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Figure 1. We realize multimodal material segmentation, i.e., per-pixel recognition of materials from multiple imaging modalities, by
introducing a novel dataset and network. MultiModal Material Segmentation (MCubeS) dataset captures 42 different road scenes in 500
image sets each consisting of RGB, near-infrared, and polarization images. Each image is densely annotated with materials. We introduce
MCubeSNet which learns to focus on the most informative combinations of imaging modalities for each material class through a newly
derived region-guided filter selection (RGFS) layer.

Abstract

Recognition of materials from their visual appearance
is essential for computer vision tasks, especially those that
involve interaction with the real world. Material segmen-
tation, i.e., dense per-pixel recognition of materials, re-
mains challenging as, unlike objects, materials do not ex-
hibit clearly discernible visual signatures in their regular
RGB appearances. Different materials, however, do lead
to different radiometric behaviors, which can often be cap-
tured with non-RGB imaging modalities. We realize multi-
modal material segmentation from RGB, polarization, and
near-infrared images. We introduce the MCubeS dataset
(from MultiModal Material Segmentation) which contains
500 sets of multimodal images capturing 42 street scenes.
Ground truth material segmentation as well as seman-
tic segmentation are annotated for every image and pixel.
We also derive a novel deep neural network, MCubeSNet,
which learns to focus on the most informative combinations
of imaging modalities for each material class with a newly
derived region-guided filter selection (RGFS) layer. We use
semantic segmentation as a prior to “guide” this filter se-
lection. To the best of our knowledge, our work is the first
comprehensive study on truly multimodal material segmen-
tation. We believe our work opens new avenues of practical
use of material information in safety critical applications.

1. Introduction

Thanks to the large strides made in object recognition
research, computers can now tell what the object in an im-
age is with sufficient accuracy. Telling what an object is,
however, often insufficient to act in the real world. Our own
visual system can not only tell a cup from a table, but also
a paper cup from a ceramic one so that we can plan our
grasp before touching it. If a computer could similarly tell
what an object is made of, critical decisions can be made
faster and more accurately. In particular, dense pixel-wise
recognition of materials in an image becomes an essential
task. We refer to this as material segmentation and distin-
guish it from classic “material recognition” which focuses
on recognizing materials image-wise or for isolated objects.

Successful material segmentation would be particularly
beneficial for road scene analysis. If an autonomous vehicle
or an advanced driver assistance system (ADAS) can tell an
asphalt road from a concrete one or a leaf on the road from
dirt, it can execute safer control. Outdoor material segmen-
tation, however, remains elusive mainly due to the rich va-
riety of materials encountered in the real world and the lack
of annotated data. Closest works only realize image-wise
recognition of materials or are primarily of indoor architec-
tural, professional photographs [1,27]. It is also worth clar-
ifying the distinction of material segmentation from stuff
segmentation. “Stuff” is not a material but rather refers to



objects without discernible boundaries (e.g., a road, a rep-
resentative “stuff,” is composed of different materials such
as asphalt, paint for markings, and metal for manholes).

The difficulty of material segmentation is exacerbated by
the fact that materials lack well-defined visual features in
regular RGB images. Unlike objects which largely exhibit
different looks including shape contours and surface tex-
tures, different materials often result in similar appearance
in regular color images. For instance, a ceramic cup and a
plastic cup would have similar global shapes and local sur-
face textures in an image. Some materials don’t even have
their own defined appearances. For instance, water does not
have its own color and metal mostly mirror-reflects, both of
which take on the appearance of their surroundings.

Where should we look for reliable visual cues to recog-
nize materials? The surface composition of different mate-
rials not just in their spatial distribution but also in their sub-
surface structure give rise to characteristic radiometric be-
haviors. For instance, subtle differences in the mesoscopic
surface structure change polarization of incident light and
variation in subsurface composition result in different ab-
sorption of near-infrared (NIR) light. These radiometric
features can potentially let us discern different materials
robustly. Few works in the past have exploited different
imaging modalities in isolation for only material recogni-
tion. Recent advances in imaging sensors, most notably the
introduction of quad-Bayer CMOS, have brought the op-
portunity to leverage a variety of imaging modalities in a
compact passive setup at low cost, making it particularly
suitable for autonomous vehicles and mobile robots. We
believe the time is ripe to systematically study what multi-
modal imaging can offer to material segmentation.

