑

n Lw , from each Lw and

stacked column-wise.

P = {Lw1
− L̄w, Lw2

− L̄w, . . . , Lwn
− L̄w} (11)

P is a N × M matrix, where N is the number of pixels in

the illumination image and M is the number of illumination

images Lw . We made the covariance matrix Q of P as follows.

Q = PPT (12)

Finally, the eigenvectors ei and the corresponding eigenvalues

λi of Q are determined by solving,

λiei = Qei. (13)



(a) (b) (c) (d)

Figure 5: Direct estimation of intrinsic images. Each row shows the different weather condition. (a)An input image I , (b)the

pseudo illumination image L∗

w , (c)the estimated illumination image L̂w by the NN search in the illumination eigenspace, (d)the

corresponding background image B to (c).

Figure 6: Illumination eigenspace constructed using 2048 im-

ages from 120 days data of a crossroad.

To solve Equation (13), we utilized Turk and Pentland’s

method [13], which is useful to compute the eigenvectors

when the dimension of Q is high. Figure 6 shows the il-

lumination eigenspace on which all the illumination image,

Lw(x, y, t), of 2048 images from 120 days(7:00-15:00) are

mapped.

Using the illumination eigenspace, direct estimation of an

illumination image can be done given an input image which

contains moving objects. We consider that the global simi-

larity of the illumination image is measured by the distance

weighted by the contribution ratio of eigenvectors in the il-

lumination eigenspace. Thus, we divide the input image by a

reflectance image to get a pseudo illumination image L∗ which

includes dynamic objects: L∗ = I(x, y, t)/Rw(x, y). Using it

as a query, the best approximation of the corresponding illumi-

nation image L̂ is estimated from the illumination eigenspace.

L̂w = arg minLwi

∑

j

wj

√

(

F(L∗, j) −F(Lwi
, j)

)2
(14)

where F is a function which maps an illumination image into

the j-th eigenvector, and wj = λj/
∑

Ω λi where λis are the

eigenvalues. Finally, the illumination image L(x, y, t) is de-

rived using the mapping table from L̂w to L. For the high-

dimensional nearest neighbor search (NN search), we em-

ployed the SR-tree method [11] which is known to be fast es-

pecially for high-dimensional and non-uniform data structures

such as natural images. The number of stored images for this

experiment was 2048 and the contribution ratio was 84.5% at

13 dimensions, 90.0% at 23 dimensions, and 99.0% at 120 di-

mensions. We chose to use 99.0% of eigenratio for this experi-

ment. The compression ratio was approximately 17:1, and the

disk space needed to store the subspace was about 32 MBytes

when the image size is 320 × 243.

Results of illumination image search is shown in Figure 5.

In this figure, starting with the left hand side column, the

first column shows input images I , the second column shows

pseudo illumination images L∗, the third column corresponds

to estimated illumination images L̂w . The right end column

shows the background images which correspond to the esti-

mated illumination images. The NN search in PCA is rea-

sonably robust to estimate the most similar illumination im-

age Lw from the pseudo illumination image L∗. However,

since the sampling of the illumination images is sparse, there

are slight differences in the shadow shapes. It is possible to

acquire the exact illumination image L when the database is

dense enough, but it is not easy to prepare such a database. To

solve this problem, we propose an approach to compute inter-

mediate illumination images by interpolating shadow regions

using geometry estimated from sampled cast shadow regions

and sunlight angles. The details are described in Section 4.1.



As for the computational cost, the average time of the NN

search is shown in Table 1 with MIPS R12000 300MHz, when

the number of stored illumination images is 2048, the image

size is 360× 243 and the number of output search results is 5.

Since the input image is obtained at the interval of 33ms (at

30 frames/sec), the estimation time is fast enough for realtime

processing.

Dimension 13 23 48 120

Contribution ratio(%) 84.5 90.0 95.0 99.0

NN Search time(µs) 6.7 6.8 7.9 12.0

Table 1: Dimension of the illumination eigenspace, contribu-

tion ratio and NN search cost.

