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Abstract

We introduce a novel method for recovering per-pixel
surface normals from a pair of polarization cameras. Un-
like past methods that use polarimetric observations as aux-
iliary features for correspondence matching, we fully inte-
grate them in cost volume construction and filtering to di-
rectly recover per-pixel surface normals, not as byproducts
of recovered disparities. Our key idea is to introduce a po-
larimetric cost volume of distance defined on the polarimet-
ric observations and the polarization state computed from
the surface normal. We adapt a belief propagation algo-
rithm to filter this cost volume. The filtering algorithm si-
multaneously estimates the disparities and surface normals
as separate entities, while effectively denoising the origi-
nal noisy polarimetric observations of a quad-Bayer po-
larization camera. In addition, in contrast to past meth-
ods, we model polarimetric light reflection of mesoscopic
surface roughness, which is essential to account for its
illumination-dependency. We demonstrate the effectiveness
of our method on a number of complex, real objects. Our
method offers a simple and detailed 3D sensing capability
for complex, non-Lambertian surfaces.

1. Introduction
Stereo reconstruction has been a long-standing research

topic in computer vision since its inception. Binocular
stereo, in particular, has been studied in depth and has been
deployed in a wide range of applications. Its simple pas-
sive setup which requires minimal calibration, maintenance,
and cost has made it a reliable choice for 3D sensing. Even
when alternative methods with higher precision are avail-
able, binocular stereo is often favored for its dense per-pixel
depth that comes with relatively low cost for computation.

Stereo, however, is inherently limited by its underlying
reconstruction process, namely matching and triangulation.
Correspondence matching fundamentally requires view-
independent appearance (color constancy), which translates
to limited applicability in terms of target surface materials.
Despite the large body of work including those that train

deep neural networks to establish matching metrics, depart-
ing from this Lambertian surface requirement remains chal-
lenging. Triangulating the resulting correspondences also
only recovers surface depth. For most cases, due to the
fragility of this matching and triangulation, spatial regu-
larization and quantization are employed. As a result, the
geometry recovered by stereo, albeit useful for many appli-
cations, is often a crude measurement of the true surface.

Can we make stereo, in particular, simple binocular
stereo recover detailed geometry of real-world surfaces that
are composed of arbitrary materials? Can we match non-
Lambertian surface points, but recover the geometry with-
out relying solely on their geometric triangulation? In this
paper, we show that we can achieve these by exploiting po-
larization of light reflected from real-world surfaces.

Catapulted by the introduction of quad-Bayer polariza-
tion cameras, polarization cues have started to see adoption
in a wide range of computer vision methods. Geometry re-
construction is no exception (see Sec. 2). These past meth-
ods, however, use polarization as auxiliary cues for match-
ing and proceeds with regular triangulation of depth. Sur-
face normals are only computed from the recovered depth.
That is, they are byproducts of the depth and not mea-
surements of the actual surface normals. They also ignore
the complex polarimetric reflection properties and assume
purely Lambertian or mirror reflection, which ostracizes a
broad range of real-world materials and lighting conditions.

In this paper, we show that we can establish surface point
correspondences in a polarimetric stereo pair and recover
per-pixel surface normals from the two polarimetric obser-
vations. We also integrate a full polarimetric BRDF model
to handle complex lighting-dependent polarimetric reflec-
tion. To the best of our knowledge, our work is the first to
show that surface normals can be directly, not as a byprod-
uct of depth, recovered from binocular polarimetric stereo
for a wide range of surfaces from matte, glossy, to mirrored.

Our key idea is to formulate simultaneous estimation of
per-pixel depth-independent normal and albedo as RGB-
polarimetric cost volume filtering. In addition to a regu-
lar RGB cost volume as a function of pixel disparities, we
also construct a polarimetric cost volume that stores Stokes



vector differences for different surface normals and albedo
values. These surface normals are computed directly from
corresponding Stokes vectors in the two stereo views given
hypothesized disparity values. Our goal is to filter these cost
volumes to arrive at optimal disparities that give pixel cor-
respondences, which in turn enables computation of surface
normals and albedo values from the two Stokes vectors.

