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Abstract. This paper introduces a novel depth recovery method based
on light absorption in water. Water absorbs light at almost all wave-
lengths whose absorption coefficient is related to the wavelength. Based
on the Beer-Lambert model, we introduce a bispectral depth recovery
method that leverages the light absorption difference between two near-
infrared wavelengths captured with a distant point source and ortho-
graphic cameras. Through extensive analysis, we show that accurate
depth can be recovered irrespective of the surface texture and reflectance,
and introduce algorithms to correct for nonidealities of a practical imple-
mentation, including tilted light source and camera placement and non-
ideal bandpass filters. We construct a coaxial bispectral depth imaging
system using low-cost off-the-shelf hardware and demonstrate its use for
recovering the shapes of complex and dynamic objects in water. Exper-
imental results validate the theory and practical implementation of this
novel depth recovery paradigm, which we refer to as shape from water.

Keywords: Depth recovery · Light absorption · Multispectral imaging

1 Introduction

Three-dimensional geometry recovery has been one of the central focuses of
research in computer vision from its inception due to the fundamental role
3D geometry may play in almost all applications. These research efforts have
culminated in the establishment of a handful of distinct principles for modern
shape recovery methods, including triangulation, time of flight, and shape-from-
X where X can be shading, texture, focus, and other surface or image formation
properties. The fundamental but often neglected assumption of these different
approaches is that the light, either actively or passively shed on the object sur-
face including environmental illumination, can be measured unaltered between
the surface and the camera. Although there are some works that study shape
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recovery of objects in non-air medium where this assumption does not hold (e.g.,
participating medium like dilute milk), their focus is on undoing the adversarial
optical perturbations such as scattering to apply the same recovery principals
that were designed for objects in clear air. In other words, the medium is treated
as an unwanted nuisance that violates the assumed geometry recovery principle.

Can we instead exploit whatever may happen to the light as it travels from
the surface to the camera for shape recovery? If we can, what advantages would
it give us? In the past, scattering has been modeled to restore clear day scene
appearance from images taken in bad weather conditions (e.g., fog), in whose
process the scene depth can also be recovered. This, however, is limited to acci-
dental imaging in bad weather conditions, and cannot be used as a general shape
recovery method. In this paper, we focus on light absorption in the infrared
spectrum as a light propagation characteristic that encodes depth. When light
travels through a homogeneous isotropic medium, it usually gets absorbed at
some wavelengths. The light absorption is dictated by the Beer-Lambert law,
which denotes the absorption at a certain wavelength to be proportional to the
length of the light travel path and to the absorption coefficient of the medium
[12]. This suggests that we may recover the distance of a surface point to the
camera by measuring the amount of light absorption that takes place between
the surface and the camera. In other words, we may recover depth of an object
by measuring the light path distance (i.e., optical depth) from the camera of the
medium in between.

In this paper, we focus on water as the medium for a few important rea-
sons. In addition to the fact that water is a familiar liquid that we can easily
find in our daily lives, geometry recovery in water in itself finds applications
in many areas of science such as oceanography, geography, and biology, as well
as engineering including underwater surveillance and navigation. Furthermore,
multi-spectral light propagation in water is mostly dominated by absorption and
scattering plays little effect as long as the water is sufficiently clear, which would
otherwise compound the optical length computation. Few past methods have
directly applied the depth recovery principals in air to underwater scenarios,
and have found light absorption to adversely affect the results [2]. We instead
take advantage of light absorption in water and establish shape from water as a
novel shape recovery approach.

We propose a novel shape recovery method based on monochromatic images
captured at two different infrared wavelengths, which we refer to as the bispectral
principle of depth recovery. The key idea is to exploit the difference in the amount
of light absorption that takes place at two distinct wavelength and cancel out
light interaction effects, including those due to surface texture and reflectance,
other than that proportional to the optical length to the object surface. Figure 1
shows an example of recovering a textureless, specular object which would be a
challenging object for conventional depth recovery methods.