In this paper, we realize multimodal material segmenta-
tion, the recognition of per-pixel material categories from a
set of images from the same vantage point but of different
imaging modalities. In particular, we consider the combi-
nation of regular RGB, polarization, and near-infrared im-
ages at each instance. We build an imaging system con-
sisting of a binocular stereo of quad-Bayer RGB polariza-
tion cameras, a monocular near-infrared camera, and a Li-
DAR to capture outdoor road scenes. We introduce a new
dataset of multimodal material images which we refer to as
the MCubeS dataset (from MultiModal Material Segmenta-
tion). The MCubeS dataset contains 500 sets of images of
these imaging modalities taken at walking speed that em-
ulates the vantage of an autonomous vehicle in 42 scenes
and is fully annotated for each pixel. In addition to materi-
als, we also annotate semantic segmentation labels. To our
knowledge, MCubeS is the first of its kind and scale and
opens new avenues of research on material segmentation.

We derive a novel deep architecture, which we refer to as
MCubeSNet, for learning to accurately achieve multimodal
material segmentation. We introduce region-guided filter

selection (RGFS) to let MCubeSNet learn to focus on the
most informative combinations of imaging modalities for
each material class. We use object categories obtained with
vanilla semantic segmentation as a prior to “guide” the fil-
ter selection. The network learns to select different convo-
lution filters for each semantic class from a learned image-
wise set of filters. This region-guided filter selection layer
enables “dynamic” selection of filters, and thus combina-
tions of imaging modalities, tailored to different potential
materials underlying different semantic regions (i.e., object
categories) without significant computational overhead.

To the best of our knowledge, our work is the first for
multimodal material segmentation. In the absence of past
methods, we experimentally validate the effectiveness of
MCubeSNet by comparing its accuracy to state-of-the-art
semantic segmentation methods. The experimental results,
including ablation studies, clearly show that MCubeSNet
can accurately and robustly recognize materials from mul-
timodal data. The selected filters also reveal that character-
istic radiometric properties of different materials are cap-
tured with unique combinations of imaging modalities. We
believe our work makes an important step forward in mate-
rial segmentation and opens new avenues of practical use of
material information in safety critical applications. All data
and code can be found on our project web page.

2. Related Work
Let us first review past works on material recognition and

material segmentation including those that use non-RGB
imaging modalities. We also review semantic segmentation
works relevant to our method and as a baseline.
Material Recognition Early work on recognizing materi-
als from images focused on image-wise recognition, i.e., de-
termining a single material label for a whole image. We re-
fer to this as material recognition to distinguish it from ma-
terial segmentation. Dana et al. [5] introduced the CuReT
dataset consisting of images of 61 different texture samples
captured from over 205 different combinations of illumina-
tion and viewing conditions. The KTH-TIPS [7] dataset ex-
tended this work by introducing scale variation to 10 of the
CuReT samples. These datasets were used to study texture
modeling (e.g., Bidirectional Texture Function) and recog-
nition. It is worth mentioning that material recognition is
not the same as texture recognition as the cause of mate-
rial appearance variation is not limited to just their spatial
textures. Sharan et al. pioneered material recognition with
the introduction of Flickr Materials Database (FMD) [13]
which consists of 100 images each for 10 materials. Each
image has only one material label with a spatial mask that
isolates its region. Xue et al. introduced the Ground Terrain
in Outdoor Scenes (GTOS) dataset which captures ground
images from spatially and angularly different viewpoints for
outdoor terrain (ground type) recognition [27]. This work



was extended to the GTOS-mobile dataset which contains
81 videos for 31 image-wide material classes [26].

Several works have introduced the use of non-RGB
imaging for material recognition. Wolff et al. used polar-
ization to discern metallic and dielectric surfaces. Salamati
et al. [18] used NIR in addition to RGB to distinguish fiber,
tile, linoleum, and wood. Mertz et al. [15] used laser re-
flectivity to identify common materials. Erickson et al. [6]
combined near-infrared spectroscopy and high-resolution
texture images to classify materials of household objects.
Hu et al. [10] used passive millimeter-wave polarization for
classification of several metals and dielectric materials.