We achieve this cost volume filtering using belief prop-
agation with three distinct characteristics. First, filtering of
the two cost volumes are seamlessly integrating by multi-
plication of their beliefs. Second, the beliefs encode surface
normals and use them to propagate disparities according to
them. This leads to depth estimates that respect the sur-
face normals measured in their view-dependent polarimet-
ric observations. Finally, the surface normals themselves
are also propagated, which effectively denoises the surface
normals on the hypothesized surface. This is essential for
using quad-Bayer polarization cameras as they are inher-
ently noisy. These updated surface normals are then fed
back into the polarimetric cost volume, i.e., the Stokes vec-
tors are updated to match the surface normals, and the whole
process is iterated to convergence. We also fully model the
diffuse, specular lobe, and specular spike reflection with a
microfacet-based polarimetric BRDF model [3]. Account-
ing for illumination-dependent polarization by glossy re-
flection in this way, which past methods ignored, is crucial
for practical polarimetric 3D reconstruction.

We experimentally validate our method on a number of
objects captured in a variety of lighting conditions. The re-
sults demonstrate the accuracy of the recovered surface nor-
mals and the method’s effectiveness in practical real-world
situations. With the advent of polarization cameras, we be-
lieve these results have implications in a wide range of ar-
eas, including autonomous driving, robotics, VR/AR, and
medicine owing to its passive reconstruction of detailed ge-
ometry from a simple setup.

2. Related works
The majority of past stereo algorithms are disparity-

based, which computes surface normals as gradients of re-
covered depth. These methods tend to result in overly
smooth surface normals. Patch-based reconstruction meth-
ods [8, 5] explicitly estimate the surface normal to deform
the texture matching window, but cannot estimate per-pixel
surface normals as they still rely on window matching.

Light reflection by a surface changes its state of polar-
ization, i.e., the polarization state implicitly encodes the
surface normal direction. The mapping between the nor-
mal and the polarization state is, however, not bijective.
Various methods have been proposed that make different
assumptions on the surface orientation while utilizing ini-
tial shape reconstruction from non-polarization methods
[10, 7, 4, 21] and illumination [9]. Others assume differ-

ent polarimetric reflection properties such as diffuse only
[1, 13, 15, 2], mirror dominant [19], and a combination of
them [11, 22, 3, 17].

Kadambi et al. [10] use polarization cues to refine sur-
face normals of geometry captured with conventional depth
sensing. Cui et al. [7] disambiguate possible surface nor-
mals computed from polarization using depth recovered
by conventional stereo. Berger et al. [4] combines color-
based cost with a polarization-based cost function to aid
correspondence search in non-Lambertian areas. Zhao et
al. [21] refine depth estimates using multiview angle-of-
polarization images. These methods fundamentally rely on
depth estimates from regular stereo reconstruction or other
3D sensing techniques and polarimetric observations are
auxiliary information for regular stereo matching and tri-
angulation, not a source of direct surface normal recovery.

Wolff and Boult [19] directly recover surface normals
from polarimetric observations by intersecting specular
planes of incidence defined by the polarizer angles at each
view. Atkinson and Hancock [2] proposed binocular stereo
with polarizers. They assume pure diffuse polarization to
estimate normal zenith from the degree of polarization.

Zhu and Smith [22] classify surface points into either
pure diffuse or mirror reflection to estimate their surface
normals. Smith et al. [17] introduce a linear solution for
single-image reconstruction. Yu et al. [20] propose an anal-
ysis by synthesis approach. Miyazaki et al. [12] and Chen
et al. [6] estimate surface normals as the intersection of
plane-of-reflections defined by the angle of polarizer at each
viewpoint. All these methods use the same diffuse or mir-
ror binary classification, which is inherently limiting as real
surfaces are always a combination of them at a pixel, not a
spatial binary map of either. Moreover, they ignore specu-
lar lobe (glossy) reflection which is essential for handling
lighting-dependent polarization of real surfaces.