4.1 Shadow interpolation using shadow hulls

Unfortunately, it is difficult to store all illumination images

under every possible illumination condition. NN search in the

illumination eigenspace gives good results, however, it is of-

ten the case that they are slightly different from the true il-

lumination image. Therefore we take an approach to inter-

polate NN searched results to generate the final estimate of

the illumination image. We assume global intensity changes

are linear as long as they are densely sampled, but the motion

of cast shadows cannot be represented by linear image inter-

polation. Thus, we create shadow hulls from given shadow

regions, that are derived from illumination images, and sun-

light angles, computed from time stamps of the input image

sequence1. The resulting hull is not necessarily precise, but it

gives enough information to compute cast shadow region be-

tween sampled illumination conditions.

In our approach, input images are decomposed into intrin-

sic images first. By thresholding, shadow regions are derived

from the illumination images. We assume the intrinsic pa-

rameters of the camera is estimated beforehand. Shadows are

cast on a plane in the real world and a projection matrix from

the image plane to this scene plane can be computed by pro-

viding several correspondences between the two planes. We

do this manually. Shadow regions are then mapped onto the

world coordinate, and shadow volumes are computed using

shadow regions associated with sunlight angles. By taking

the intersection of shadow volumes in the 3D space, we get

the rough geometry of objects casting shadows, which has

enough information for computing intermediate cast shadows

(Figure 7 (a)). Figure 7 (b) shows the results of shadow inter-

polation in a CG scene using an estimated shadow hull. The

dark regions show the interpolated shadow regions, while the

lighter regions represent the sampled shadow regions.

Shadow interpolation using shadow hulls is useful to esti-

mate the intermediate shadow shapes between sampled light-

ing conditions. Figure 8 shows the interpolated result of the

real world scene. The left-hand column represents the esti-

mated shadow regions, while the right-hand column shows

1Sunlight angles can be computed precisely provided the latitude and lon-

gitude of the scene and the date and time.

(a) Computing shadow hulls using shadow regions associated

with sunlight angles.

(b) Result of shadow interpolation

Figure 7: Interpolation of cast shadow using a shadow hull.

Figure 8: Shadow hull based shadow interpolation. Figures in

top and bottom row are shadow regions and sampled illumi-

nation images. The middle row shows the interpolated results.

The grid is overlaid for better visualization.



(a) (b) (c)

Figure 9: Comparison with the ground truth. (a)interpolated result using our method, (b) the ground truth, (c) result of image

differencing between (a) and (b).

the corresponding illumination images. The top and bottom

row represent the images under sampled illumination condi-

tions, and the middle row depicts the interpolated result. To

obtain the intermediate illumination image, we first estimate

shadow boundaries using the estimated shadow hull. Once we

obtain intermediate shadow boundaries, we then compute the

intermediate illumination image Lint(x, y) with the following

equation.

Lint(x, y) =











δint(x, y)

∑

k
wkδk(x,y)Lk(x,y)
∑

k
wkδk(x,y)

δ̄int(x, y)

∑

k
wkδ̄k(x,y)Lk(x,y)
∑

k
wkδ̄k(x,y)

(15)

where Lk is the k-th illumination image obtained by NN

search in the illumination eigenspace, and wk is the weight-

ing factor which is the distance from L∗

w to Lwk
(See Sec-

tion 4) in the illumination eigenspace. δk(x, y) is the function

which returns 1 if Lk(x, y) is inside the shadow region, oth-

erwise returns 0. δ̄k(x, y) is the inverse of δk(x, y). The re-

sulting intermediate image is shown in mid-right in Figure 8.

It is more evident by comparing the resulting image with the

ground truth. Figure 9 shows the comparison between the re-

sult of our method (a), the ground truth (b) and the difference

between the estimate and ground truth (c). We can notice the

slight difference between them from (c), however, it shows

a globally correct shadow shape which is useful to remove

shadow effects from the input image.