Material Segmentation Our work concerns material seg-
mentation, the pixel-wise recognition of materials in a real-
world scene. In contrast to material recognition, material
segmentation requires densely annotated data and a clas-
sification method that can combine both local visual fea-
tures and global context. For this, deep neural networks
trained on abundant data naturally becomes the primary
approach. Bell et al. introduced the Materials in Context
Database (MINC) [1] which consists of 2 million 64×64
image patches of 23 kinds of materials. They demon-
strated material segmentation with a patch-based CNN fol-
lowed by a CRF. The original images from which patches
were extracted were sourced from Houszz and Flickr which
are strongly biased towards professional architectural pho-
tographs (e.g., planned lighting and viewpoint).

Schwartz and Nishino introduced the Local Material
Database [21] together with a canonical material category
hierarchy as a three-level tree. Using this dataset, they de-
rived a method for automatically discovering material at-
tributes from local image-patches inside the object bound-
aries, and demonstrated its use for material recognition [19]
which was later extended to simultaneous recognition of
both material attributes (e.g., soft and fuzzy) with mate-
rial categories (e.g., fabric) [21]. For material segmentation,
they introduced a deep network architecture that combines
fully convolutional per-pixel material classification with se-
mantic segmentation and place recognition to integrate local
material appearance and global contextual cues [20]. We
significantly expand the horizon of material segmentation
in terms of scenes, with self-driving scenarios in mind, as
well as imaging modalities, and by deriving a novel deep
material segmentation network that leverages the unique ra-
diometric behaviors of different materials.

Semantic Segmentation Material segmentation is a chal-
lenging problem on its own, due to the reasons discussed in
Sec. 1. The task, however, does bear a similarity to semantic
segmentation which provides us with inspirations for net-
work design. The introduction of fully convolutional net-
works which substitutes fully connected layers with con-
volution layers led to significant advancement in seman-
tic segmentation [14]. Yu et al. introduced dilated con-
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Figure 2. Example multimodal images from the MCubeS Dataset.
Different imaging modalities capture characteristic radiometric
behaviors of different materials.

volution to overcome the limited receptive fields of Con-
vNets [28]. Deeplabv2 adopts atrous spatial pyramid pool-
ing which consists of a group of dilated convolutions with
varying dilation rates to extract multi-scale information [3].
Recent works have introduced various approaches to adapt
the filters across the spatial domain by dynamically generat-
ing filters based on the image content [11]. Dynamic region-
aware convolution introduced a guided feature branch to dy-
namically generate different filter sets to different image re-
gions [2]. Decoupled Dynamic Filter (DDF) separates the
spatial and channel components of these dynamic filters to
reduce computational cost [30]. Our network is inspired
by these recent dynamic filter designs, not just for spatial
adaptability, but mainly to leverage the multimodal obser-
vations of different material appearance. Instead of dynam-
ically generating filters, which is computational expensive,
our network learns to select filters that find the best combi-
nation of imaging modalities adapted to the material under-
lying semantic regions from an overcomplete set of filters.

3. MCubeS Dataset
We introduce the MultiModal Material Segmentation

Dataset (MCubeS). MCubeS captures the visual appearance
of various materials found in daily outdoor scenes from a
viewpoint on a road, pavement, or sidewalk. At each view-
point, we capture images with three fundamentally different
imaging modalities, RGB, polarization, and near-infrared
(NIR). The key challenges lie in systematic image capture
with precise spatio-temporal alignment and annotation with
pixel-wise material categories.
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Figure 3. We annotate every pixel with 20 distinct material cate-
gories that were determined by thoroughly examining the MCubeS
dataset. Here we show example regions for each class. The actual
images are annotated densely for all pixels. Human body (skin
and hair), leaf, grass, and sky are object and stuff names selected
to represent their unique materials.

3.1. Imaging Modalities

Surfaces in the real-world made of different materials
cause different subsurface compositions and surface struc-
tures at the mesoscopic scale. These differences give rise
to different behaviors of incident light. Most notably, they
alter the radiometric behavior of incident light in its reflec-
tion, refraction, and absorption. These differences can of-
ten be observed in their polarization properties, i.e., differ-
ent degree of linear polarization (DoLP) or angle of linear
polarization (AoLP), and absorption of NIR light, respec-
tively. For instance, surfaces made of metal specularly re-
flects light compared with wood which has a more balanced
combination of specular and diffuse reflections, which re-
sult in differences in observed DoLP and AoLP. Water is
transparent in the visible spectrum but absorbs light in the
NIR range—water and water-containing surfaces (i.e., fo-
liage) exhibit different shades of intensity in an NIR image.