We thoroughly analyze the theory including its limitations as well as prac-
tical accuracy of the proposed method. In particular, we examine the effect of
reflectance spectrum difference of the object at the two working wavelengths,
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(a) 905nm (b) 950nm (c) Depth coded (d) 3D shape (e) RGB

Fig. 1. Shape from water based on bispectral light absorption. (a) and (b) show the
scene at 905 nm and 950 nm, after normalizing the illumination and camera and filter
sensitivity functions. The intensity difference between (a) and (b) is due to the dif-
ference of water absorption at these two wavelengths which we exploit to recover the
depth. The color coded depth is shown in (c), and the recovered 3D shape is given
in (d). (e) shows the target object for this example: a textureless ceramic object with
strong specularity.

and develop a criterion to properly choose the two wavelengths so as to maxi-
mize the difference of the absorption coefficient and minimize the dependence on
material spectral reflectance. We also propose correction algorithms to handle
those factors arising from practical implementation limitations of our bispectral
principle, including the effects of tilting the light source and/or the camera with
respect to the water surface and the effects of nonideal spectral bandpass filters.

We build a co-axial bispectral imaging system using low-cost off-the-shelf
hardware as a prototype implementation for single exposure, real-time shape
from water. The system consists of two monochromatic cameras equipped with
near-infrared bandpass filters, aligned on the same optical axis with a half beam
splitter. We envision use of shape from water with a bispectral imaging system
immersed in water, but for practical reasons, all experiments are done with a
water tank and the co-axial system placed outside of it. Experimental results
validate the theory of our bispectral light absorption depth imaging principle,
and demonstrate its advantages over conventional approaches.

Our major contributions can be summarized as follows.

– We introduce light absorption as a means to depth sensing in computer vision.
– We derive the bispectral light absorption principle for depth recovery and

apply it to water leading to shape from water.
– We thoroughly analyze the theory and practical implications of shape from

water.
– We construct a low-cost co-axial bispectral imaging system and demonstrate

its use for dense shape recovery of complex and dynamic objects in water.

Taken together, for the first time, we introduce a new shape recovery method
based on light absorption in water and its working prototype that achieves shape
recovery of complex, dynamic objects.

2 Related Works

Most popular shape recovery methods can be categorized based on the underlying
shape or depth probing principles: triangulation, time of flight, and shape-from-X
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where shading is most prominent for X but may include other surface and image
formation properties like texture and focus. The literature for each is vast and
readers may find suitable survey articles elsewhere.

Triangulation is the fundamental geometric relation exploited in binocular
or multiview stereo, and structure from motion [5]. If correspondence could be
reliably established, sparse or even dense 3D shape can be recovered. The fun-
damental limitation of triangulation is that sufficient (unique) texture must be
found on the surface to establish those correspondences. Structured active light
can mitigate this limitation [1] by essentially putting texture on the surface, by
actively projecting visible or infrared light patterns.

Time of flight, the travel time of a light pulse to hit a surface and come back
to the source, directly encodes the distance of the surface from the source [4].
Coherent light (e.g., laser) can be used for long-distance depth sensing, while
infra-red light has been recently used for short-distance measurements (e.g.,
Kinect 2). Accurate measurement of time of flight is challenging due to the very
high speed of light and can limit the resolution of the depth image.

Shape-from-X refers to shape recovery methods that exploit specific surface
or image formation properties. Among the many radiometric cues, shading so
far has been one of the most popular. Shape-from-shading [17] and photometric
stereo [16] model the surface brightness change to infer its gradients (i.e., surface
normals) from which the shape can be recovered. In contrast to triangulation-
based methods, texture as well as complex reflectance (i.e., non-Lambertian
surfaces) become nuisances that hinder the applicability of these methods.

In this paper, we introduce a novel bispectral depth imaging principle based
on light absorption. It clearly differs from triangulation and other shape-from-X,
especially shading, methods in that it neither requires feature correspondence
nor known or simplistic surface reflectance. Unlike time-of-flight methods, it
recovers depth by measuring pixel intensity difference, in contrast to light travel
time, which obviates the need of often expensive hardware for accurate temporal
measurement.

Shape recovery in non-air medium has been studied in the past. Narasimhan
et al. [10] apply light stripe range scanning and photometric stereo to objects
in participating media. They model sub-surface scattering and account for it
to recover object geometry in murky water (e.g., dilute milk). Light scattering
has also been studied in computer vision for other participating media such as
fog [3,6,7,9,11,13,14] in which depth can be recovered in the process of remov-
ing the light propagation effects on the appearance (i.e., defogging). Our depth
recovery principle is similar to such approaches in that it actively exploits the
light propagation characteristics in the medium to decode the optical length and
thus depth. Our focus is, however, light absorption, not scattering.