5 Experimental Results

Evaluation of our shadow removal method is based on a

basic object tracking algorithm. Our goal is to obtain more

accurate tracking results from preprocessed image sequences,

i.e. normalized image sequences using our method, than from

original image sequences. We chose the block matching al-

gorithm for actual tracking to show even the simplest and

widely used tracking method can achieve good results after

utilizing our illuminationnormalization preprocess. The block

matching based tracking is accomplished by pursuing the most

similar window in the neighboring frame evaluated by Equa-

tion (16).

eB(x, y) = mini,j

{

M−1
∑

m=0

N−1
∑

n=0

|ft(x + m, y + n)

−ft−1(x + m + i, y + n + j)|

}

(16)

For the experiments, we chose image sequences containing

frames of vehicles crossing boundaries of cast shadows since

we focus especially on the advantage of our shadow elimina-

tion. The parameter set of vehicle tracking for each sequence

is totally even, i.e. the same initial window position, 10 × 10
pixels of window, 10 pixels for maximal search distance, and

10fps of frame-rate.

The result is shown in Figure 10. In Figure 10, the time

axis is represented from top to bottom. The first column of

each pair and the second column of that represent results of

the block matching based tracking applied to the original im-

age sequence and image sequence with our preprocessing of

illuminance normalization, respectively. In the original im-

age sequence (a),(b),(c), we get typical results where the block

matching fails at shadow boundaries, because of the large in-

tensity variation between inside and outside the shadow. On

the other hand, after proper illumination normalization using

our method, we get successful results.

We accomplished the tracking experiments over 502 vehi-

cles in 11 sequences under different lighting conditions. Since

we cannot have the ground truth, we carefully assessed the

tracking results. The success rate using the original input im-

age sequences was 55.6%, while with normalized input it im-

proved to 69.3%. The effectiveness of our method is clearly

confirmed by the result that 45.3 % of originally failed results

were rescued by our method. On the other hand, 11.5% got

worse after applying our method. This poor effect happens

typically when the shadow-edge cast on the vehicle surface

largely differs from the shadow-edge in the illumination im-

age. It happens because our method currently can handle only



(a) (a’) (b) (b’) (c) (c’)

Figure 10: Results of tracking based on block matching. Along row from top to bottom it shows the frame sequence. The first

column of each pair, (a),(b),(c), shows the tracking result over the original image sequence, and the second column of each pair,

(a’),(b’),(c’), shows the corresponding result after our preprocessing.

two-dimensional shadows on the image plane, but the actual

shadow is cast three-dimensionally on the scene. When the

gap of the shadow-edge position is large, the error of the nor-

malization gets large, as a result, the block matching fails. Our

system currently does not handle this problem since the error

rate is small compared to the improved correct rate, but we are

investigating on handling cast shadows 3-dimensionally.

6 Conclusions

We have described a framework for normalizing illumina-

tion effects of real world scenes, which can be effectively used

as a preprocess for robust video surveillance. We believe it

provides a firm basis to improve the existing monitoring sys-

tems. We started from Weiss’s method to derive intrinsic im-

ages from image sequences, and extended the method to prop-

erly handle surfaces with non rigid reflectance properties. This

is accomplished by modifying pseudo derivative illumination

images with regards to the scene texture edges that can be

derived from the pseudo reflectance image estimated through

Weiss’s algorithm. The proposed method is remarkably robust

and does not require the information of scene geometry, cam-

era parameter and lighting condition at all, but requires the

camera to be fixed and several lighting conditions to be ob-

served. As a key component of our framework, we proposed

to utilize illumination eigenspace, a pre-constructed database

which captures the illuminationvariation of the target scene, to

directly estimate illumination images for elimination of light-

ing effects of the scene, including elimination of cast shad-

ows. As for the intermediate illumination images, that cannot

be represented by linear combinations of sampled illumination

images, we propose an approach to use shadow hulls to inter-

polate cast shadow regions using sunlight angles and camera

parameters. The effectiveness of the proposed method is con-

firmed by comparing the tracking results between the original

image sequence and the image sequence with our method used

as a preprocess. Since our method is used as a preprocessing

stage, we believe this method can be applied to many video

surveillance systems to increase the robustness against light-

ing variations. Also, we have investigated direct estimation of

illumination images corresponding to real scene images using

the illuminationeigenspace and shadow interpolationbased on

shadow hulls. Though our current implementation of the di-

rect estimation in research code is not fast enough for realtime

processing, we believe the framework has the potential to be

processed in realtime.
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