As shown in Fig. 2, MCubeS dataset captures these
rich radiometric characteristics of different materials with
a camera system consisting of a stereo pair of RGB-
polarization (RGB-P) camera and a near-infrared (NIR)
camera. The image capture system is also equipped with
a LiDAR to assist label propagation (Sec. 3.3). The RGB-P
camera is equipped with a quad-Bayer sensor which has a
Bayer color filter array over 2×2 block of pixels with four
on-chip polarizers of different angles.

Polarization Light is a transverse wave of electric and
magnetic fields which are perpendicular to each other. Light
with an electric field lying on a single plane is called linearly
polarized. The angle of orientation of polarized light can be
defined on the plane perpendicular to the transverse direc-
tion. Unpolarized light, in contrast, consists of light with
electric fields oriented in all directions uniformly (i.e., ori-

Figure 4. MCubeS dataset spans a wide range of road scenes (top
row), including river sidewalks to railroad tracks, each densely an-
notated with materials (bottom row).

entations form a circle). When the orientations of the elec-
tric fields of light is distributed as an ellipse on the plane
perpendicular to the transverse direction, the light is par-
tially linearly polarized. The major axis of this ellipse be-
comes the angle of polarization, and the ratio of the mag-
nitudes of the major and minor axes is called the degree of
polarization. The intensity of a partially polarized light with
AoLP ϕ and DoLP ρ measured with a polarization filter an-
gle ϕc is defined as I(ϕc) = Ī(1+ρ cos(2ϕc−2ϕ)), where
Ī is the DC component [9]. The RGB-P camera captures
four images corresponding to ϕc = 0, π

4 , π
2 , and 3π

4 which
enables the calculation of ϕ, ρ, and Ī at each pixel in a sin-
gle exposure.

Near-infrared Light Light is a spectrum consisting of
electromagnetic waves of different wavelengths. The ra-
diometric behavior of light varies depending on the wave-
length. Objects take on different colors as their reflection
is wavelength-dependent. At the same time, the absorption
and scattering properties of light transmitted into the sub-
surface or the volume of a medium varies depending on the
wavelength. For instance, shorter wavelength light forward
scatters more than light of longer wavelength. The absorp-
tion of light, in particular, dramatically changes outside the
visual spectrum. Absorption of light through water, which
is prevalent in our daily lives (not just puddles but also nat-
ural surfaces including leaves containing water), is particu-
larly sensitive to wavelength. In the near-infrared range of
800nm to 1000nm, the absorption coefficient of light in wa-
ter almost linearly increases from 0 to 1 [16]. That is, for
a camera observing water or water-containing surfaces with
a near-infrared filter of a wavelength in this range, different
intensity encodes the depth or “wetness” of the surface (the
deeper/wetter the darker) [22].

3.2. MCubeS Capture

Image Capture System We built a custom imaging sys-
tem and mounted it on a cart to collect multimodal se-
quences of real-world scenes from a vantage point similar
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Figure 5. (a) MCubeSNet extracts low-level and high-level feature maps for each imaging modality, separately, using DeepLab v3+ as
the backbone. Polarization is represented by the AoLP and DoLP as independent modalities. (b) The encoder features are then input to
a decoder that learns and selects different convolutional filters for different regions of a guidance field so that different materials integrate
those imaging modalities in a way most relevant to identify them correctly. We refer to this as region-guided filter selection (FGFS) and
use semantic segmentation as the guidance field.

to a car. The system is also equipped with a sparse LiDAR
that will later be used to propagate annotations between dif-
ferent image modalities. Please see the image of the capture
rig in the supplemental material. The imaging system con-
sists of a pair of RGB-polarization (RGB-P) cameras (LU-
CID TRI050S-QC, 2/3-in sensor), one NIR camera (FLIR
GS3-U3-41C6NIR-C, 1-in sensor), and one LiDAR (Livox
Mid-100). A 6mm lens is attached to the RGB-P cameras,
and an 8mm lens is attached to the NIR camera to make the
field-of-views of the cameras approximately the same. The
NIR camera is also equipped with a long-pass filter from
750 nm to cutoff light outside the near-infrared range.