Baek et al. [3] recently introduced a method that es-
timates the surface normal for full polarimetric reflection
consisting of diffuse and specular lobe (not merely mirror).
The method, however, requires an active stereo system to
obtain the accurate 3D shape by structured lighting and fun-
damentally relies on a co-axial imaging setup.

In contrast to these past methods, our polarimetric nor-
mal stereo is completely passive, does not require initial es-
timates of depth, and recovers per-pixel surface normals for
combined diffuse and specular reflection directly from po-
larimetric observations.

3. Polarimetric Reflection

Let us first review polarization in general and then po-
larimetric reflection and its BRDF model.



3.1. Polarization

Light is a composition of transverse waves of electric
and magnetic fields that are always perpendicular to each
other. The “orientation” of light can be defined as the angle
the electric plane wave makes in the plane perpendicular
to the traverse direction. Within a non-zero finite time of
observation, this orientation can be randomly distributed.
We call such light unpolarized. In contrast, light can be
oriented in a single direction, which we refer to as linearly
polarized light. This orientation can also be rotating as a
function of time. Such light is called circular polarized. In
this paper, we only consider linear polarization as surface
reflection primarily causes it, but not circular polarization
unless with water.

Within the temporal span of an observation (i.e., camera
exposure), the observed light can consist of a collection of
linearly polarized light of varying magnitudes. This results
in an elliptic distribution of linear polarization. If we ob-
serve such partially linearly polarized light with a camera
equipped with a polarization filter on the image plane (or
lens plane), the observed intensity will be a function of the
filter angle ϕc

I(ϕc) = Imax cos
2 (ϕc − ϕ) + Imin sin

2 (ϕc − ϕ)

= I + ρI cos (2ϕc − 2ϕ) , (1)

where Imax and Imin are the light intensities in the major
and minor axes of the ellipse and I is the average intensity
(= Imax+Imin

2 ). The scalar ρ = Imax−Imin

Imax+Imin
is referred to as

the degree of linear polarization (DoLP) and represents how
strongly the light is linearly polarized (i.e., how elongated
the ellipse is). The angle ϕ is called the angle of linear polar-
ization (AoLP) and represents the major linear polarization
angle. The observed intensity I(ϕc) becomes a sinusoidal
wave of ϕc which takes on its maximum value at ϕc = ϕ.

To recover the polarization state of a linearly polarized
light from its intensity, we need at least three observations
at three different filter angles (i.e., three angular samples of
the polarization ellipse). Quad-Bayer polarization cameras
use four filters of different angles laid out on each pixel.
Intensity observations at these four filter angles of π

4 incre-
ments can be expressed with the Stokes vector

s =


s0
s1
s2
s3

 =


I(0) + I(π2 )
I(0)− I(π2 )
I(π4 )− I( 3π4 )

0

 =


2I

2ρI cos (2ϕ)
2ρI sin (2ϕ)

0

 . (2)

The polarization state can easily be extracted from the
Stokes vector

I =
s0
2
, ρ =

√
s21 + s22
s0

, ϕ =
1

2
tan−1

(
s2
s1

)
. (3)
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Figure 1. When a surface is illuminated from different directions
(light 0: left behind camera, 1: above camera, and 2: right behind
camera), the angle of polarization changes. This phenomenon can-
not be explained with the polarization characteristics of diffuse and
mirror reflection, the latter of which is often referred to as specular
reflection in past methods. It requires modeling of the microgeom-
etry of the surface projected in each pixel.

3.2. Polarimetric Microfacet BRDF

Polarimetric light reflection by an object surface can be
characterized with two processes. When the incident light
strikes the interface, part of the light gets reflected in the
perfect mirror direction where the incident, surface normal,
and viewing directions span the reflection plane. This mir-
ror reflection, regardless of the polarization state of the in-
cident light, linearly polarizes the light in the direction per-
pendicular to the reflection plane (s-polarized). In contrast,
the light that transmits into the subsurface is polarized in
the direction parallel to the reflection (refraction) plane (p-
polarized), gets depolarized due to scattering, and then be-
comes p-polarized again when reemitted back into air. Past
methods for polarimetric 3D reconstruction have assumed
this combination of diffuse plus mirror reflection, often re-
ferring to the latter as “specular” reflection. This, however,
is incomplete and does not explain an important property of
polarization of surface reflection.