A number of underwater depth recovery methods have been introduced in
the past. For example, Tomohiko et al. [15] used multiview stereo to reconstruct
underwater objects, and their focus was on accounting for the refractive effect
of water and the shape of the interfacing layer (glass wall of the container here).
Murez et al. [8] applied photometric stereo to underwater objects, and tried to
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handle the scattering problem due to water turbidity. Dancu et al. [2] evalu-
ated the performance of various time-of-flight sensors to reconstruct underwater
objects, and found that these sensors do not work for slightly deep water, because
of severe infrared light absorption of water.

3 Light Absorption in Water

Let us first review the basics of light absorption in water. When light travels in
water, it gets absorbed at some wavelengths. The absorption curve in Fig. 2(a)
shows how light will be attenuated as it travels through water (with 6 mm depth
here), in the wavelength range from 400 nm to 1400 nm. From this curve, we
can observe that water rarely absorbs visible light, which explains why water
appears transparent to human eyes. In contrast, it clearly absorbs infrared light
from 900 nm to 1400 nm.

As illustrated in Fig. 2(b), at a given wavelength λ, the Beer-Lambert law
[12] accurately expresses light absorption as the relation between incident light
intensity I0 and outgoing attenuated intensity I

I = I0e
−α(λ)l, (1)

in which l represents the light path length in millimeter (mm), α(λ) denotes the
wavelength dependent absorption coefficient in mm−1, and e−α(λ)l is the natural
exponential of −α(λ)l.
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(a) Water absorbance (b) Beer-Lambert (c) Coaligned (d) Tilted

Fig. 2. (a) shows the water absorption curve in the range from 400 nm to 1600 nm. (b)
shows the setup of the Beer-Lambert law. (c) and (d) illustrate our bispectral depth
imaging in the coaligned and tilted configuration, respectively.

4 Bispectral Light Absorption for Depth Recovery

We will exploit the wavelength dependence of light absorption for depth recov-
ery of objects immersed in water. We assume that the camera is orthographic
and the incident light rays to the object surface are parallel coming from an
infinitely distant point source. Yet, we do not make assumptions on the surface
reflectance such as Lambertian or diffuse plus specular, except that the geometric
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and spectral characteristics of the reflectance are separable. This is a very mild
assumption that assumes that the reflectance function f(ω, λ) = r(ω)s(λ) can be
factorized into its geometric properties (e.g., incident and exitant light angles),
r(ω), and spectral characteristics (i.e., color), s(λ), which applies to most real-
world surfaces. The only exceptions are when the surface geometry intricacies
are comparable to light wavelength in scale (e.g., CD-ROM). Most importantly,
we envision an imaging system fully immersed in the water, in which the consid-
eration of water surface is unnecessary, but for all practical necessity, we place
the camera and light source outside the water. As we assume directional light
and orthographic cameras and use sufficiently close wavelengths, we may safely
ignore the effects of light refraction at the water surface.

4.1 Bispectral Depth Imaging

As illustrated in Fig. 2(c), we first consider an ideally coaligned light-camera con-
figuration, in which both the optical axis of the camera and the directional light
are perpendicular to the planar water surface. Monochromatic light of wave-
length λ1 and intensity I0 reaches an opaque scene point with water depth l.
After being reflected back from the scene point, the intensity of the light received
by the camera is

I(λ1) = r(ω)s(λ1)I0e−2α(λ1)l, (2)

in which 2l denotes light travel distance which is twice as long as the water
depth l.