Calibration Calibration of this multi-camera multimodal
imaging system poses unique challenges due to the view-
point differences, non-overlapping wavelength, and differ-
ent modalities. We first calibrate the RGB-P camera pair
against the NIR camera. Since the RGB and NIR images
can resolve regular gray-scale patterns in their images, we
use regular chessboard-based calibration [29] for estimating
the intrinsic and extrinsic camera parameters.

We next calibrate the cameras to the LiDAR. LiDAR re-
turns the reflectance intensity in addition to the distance to
the target. This lets us model the LiDAR as a grayscale
camera to run chessboard-based calibration by identifying
the chess corners from the reflectance intensity image [25].

Data Collection Our MCubeS dataset consists of two dis-
tinct types of image sequences. The first type of data
consists of sequences of images captured while the imag-
ing system continuously moves forward. These sequences
mimic the point of view of a moving vehicle. The sec-
ond type of sequences is those captured at a single position
while the imaging system pans. Some materials, like water,
rarely appear in a road scene. The second type of data helps
increase sample images of such materials.

MCubeS dataset consists of 42 scenes of the first type
(continuous forward move) sampled at three frames per sec-
ond. Average length of sequences are 309 seconds. The raw
image sequences consist of 26650 image sets, from which
424 image sets at almost equal temporal spacing were an-
notated. We also capture 19 different scenes for the second
type of data (fixed location panning). For each scene, eight
image sets are captured to cover 360 degrees and a total of
76 image sets are annotated from these sequences. The total
number of annotated image sets are 500.

3.3. Material Segmentation Annotation

Annotating each pixel of MCubeS poses significant chal-
lenges due to the different viewpoints. For this, we leverage
the RGB-P stereo pair and LiDAR to propagate the labels
across imaging modalities.

Material Classes We define 20 distinct materials by thor-
oughly examining the data we captured in the MCubeS
dataset. Figure 3 shows examples of all materials. MCubeS
scenes mainly consist of road scenes and sidewalks whose
constituents vary from “stuff” like pavements and roads to
objects including bicycles and manholes. Each of these can
be made of different materials even for the same instance.
For example, pavements can be made of asphalt, concrete,
brick, cobblestone, gravel, and sand. We also treat road
markings and manholes as made of different materials as
they are of special interest in driving scenarios (e.g., they
can cause slips when wet). Vehicles are mainly made of
metal, rubber, and glass. For people, clothes are made of
fabric, while skin and hair are protein which are classes al-
most exclusive to people. For this, we use human body as
the material label for parts other than their clothes. For nat-
ural objects, we mainly observe trees and grass as objects in
the scene. Considering that wood can appear in sleepers on



Method mIoU
MCubeSNet 42.86%
DeepLab v3+ 38.13%
FuseNet 40.58%
TransFuser 37.66%
MMTM 39.71%
Modified-DRConv 34.63%
Modified-DDF 36.16%

(a)

Ratio mIoU
1 38.13%
1.5 41.96%
2 42.85%
3 42.86%
4 39.54%
8 39.13%

(b)

Location mIoU
First 42.86%
Second 39.65%
Both 33.08%

(c)

Table 1. Accuracy of (a) MCubeSNet and baseline methods,
MCubeSNet with different RGFSConv (b) ratios and (c) locations.

railroad tracks and fallen leaves may occupy some ground
area, we use wood and leaf as material labels (i.e., trees are
made of wood and leaves). Another notable material we add
is water, which we find in puddles, rivers, and ponds. The
“Other” category includes ceramic, plaster, plastic, and sky,
which are common but less significant in occurrences or for
downstream tasks in a driving scenario.

Each image set of each sequence consists of 5 images:
a stereo-pair of RGB and polarization images and an NIR
image captured from three distinct viewpoints. As Fig. 4
shows, we densely annotate every image with per-pixel ma-
terial classes. We annotate the left RGB image and propa-
gate the per-pixel labels to other views of the same frame.
We recover a dense depth image for the left RGB-P cam-
era by integrating RGB stereo and LiDAR 3D points [23].
We use this dense depth image as a proxy to map the pixel-
level annotations to the right RGB-P camera and the NIR
camera. In this mapping, occluded pixels cannot find the
corresponding pixels in the annotated left RGB image. We
fill such holes with image inpainting [24].