Fig. 1 shows images of the AoLP of a real scene com-
puted from polarimetric observations captured with a quad-
Bayer polarimetric camera from a fixed view point but with
a different light source direction for each image. If the sur-
face reflection was really a linear combination of diffuse
reflection and mirror reflection, the AoLP at each surface
point should have stayed the same regardless of the light-
ing. Fig. 1 shows otherwise; the AoLP distribution clearly
changes together with the light source direction. This is be-
cause, as the light source direction changes, the surface nor-
mals that contribute to “specular” reflection (light reflected
at the interface of the surface) actually varies. That is, the
mesoscopic surface contains a variety of surface normals
in the projected area of a pixel, and a different set of them
that lies on the plane spanned by the normal and viewing
directions are observed via mirror reflection. As a result,
this mesoscopic surface roughness introduces illumination-
dependent polarization. This means that, just like regular
radiometric surface reflection modeling [14], we must ac-
count for the polarimetric properties of glossy reflection



(specular lobe) as depicted in Fig. 2(a).
We model the polarimetric light reflection as a linear

combination of diffuse and specular lobe reflections. Note
that the polarization properties of specular spike reflection
are included in the polarimetric specular lobe reflection
which we, from now on, refer to as specular reflection. The
mesoscopic surface can be modeled as a collection of mi-
crofacet mirrors whose polarimetric reflection can be de-
rived similarly to a radiometric microfacet bidirectional re-
flection distribution function (BRDF). Baek et al. [3] intro-
duce such a polarimetric microfacet BRDF. Instead of ex-
pressing the polarization state in Stokes vector parametriza-
tion, here we review this model in terms of AoLP and DoLP.
This formulation is more suitable for surface normal estima-
tion in our setting.

The radiometric microfacet BRDF model can be ex-
pressed as a linear combination of diffuse reflection and
specular reflection

I = (ℓ · n) (fd(ℓ,n,vc) + fs(ℓ,n,vc, σ))L , (4)

where I is the observed radiance, L is the source radiance,
σ is the surface roughness, and fd and fs are the diffuse and
specular reflectance, respectively. The diffuse reflectance is
a function of the incident light direction ℓ, surface normal
n, and the viewing direction vc. In contrast, specular re-
flectance is also a function of the surface roughness σ.

Diffuse reflectance is that of the light transmitted into
the subsurface that is scattered and transmitted back into
the viewing direction

fd(ℓ,n,vc) = kdT (n,vc)T (ℓ,n) , (5)

where T is Fresnel transmittance and kd is the diffuse
albedo.

For specular reflectance that models the specular lobe
and spike, we adopt the microfacet model by Walter et al.
[18]

fs(ℓ,n,vc) = ksW (ℓ,n,vc, σ)R(h,vc) , (6)

where

W (ℓ,n,vc, σ) =
D(n,h, σ)G(ℓ,n,vc, σ)

4|ℓ · n||n · vc|
, . (7)

Here D(n,h, σ) is the surface normal distribution of the
microfacets, where h is the half vector of the viewing and
incident light directions, and G(ℓ,n,vc, σ) is the geometric
attenuation term.

The Fresnel reflection R and transmittance T at polar-
ization filter angle ϕc on the image plane becomes

R(ϕc) = Rs cos
2(ϕc − ϕr) +Rp sin

2(ϕc − ϕr)

=
Rs +Rp

2
+

Rs −Rp

2
cos(2ϕc − 2ϕr)

= R+ ρrR cos(2ϕc − 2ϕr) , (8)
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Figure 2. (a) Polarization of specular lobe (gloss) reflection is es-
sential to account for the illumination-dependent polarization of
light reflection on real-world surfaces. Past methods have only
modeled the specular spike (mirror) reflection as “specular” reflec-
tion. (b) We model the specular lobe with a microfacet orientation
distribution using the halfway vector.

and

T (ϕc) =
Tp + Ts

2
+ ρt

Tp − Ts

2
cos(2ϕc − 2ϕt)

= T + ρtT cos(2ϕc − 2ϕt) , (9)

where the subscripts s and p denote the perpendicular and
parallel components to the reflection plane, ρr and ρt are the
degree of linear polarization of reflection and transmittance,
respectively, and ϕr and ϕt are the angle of polarization of
reflection and transmittance, respectively. We have dropped
dependency on the halfway vector, normal, and light source
and viewing directions for brevity. Note that light trans-
mitted into the surface is depolarized before reemitted to
air, which is why Fresnel transmittance into the subsurface
T (ℓ,n) is not a function of ϕc.