The geometric and spectral characteristics of surface reflectance, r(ω) and
s(λ1), respectively, are related to the underlying surface material composition
which is, of course, unknown. To cancel out this unknown, we use a second
monochromatic observation at wavelength λ2 with a corresponding light source
of the same intensity I0. The radiance received by the camera for the second
light beam will be

I(λ2) = r(ω)s(λ2)I0e−2α(λ2)l. (3)

By dividing Eq. (2) by Eq. (3), the depth l can be estimated as

l =
1

2(α(λ2) − α(λ1))
ln

(
I(λ1)
I(λ2)

s(λ2)
s(λ1)

)
. (4)

It is interesting to note that the geometric factor of the reflectance function
r(ω) has been eliminated, no matter how complex it is. Provided that we can
choose two wavelengthes such that the reflectance spectrum values at these two
wavelengthes are almost identical, i.e., s(λ1) � s(λ2), the approximate depth
can be recovered,

l � 1
2 (α(λ2) − α(λ1))

ln
I(λ1)
I(λ2)

. (5)

Equation (5) stays at the core of our bispectral depth recovery principle,
which allows us to estimate depth simply by measuring the pixel intensity dif-
ference at two properly chosen wavelengths, without knowing any information
of the arbitrarily general reflectance function of the scene point material.
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4.2 Depth Accuracy and Surface Reflectance

Let us first analyze the relative depth error �l with respect to the relative
difference �s between s(λ1) and s(λ2), which is defined as �s = s(λ1)/s(λ2)-1.

According to Eqs. (4) and (5), the relative depth error �l can be calculated
by

�l =
ln

(
I(λ1)
I(λ2)

s(λ2)
s(λ1)

)
− ln I(λ1)

I(λ2)

ln
(

I(λ1)
I(λ2)

s(λ2)
s(λ1)

) =
ln(1 + �s)

ln(1 + �s) − ln I(λ1)
I(λ2)

. (6)

Figure 3(a) shows relative depth error plotted against relative reflectance differ-
ence for varying intensity ratios I(λ1)/I(λ2). From these curves, we can observe
that the estimated depth becomes less sensitive to the reflectance spectrum dif-
ference, as the intensity ratio steps away from one (i.e., the difference between
the two wavelengths becomes larger). This suggests a criterion for choosing the
two wavelengths for bispectral depth recovery. Specifically, we should choose two
wavelengths whose water absorption coefficients’ difference is maximized, while
the corresponding reflectance spectrum difference is minimized.
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Fig. 3. (a) shows relative depth error with respect to the reflectance spectrum dif-
ference, under varying intensity ratios. (b) shows the spectra of the 24 patches on the
color checker in the range from 400 nm to 1400 nm. The reflectance spectrum difference
for spectral pairs of 900 nm and 920 nm, as well as 900 nm and 950 nm for each patch
spectrum is shown in (c). (Color figure online)

As shown in Fig. 2(a), the amount of light absorption in water changes quickly
in the range between 900 nm and 1000 nm. Surprisingly, we empirically find
that the reflectance spectra of a great variety of materials tend to be flat (i.e.,
spectrally white) in this range.

We start our investigation by examining the spectra of the standard color
checker board, as shown in Fig. 3(b), from which we can clearly observe that
the spectral variance for all patches drastically reduces in the range longer than
900 nm. As shown in Fig. 3(c), although there are a few patches with larger
difference, the average relative spectrum difference for 900 nm and 950 nm is
5.7 %, which will further reduce to 2.1 % for the spectral pair of 900 nm and
920 nm.
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(a) Four classes of materials (From left to right: wood, cloth, leather and metal)
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(b) Reflectance spectra of the materials
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(c) Relative reflectance spectrum difference

Fig. 4. A reflectance spectra database in the Vis-NIR range from 400 nm to 1400 nm.
We empirically find that the spectral reflectance difference for two close near-infrared
wavelengths is usually negligible.

We have also collected several other classes of common materials, including
wood, cloth, leather and metal, as shown in Fig. 4(a). There are 24 different mate-
rials in each class, except metal which has only 18. We measure their reflectance
spectra and evaluate the reflectance spectrum difference for wavelength pairs of
900 nm and 920 nm, as well as 900 nm and 950 nm. The average relative spec-
trum difference of these four classes for the bispectral pair 900 nm and 950 nm
is 3.8 %, 2.1 %, 6.0 % and 11.1 %, respectively. For the bispectral pair 900 nm
and 920 nm, the corresponding average difference reduces to 1.4 %, 1.1 %, 1.9 %
and 5.0 %. Although the scale of our database is limited, the evaluation result
suggests that the reflectance spectrum difference is usually very small for two
close near-infrared wavelengths.