4. MCubeSNet
We introduce a novel deep neural network that fully

leverages the multimodal material appearance. We re-
fer to this MultiModal Material Segmentation network as
MCubeSNet. Inspired by recent advances in content-driven
filtering, we introduce a novel guided convolution layer for
integrating multimodal imaging data.
Architecture Figure 5a depicts the architecture of
MCubeSNet. We chose DeepLab v3+ [4] as the backbone.
The input consists of four images (left RGB and polariza-
tion image represented as AoLP and DoLP images, and
near-infrared image). Since each of the different imaging
modalities capture different radiometric aspects of different
materials in the scene, we first extract image features us-
ing separate encoders for each image modality. For this, we
use Resnet-101 with the ASPP module. As a result, each
of the imaging modalities are encoded into low-level and
high-level features. The high-level features are upsampled
four times [4] and concatenated with the low-level features
which is then input to the decoder.

RGB Ground Truth MCubeSNet DeepLab v3+ Modified-DDF

Figure 6. Material segmentation results of MCubeSNet, DeepLab
v3+ with three additional encoders, and DDF. MCubeSNet suc-
cessfully leverages multiple imaging modalities.

4.1. Region-Guided Filter Selection

The decoder takes in the multimodal image features and
produces a dense material segmentation. We fully lever-
age the multimodal material characteristics in this decoder
by introducing a region-guided filter selection convolution
layer (RGFSConv).

Material occurrences are strongly correlated with object
instances. For instance, gravel is often seen in roads and
pavements but not as part of cars. Metal is often seen in
cars and poles, but not as a road. We leverage this rich inter-
dependence between objects and materials by using object
categories as priors on material segmentation. Object cate-
gories are extracted by semantic segmentation on the input
RGB image(s). We use DeepLab v3+ [4] for this, which is
applied to the input RGB image outside MCubeSNet. We
consolidate the semantic classes of CityScapes down to 10
classes. Please refer to the supplemental material for more
details. We use this semantic segmentation as a guide field
to apply different filters to different semantic regions.

The idea is to learn different convolutional filters to ap-
ply to each imaging modality feature (i.e., channel) from the
encoder so that different materials integrate those imaging
modalities that are most relevant to identify them correctly.
The semantic segmentation provides a region field that nar-
rows down the possible materials. For instance, the network
can learn to focus on learning filters that would help recog-
nize metal, glass, and rubber for a car region. A naive im-
plementation of this idea, however, incurs too much com-
putational cost. For instance, a guided dynamic filter [2]
with C input channels, O output channels, and m classes
would require m2C(O + 1) parameters in the feature gen-
erator module. At the same time, simply learning different
filter sets for each semantic region would not model the un-
derlying materials with consistent features.

Our key idea is to learn an overcomplete set of (regular)
convolutional filters across the entire image, but learn to as-
sign different sets of those filters to each semantic region.
The filters are selected by picking the top k responsive fil-
ters for each semantic region, i.e., picking the filters that
have the highest average activation. This approach enables



Input Image Ground Truth RGB Only RGB+AoLP+DoLP

Figure 7. Contribution of polarization for material segmenta-
tion. Polarization behavior adds significant information to achieve
higher accuracy especially for discerning metal and dielectrics.

learning of material-specific filter sets that integrates dif-
ferent imaging modalities (channels of encoder output fea-
tures) with different weightings guided by semantic regions,
which we refer to as RGFSConv.

In the RGFSConv layer, a CE × W × H feature map,
which has CE channels from the encoder output, first passes
through vanilla convolutions to generate an intermediate
feature map of size λk × W × H . The ratio λ is a hyper-
parameter that defines the relative size of the pool of convo-
lution filters the network can use for different semantic (in
turn, material) regions. RGFSConv outputs feature maps of
k channels by adaptively selecting different sets for differ-
ent semantic regions. By matching k to the channel size of
an existing layer in a backbone network, we can easily in-
sert an RGFSConv layer to achieve this region-guided filter
selection for any problem at hand. We believe RGFSConv
would be effective in various multimodal imaging tasks.

The guide field, in our case the semantic segmentation,
can be computed on the input independent from the network
and fed into the RGFSConv layer after resizing its spatial di-
mensions to W×H . For each semantic region, we compute
the average response of each channel (rmj ) by

rmj =
1

|Dm|
∑

(x,y)∈Dm

Fj(x, y) , (1)

where Fj is the j-th channel of the intermediate feature, Dm

represents the region(s) corresponding to the m-th semantic
class, and |Dm| denotes the number of pixels in Dm. The
output feature map of the RGFSConv layer in each semantic
region becomes

fm = cat(Fm
j∗ ) , j∗ =

k
argmax

j
(rmj ) , (2)

where j∗ are the indices of the k largest average responses
and cat is the concatenation operator.