The observed radiance at polarization filter angle ϕc can
be written as

I(ϕc) = (ℓ · n)
(
kdT (ℓ,n)T (n,vc, ϕc)

+ ksW (ℓ,n,vc, σ)R(h,vc, ϕc)
)
L .

(10)

From Eqs. 10, 9, 8, and 2, the Stokes vector of a sur-
face point with surface normal n, diffuse albedo kd, and
specular albedo ks can be computed from its polarimetric
observations I(ϕc)

s̃(n, kd, ks) =
2(ℓ · n)

(
f̃d + f̃s

)
L

2(ℓ · n)
(
f̃dρt cos (2ϕt) + f̃sρr cos (2ϕr)

)
L

2(ℓ · n)
(
f̃dρt sin (2ϕt) + f̃sρr sin (2ϕr)

)
L

0

 ,
(11)

where

f̃d = kdT (ℓ,n)T (12)

f̃s = ksW (ℓ,n,vc, σ)R . (13)

4. Polarimetric Normal Stereo
As depicted in Fig. 3, our method directly recovers sur-

face normals from polarimetric stereo pairs by cost volume
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Figure 3. Overall framework of polarimetric normal stereo. From a pair of polarimetric images from which AoLP and DoLP can be
computed for each pixel, we construct a polarimetric cost volume, in addition to a regular RGB cost volume, that measures the Stokes
vector discrepancy between that computed from the surface normal estimate and the two observations for a given disparity. We filter these
cost volumes, while effectively denoising the input polarimetric observations to estimate the surface normal as well as diffuse and specular
albedo values at each pixel.

construction and filtering that fully leverages the polarimet-
ric observations with polarimetric cost volume construction,
surface normal propagation, and iterative updating.

4.1. Polarimetric Cost Volume

A regular RGB cost volume is constructed by evaluating
the RGB color difference for a given set of discrete disparity
values at each pixel

CRGB(p, dp) =|IL(u, v)− IR(u− dp, v)|
+ |∇IL(u, v)−∇IR(u− dp, v)| ,

(14)

where dp denotes the disparity at pixel p = (u, v), IL, IR
are the left and right DC component of intensity, respec-
tively, and CRGB(d) denotes the cost at (u, v) for a dispar-
ity d. The second term encodes the difference in the inten-
sity gradients.

In addition to this regular RGB cost volume, we leverage
the polarimetric observations by constructing and filtering a
polarimetric cost volume. We first define the polarimetric
distance between a Stokes vector s̃ computed from surface
parameter estimates consisting of the surface normal, dif-
fuse albedo and specular albedo and the observed Stokes
vectors s in the two views

Ls(p, dp,np, kd,p, ks,p) =

|s{L,R}(u, v)− s̃{L,R}(u, v,np, kd,p, ks,p)| ,
(15)

where we add the cost for left and right views {L,R}. We
can estimate the surface normal and albedo values at a pixel
as those that minimize this cost

n⋆
p, k

⋆
d,p, k

⋆
s,p = arg min

np,kd,p,ks,p

Ls(p, dp,np, kd,p, ks,p) .

(16)

In our implementation, we achieve this with regular gra-
dient descent. This optimization is over-constrained with
effectively 10 constraints for 8 unknowns. As the surface
normal is shared among the color channels, the Stokes vec-
tor will only differ in the first element, which reduces the
apparent 18 constraints down to 10. Note that, for a sin-
gle view, this means there are only 5 constraints, and thus
single-view surface normal recovery is not possible. The
optimization has a unique solution because the binocular
observation provides an AoLP for each view and their inter-
section resolves the π- and π/2- ambiguities. This, in other
words, means that given two polarimetric observations (i.e.,
a hypothesized disparity value d), we can estimate the sur-
face normal and albedo values that best explain them.