5 Practical Shape from Water

We derive algorithms for shape from water with practical setups based on the
bispectral depth recovery principle. In particular, we propose two algorithms
that correct distorted depth estimates resulting from nonidealities in the imaging
setup.
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5.1 Non-collinear/Perpendicular Light-Camera Configuration

Until now, we have considered the collinear light-camera configuration, in which
both the optical axis of the orthographic camera and the directional light are
perpendicular to the water level. In practice, the light rays and/or the camera
might be slightly tilted from the water surface, due to practical requirements of
the system setup. Here, we will show that, if the depth of a single point is given,
the depth distortion can be corrected.

As illustrated in Fig. 2(d), the tilt angles in water for the illuminant and the
camera are denoted by θ and ψ, respectively. Note that, the refractive ratio of
water is almost constant in the near-infrared range. Therefore, we can assume
that these two angles do not change at the two working wavelengths. The light
path length is stretched to l( 1

cos θ + 1
cosψ ), rather than 2l. Similar to Eq. (5), now

the depth can be calculated by

l(
1

cos θ
+

1
cos ψ

) � 1
α(λ2) − α(λ1)

ln
I(λ1)
I(λ2)

, (7)

from which we can observe that, if the depth of a single point is provided, the
distortion factor ( 1

cos θ + 1
cosψ ) can be easily estimated.

5.2 Nonideal Narrow-Band Filters

When implementing a bispectral imaging system for shape from water, it is
preferable to use a wide-band illuminant and two narrow-band filters in front of
the camera. Until now, we have implicitly assumed that the response function of
the filters is a delta function (i.e., perfect narrow-band), which is hard to achieve
in practice.

Let us denote the spectral response functions of two nonideal narrow-band
filters each centered at λ1 and λ2 with β1(λ) and β2(λ), respectively. If the band-
pass filters are sufficiently narrow, we can assume that the reflectance spectrum
of the scene point is flat between the two wavelengths. The imaging equation
Eq. (2) becomes

I(λ1) = r(ω)s(λ1)I0
∫ ∞

0

β1(λ)e−2α(λ)ldλ. (8)

A similar equation can be established for Eq. (3). The depth l can be corrected
by solving the following equation

I(λ1)
∫ ∞

0

β2(λ)e−2α(λ)ldλ = I(λ2)
∫ ∞

0

β1(λ)e−2α(λ)ldλ, (9)

using standard one-dimensional zero-finding techniques. Note that we do not
explicitly consider the illumination spectrum and the camera spectral sensitivity
function, since they can be merged into the spectral response function of the
filters.
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Fig. 5. (a) shows our co-axial bispectral imaging system, and (b) the spectral response
functions of the camera and the two filters. (c) is the spectrum of the incandescent
illuminant. (d) is the calibrated water absorption coefficient.

6 Co-Axial Bispectral Imaging System and Experiment
Results

We built a co-axial bispectral imaging system for shape from water. The
system uses co-axial cameras to simultaneously capture the scene in two wave-
lengths, recording bispectral image pairs at video-rate. From the image sequence,
we may recover the geometry of complex and dynamic objects immersed in water.

6.1 System Configuration and Calibration

As shown in Fig. 5(a), the co-axial bispectral imaging system consists of a beam
splitter and two grayscale cameras (POINTGREY GS3-U3-41C6NIR), which
can sense NIR light albeit with limited spectral sensitivity. We use two narrow
band-pass filters centered at 905 nm and 950 nm, whose spectral response curves
are shown in Fig. 5(b). For the illumination, we use an incandescent lamp with
sufficient irradiance in the NIR range, as shown in Fig. 5(c). We synchronize the
two cameras, and carefully adjust the position of the beam splitter to capture
spatially-aligned bispectral image pairs of the same scene.

The water absorption coefficient needs to be known for shape from water,
which can be estimated easily beforehand. We use a spectrophotometer and a
standard white target for calibration. By immersing the white target into water
at a known depth, we can calculate the water absorption coefficient from the
Beer-Lambert law. Figure 5(d) illustrates the calibrated absorption coefficient
for different wavelengths.