5. Experiments

We thoroughly verify the effectiveness of MCubeSNet
on our dataset by also comparing with baseline methods
and through ablation studies. Please see the supplemental
material for many more results.

Input Image Ground Truth RGB Only RGB+NIR

Figure 8. Contribution of NIR. NIR helps recognition of water
(river) and wet surfaces (wood vs. leaves).

Training Details We conduct all experiments using Py-
Torch on Quadro RTX A6000. Data augmentation in-
cluding random horizontal flips and scale crops is applied.
Training, validation, and test sets contain 302, 96 and 102
images, respectively. Polynomial decay from 0.05 with 0.9
as the power is used for the learning rate schedule for maxi-
mum epochs of 500. For the four ASPP modules and the de-
coder, the learning rate is increased by ten times. Stochas-
tic gradient descent with momentum 0.9 and weight de-
cay 5e-4 is used. We measure accuracy by the class mean
Intersection-over-Union (mean IoU, mIoU). We use a pre-
trained DeepLab v3+ which we then fine-tune with the se-
mantic labels of the training set of MCubeSNet as the se-
mantic segmentation network for generating the guide fields
for the RGFSConv layer of MCubeSNet.

Baseline Comparisons In the absence of other multi-
modal material segmentation methods, we compare our
method with a state-of-the-art semantic segmentation
method, namely DeepLab v3+ with four encoders, as the
baseline method. Note that this “DeepLab v3+” per-
formance also likely represents an upper bound on past
RGB material segmentation networks (e.g., [1] and [20])
given the progress in semantic segmentation research. We
also compare with three multimodal semantic segmentation
methods: FuseNet [8], Multi-Modal Fusion transformer
[17], and MMTM [12]. For these methods, we modify their
network structures to accept four imaging modalities. In
FuseNet, we add two more encoders with the same struc-
ture as the original ones. The element-wise addition fusion
mechanism in multiple layers are untouched. For the Trans-
Fuser and MMTM, we add the fusion modules after each
block of ResNet-101. Additionally, we also test two dy-
namic filter methods DRConv [2] and DDF [30]. Similar
to our method, we only substitute the first layer of the de-
coder with these two convolution methods. We also add the
semantic guidance to them. Please refer the supplemental
material for details.

Table 1(a) shows material segmentation results of our
MCubeSNet and other models. MCubeSNet achieves
42.86% in mIoU and at least 2.28% gain over other meth-
ods. Compared to the baseline, RGFSConv improves the
mIoU by 4.73%. Figure 6 shows the performance compar-
ison of MCubeSNet, baseline, and Modified-DDF. Overall,
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✓ 75.8 32.3 36.1 53.7 0.0 23.1 0.8 5.2 3.1 61.9 53.6 6.3 38.1 25.7 53.6 27.0 70.2 13.1 95.1 33.7
✓ ✓ 83.3 42.3 43.0 58.4 8.8 27.3 0.6 9.8 12.0 55.5 57.7 18.1 64.6 36.6 56.5 34.8 71.8 6.8 95.0 39.1
✓ ✓ 75.2 40.2 37.8 53.9 4.2 32.3 1.9 14.3 11.3 59.7 21.8 11.6 28.9 29.1 54.6 29.4 71.4 9.6 94.3 34.1
✓ ✓ 82.4 41.5 47.0 65.3 15.2 45.4 0.5 14.1 15.2 59.9 47.3 20.6 39.9 27.7 59.4 38.0 75.9 18.1 96.0 40.5
✓ ✓ ✓ 81.7 45.2 44.9 54.3 6.1 42.8 1.4 17.3 0.8 54.0 60.7 23.0 60.5 34.9 57.9 34.4 72.5 2.0 94.7 39.5
✓ ✓ ✓ 83.0 43.9 47.8 57.9 10.4 40.3 0.7 17.7 13.0 57.5 52.8 20.7 65.0 38.2 58.2 38.1 75.1 8.2 95.3 41.2
✓ ✓ ✓ 83.0 42.6 45.5 59.8 17.0 44.2 1.2 18.6 4.8 54.8 51.5 26.4 67.6 41.9 57.0 39.4 74.0 15.5 95.3 42.0
✓ ✓ ✓ ✓ 85.7 42.6 47.0 59.2 12.5 44.3 3.0 10.6 12.7 66.8 67.1 27.8 65.8 36.8 54.8 39.4 73.0 13.3 94.8 42.9