For any hypothesized disparity value for a given pixel,
we can solve for the surface normal and albedo values at
the corresponding surface point of the pixel in interest from
Eq. 16 and evaluate the goodness of that disparity value
with the polarimetric distance (Eq. 15)

Cs(p, dp) = Ls(p, dp,n
⋆
p, k

⋆
d,p, k

⋆
s,p) . (17)

We refer to this as the polarimetric cost volume. Note that
the disparity values parameterize this cost volume but the
surface normals and albedo values are used to evaluate the
polarimetric distance and that the surface normals are com-
puted from the polarimetric observations, not the disparity.

4.2. Normal-Disparity Belief Propagation

Unlike conventional binocular stereo, our goal is not
to estimate the disparity but the surface normal at each
pixel. The disparity, however, gives us pixel correspon-
dence which is necessary to obtain two polarimetric ob-
servations to estimate the surface normal. We have con-
structed two cost volumes both parameterized by the dis-



Patch Match [5] Smith et al. [16] Zhu & Smith [22] Ours

N
or

m
al

E
rr

or

Figure 4. Surface normal estimates and their error maps compared
with ground truth. Our method can recover fine surface geometry
as per-pixel surface normals independent of depth and regardless
of the lighting and surface roughness.

parity. We filter these cost volumes simultaneously with
belief propagation by defining beliefs that encode the un-
certainties of these costs and propagate them together with
the surface normals. By also propagating the surface nor-
mals computed from corresponding polarimetric observa-
tions at pixels with disparity values of high certainty, we
can effectively denoise the otherwise noisy polarimetric ob-
servations, which is critical to use quad-Bayer polarization
cameras. These propagated surface normals are reflected in
the polarimetric distance used to construct the polarimetric
cost volume, and these cost volume reconstruction and fil-
tering is iterated till convergence.

We define the energy potential to maximize as

Ψ(d) = exp [−E(d)] , (18)

where we define the energy

E(d) =∑
p∈P

∑
q∈Np

CV (p, dp, dq) +
∑
p∈P

(CRGB(p, dp) + Cs(p, dp)) ,

(19)

where d is a vector of disparity values for all pixels. Here
we have denoted the set of all pixels with P and the dis-
parity at pixel p ∈ P with dp ∈ D, where D is a discrete
set of possible disparity values. Np denotes the four pixels
horizontally and vertically adjacent to pixel p.

The pairwise cost CV (dp, dq) is defined as

CV (p, dp, dq) =


0 (|dp − d̂q| < 1)

P1 (1 < |dp − d̂q| < 2)

P2 otherwise

, (20)

where d̂q is the disparity value taking into account the sur-
face normal n at p, which is defined as d̂q = dq+∆d̂. For a
smooth surface area, ∆d̂ can be expressed using the surface
gradient as

∆d̂ = dpf

(
f +

nz,p

nx,p
∆u+

nz,p

ny,p
∆v

)−1

− dp , (21)

[5] [16] [22] Ours⋆1 Ours⋆2

33.3, 23.6 39.3, 34.2 27.8, 18.6 21.8, 17.4 21.8, 17.6
(a) 807.9 646.1 561.2 252.2 228.7

58.5, 52.5 50.8, 45.7 28.9, 15.8 20.9, 16.7 21.3, 17.0
(b) 825.6 872.5 843.3 292.4 264.6

22.3, 14.3 46.0, 43.4 25.6, 15.7 23.7, 18.7 23.6, 18.8
(c) 532.5 257.0 420.2 260.9 243.0

29.2, 25.8 40.3, 38.3 35.7, 34.0 32.2, 28.4 32.8, 29.3
(d) 336.9 405.1 337.2 412.8 333.6

70.2, 67.9 37.5, 34.4 41.1, 40.5 31.6, 29.2 31.5, 29.8
(e) 883.3 446.3 280.6 308.3 267.6

Table 1. Angular errors in degrees for (a) Pig, (b) Lemon, (c) Book,
(d) Dinosaur, (e) Stone. The three numbers for each result report
the mean, median, and the variance of the error. Our method con-
sistently achieves higher accuracy compared with past methods.
Propagating the normals with BP (Ours⋆2) results in less variance
than without it (Ours⋆1).
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Figure 5. Histograms of angular errors in degrees for Pig and
Stone. Our method has fewer pixels with large angular errors.

where f is the focal length of the camera and ∆u,∆v are
the horizontal and vertical differences of the pixel location
q − p. P1 and P2 are penalties for discontinuities.

We find the disparity values d and simultaneously the
surface normals and albedo values {(dp, kd,p, ks,p : p ∈ P}
that maximize the energy potential with belief propagation
that integrates the beliefs from both the RGB and polari-
metric cost volumes. Although each cost volume has non-
negative values, in order to make them valid probabilistic
uncertainties we define their potentials

BRGB(p, dp) = exp [−CRGB(p, dp)] (22)
Bs(p, dp) = exp [−Cs(p, dp)] . (23)

The uncertainty for a given disparity is then computed as
their joint probability

B(p, d) = BRGB(p, dp)×Bs(p, dp) . (24)

We can now define the message from pixel p to its neigh-
bor pixel q

mp→q(dq) =

d∑
dp=0

(exp [−CV (p, dp, dq)]B(p, dp))
∏

k∈Np\q

mk→p(dp) .

(25)
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Figure 6. Surface normal estimates for polarimetric stereo pairs
of the same object captured under different light source directions
(light 0: left behind camera, 1: above light 0, 2: right behind cam-
era). Despite the change in polarimetric observations, our method
correctly recovers consistent per-pixel surface normals, while the
baseline method suffers from inconsistency and fails to recover the
two sides of the rock.

As we pass these messages from pixel to pixel, we also
update the surface normal and albedo values at each pixel
according to the uncertainty of its disparity value. By up-
dating these quantities as a weighted linear combination of
the current normal and albedo estimates at a pixel and its
neighbors using the messages (uncertainties) as the weights

n⋆
q = (1−mp→q(dq))nq +mp→q(dq)np (26)

(same for k⋆d,q and k⋆s,q) we are able to denoise the raw
polarimetric observations, effectively, while estimating the
disparity, normal, and albedo values at each pixel.

As we propagate more certain surface normals and
albedo values from neighbors, the polarimetric cost volume
computed from the raw polarimetric observations should be
updated to reflect the new normals and albedo values by
substituting n⋆

p, k⋆d,p, and k⋆s,p with those computed in Eq.
26. We then go back to running belief propagation on this
updated polarimetric cost volume and the original RGB cost
volume and iterate this process till convergence.

5. Experimental Results
We experimentally evaluate the effectiveness of our po-

larimetric normal stereo method on a number of real polari-
metric images. We use two commercial color polarization
cameras (Lucid TRI050S-QC) that use quad-Bayer polar-
ization filter chips (Sony IMX250MYR) and calibrate them
with conventional stereo calibration methods.

5.1. Surface Normal Estimation

We first evaluate the accuracy of recovered surface nor-
mals and compare it with past relevant methods. We con-
sider three methods for comparison. The two representative

Smith et al. [16] Zhu & Smith [22] Ours

Figure 7. Diffuse albedo estimates of past methods suffer from
residual shading as they do not model the full polarimetric reflec-
tion. Our method, in contrast, does not suffer from such artifacts.

shape from polarization methods, Zhu and Smith [22] and
Smith et al. [16], model polarimetric reflection of only dif-
fuse and mirror and essentially conduct binary classification
on the surface1. In contrast, we model the full polarimetric
BRDF including glossy specular reflection. Note that Zhu
and Smith [22] assume known point source similar to our
method. Smith et al. [16] can handle an unknown point
source direction, but only when the object surface has uni-
form albedo and it has to be known, like in our method, for
spatially varying albedo. Although we leave as future work,
since the cost volume construction and filtering are clean
separate steps in our method, we believe we can incorpo-
rate light source estimation as an alternating minimization
where we iteratively update the point source direction used
to construct the cost volumes. We also compare with sur-
face normals computed by differentiating depth estimates
reconstructed with PatchMatch Stereo [5] as a baseline.