Table 2. Performance comparison of using different modalities in per-class IoUs and mIoU (%). The ratio λ is set to 3. When a certain
modality is excluded, the encoder is fed with a zeroed-out image for that modality to ensure fair comparison. Best results are highlighted.
We omit the human body class as its result is 0%.

our MCubeSNet achieves more accurate segmentation re-
sults. MCubeSNet, for instance, can discriminate the rail
track from its surrounding concrete and overall performs
better in recognizing the road. We tested class weight bal-
ancing on the network outputs which results in 45.95%
mIoU (DeepLabv3+ achieves 41.32% mIoU). Please see the
supplemental material for examples from all methods.

Ablation Studies on RGFSConv We analyze the effec-
tiveness of RGFSConv by varying the ratio λ to 1, 1.5, 2,
3, 4, and 8. Notice that when the ratio is 1, our RGFS-
Conv reduces to traditional convolution and the decoder has
the same structure as the decoder of the original DeepLab
v3+. Table 1(b) shows the results. The significant decrease
in performance when changing the ratio from 3 to 1 ver-
ifies the effectiveness of our RGFSConv. When the ratio
becomes larger than 3, MCubeSNet cannot maintain its ac-
curacy. We believe this is because when λ is too large, the
chance that each channel is selected in the output of RGF-
SConv drops and only a small fraction of parameters are
updated in each iteration, which decreases accuracy.

We also explore the use of RGFSConv at different lo-
cations in the network: the first or second layer of the de-
coder or both. Table 1(c) shows that when the RGFSConv
is closest to the encoder, MCubeSNet achieves highest per-
formance. When we use two RGFSConvs simultaneously
(Both), the network suffers from the inconsistency of chan-
nels between the two layers. These results indicate that
RGFSConv finds optimal combinations of imaging modali-
ties for different semantic regions (i.e., potential materials).

Contributions of Imaging Modalities We investigate
how each imaging modality contributes to the per-pixel
recognition of different materials. For this, we train and
test MCubeSNet with eight different combinations of imag-
ing modalities. Table 2 shows these cases and their results.
Clearly, using all modalities (AoLP, DoLP and NIR) leads
to a 9.2% improvement in mIoU. The performance compari-
son in the four cases of RGB → RGB+NIR, RGB+AoLP →
RGB+AoLP+NIR, RGB+DoLP → RGB+DoLP+NIR, and

RGB+DoLP+AoLP → All modalities verify that NIR con-
tributes significantly in recognizing gravel, ceramic, cob-
blestone, and brick. We notice the same increase in these
classes after adding AoLP. Combining NIR and RGB also
achieves the best result in water-related classes, such as
grass, leaf, and water. This conclusion is consistent with
the fact that water absorbs more NIR light than other ma-
terials. With the help of the two polarization modalities,
MCubeSNet obtains 9.4%, 13.4%, and 20.9% performance
improvement in segmentation of metal, plastic, and glass,
respectively (RGB → RGB+AoLP+DoLP), which is also
consistent with the polarization characteristics of metal and
dielectrics. Overall, these results clearly demonstrate the
importance of multimodal imaging for material segmenta-
tion, especially for outdoor scenes.
Limitations Please see the supplementary material for
more results and analysis including failure cases. The com-
bination of modalities we employed in this paper sometimes
cannot resolve ambiguities of material appearance under
different illumination and viewing conditions. We plan to
quantify such uncertainties. We also plan to study how to
combat the natural class imbalance of materials.

6. Conclusion
In this paper, we introduced a new dataset and novel

method for multimodal material segmentation. The new
MCubeS dataset consists of 500 sets of RGB, polarization,
and NIR images of outdoor scenes captured from a van-
tage point similar to a car. MCubeSNet fully leverages
these imaging modalities to accurately recognize per-pixel
material categories. The experimental results clearly show
the importance of multimodal imaging for outdoor material
segmentation. We believe the dataset and network serve as
an important platform for fully utilizing rich material infor-
mation in safety critical applications.
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