Fig. 4 shows the surface normal estimates using our
method and other methods as well as ground truth computed
from photometric stereo. The results clearly show that our
surface normal estimates capture the detailed geometry of
the complex objects and match the ground truth well. They
are also more accurate than other methods. For instance, the
results show that the surface normals computed from recov-
ered depth [5] do not capture fine surface geometry. Both
methods by [22] and [16] result in large surface regions with
inaccurate surface normals as they cannot take into account
the illumination-dependency of polarimetric appearance. In
sharp contrast, our polarimetric normal stereo is able to re-
store detailed surface geometry regardless of the depth and
light source directions.

Table 1 shows mean and median angular errors of the
surface normal estimates of all objects for all methods. The
results show that our method achieves the highest accuracy
for all objects. PatchMatch stereo [5] cannot leverage po-
larimetric information and suffers from textureless appear-
ance especially of objects like the stone and the lemon. The
stereo method by Zhu and Smith [22] only uses polarimetric
information for matching and does not account for glossy
reflection. These results demonstrate that directly comput-
ing surface normals from polarimetric information is essen-
tial to recover accurate fine geometry from polarimetric ob-

1We used implementations provided by the paper authors.
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Figure 8. Surface normal, albedo, and surface roughness recovery of various complex real objects. The results demonstrate the accuracy of
polarimetric normal stereo. Patch Match Stereo [5] cannot estimate the surface normal for objects with homogeneous textures. The height
recovery method by Smith et al. [16] and the stereo method bu Zhu & Smith [22] cannot accurately resolve the π-ambiguity.

servations. The height recovery method by Smith et al. [16]
also cannot handle glossy reflection and results in large er-
rors, especially for rough surfaces. Our method achieves
state-of-the-art accuracy on these complex, real objects.

Fig. 5 shows histograms of angular errors for Pig and
Stone. The results show that our method has fewer pixels
with large angular errors than past methods.

5.2. Lighting Invariance and Albedo Estimation

Fig. 6 shows surface normal estimates for three differ-
ent polarimetric stereo pairs of the same object taken under
different light source directions. Note how the input AoLP
changes for different lighting. Our method is able to recover
consistent surface normals regardless of the lighting.

Fig. 7 shows diffuse albedo estimates. The albedo esti-
mates by [22] and [16] suffer from residual shading as they
model shading on the DC component of the intensity which
actually includes the specular lobe. In contrast, our method
is able to accurately estimate the spatially varying albedo
without remaining shading, except for some irregularities
in small saturated spots.

5.3. Complex Objects

Fig. 8 shows our results on various objects with complex
reflection and geometry. The results demonstrate that our
method is able to recover the fine geometry of these objects
accurately regardless of material composition. As the in-
put AoLP images show, the polarimetric observations are

quite noisy. Our method is able to robustly recover the sur-
face normals and albedo values thanks to the denoising in-
tegrated in cost volume filtering. The black holes in images
from 3rd through 8th columns of Fig. 8 correspond to pix-
els where photometric stereo for ground truth capture failed
due to saturation. These holes are not identical to the high-
lights in the RGB images since the images for photometric
stereo were captured under different lighting conditions.

6. Conclusion
We introduced a novel binocular stereo method that

leverages polarimetric observations to recover fine geom-
etry of objects with complex non-Lambertian reflectance
properties. Our method models the lighting-dependent po-
larimetric appearance and directly recovers per-pixel sur-
face normal and albedo from pairs of polarimetric observa-
tions. We achieved this by introducing a novel polarimetric
cost volume and an iterative filtering method based on be-
lief propagation that also denoises raw polarimetric obser-
vations. We believe this polarimetric normal stereo method
significantly extends the reach of binocular stereo by en-
abling fine geometry reconstruction while retaining its sim-
plicity and passiveness.
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