6.2 Depth and Shape Accuracy

We use planar plates with different materials for depth accuracy evaluation. We
put the plates in water and measure the water depth by a ruler for ground truth.
We vary the water depth from 10 mm to 40 mm. At each depth, we capture two
images with our co-axial bispectral system and estimate the depth using Eq. (5).
To evaluate the effectiveness of our algorithms in Sect. 5, we also correct the
depth further by using Eqs. (7) and (9).
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Fig. 6. Depth estimation error for four planar plates, including cyan tile, red plastic
board, white marble (WM) and black marble (BM). (Color figure online)

As shown in Fig. 6, we use four plates for experiments, including a piece of
cyan tile, a red plastic board, a piece of white and black marble. On each plate,
we randomly choose 121 points (pixels), and calculate the average depth for
these points. To evaluate the spatial consistency of the depth estimate at each
depth, we draw the distribution of the relative error of the corrected depth for
these 121 points in Fig. 6(b,d,f,h). The values between the 25 and 75 percentiles
are shown as a box with a horizontal line at the mean value. The red crosses
indicate data beyond 1.5 times the inter-percentile range.

From Fig. 6, we can observe that the correction algorithms play a critical
role in improving the estimation accuracy. With correction, the average depth
estimates are very close to the ground truth, usually within a relative error of
3 %. However, the average depth error is clearly higher at 10 mm depth. The
main reason for this is that we measure the ground truth with a ruler, which
introduced errors at this distance. As for the spatial consistency of the depth
estimates, we can observe that the corrected depth at the measured 121 points
is sufficiently consistent with each other, even when the plate assumes spatially
varying textures (e.g., the marble plate).

6.3 Complex Static and Dynamic Objects

We apply shape from water to objects with complex reflectance and dynamically
moving objects whose shape deforms. Since the ground truth shape is difficult
to capture for these objects, we qualitatively evaluate the recovered geometry.

Figure 7 shows the recovery results of several opaque objects with varying
color, texture, and reflectance properties. We can observe that our system and
method work well for textureless objects with strong specularities. The surface
reflectance and geometry of the seashell and rock in the first and second row
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Fig. 7. Shape recovery of objects with complex geometry, texture, and reflection prop-
erties. For each row, from left to right, the input images at 905 nm and 950 nm, the
depth coded 3D shape, the virtually shaded shape and the RGB appearance of the
object are shown. (Color figure online)

of Fig. 7 are particularly complicated, and would pose significant challenges to
other shape recovery methods. The results clearly show that shape from water,
as the theory shows, is insensitive to such intricacies. This property is verified
again by the compelling results for the colorful cups in the last row of Fig. 7. We
also note that artifacts due to specularities sometimes occur (fourth row), which
is attributed to camera saturation, rather than the method itself.

Figure 8 shows the recovery results of some even more challenging objects
with translucence. The recovered shape looks compelling, when compared it
with its corresponding RGB appearance.

Our co-axial shape from water system is suited to capture dynamic scenes.
As shown in Fig. 9, we demonstrate this by recovering the geometry of a moving
hand in water.
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Fig. 8. Shape recovery of translucent objects.

Fig. 9. Action capturing of a moving hand in water.

Fig. 10. Recovery of a transparent glass object. From left to right are the RGB image
(a side view of the glass at 905 nm in the corner shows that the glass is also transparent
under NIR light), 3D shape from a laser scanner, RGB image of the same object with
painting, 3D shape from a laser scanner with painting, and 3D shape from our method
without painting. (Color figure online)
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7 Discussions

Bispectral depth recovery in its current form is not able to directly handle envi-
ronment illumination. In practice, it can be eliminated by taking another pair
of images under the environment illumination only, and subtracting them away
from the input image pair under mixed illumination.

Surface reflection occurs at the water surface, which will lead to erroneous
depth for a shape-from-water imaging system situated outside water surface.
We have found that this problem can be alleviated by simply taking one image
without any object but only a black, infrared light absorbing, material in the
water that captures the water surface reflection alone and subtracting it from
the observation pairs.

Similar to most existing depth imaging principles and techniques, our princi-
ple is vulnerable to interreflection, often not negligible for concave surfaces, and
tends to smooth out shape details, as can be observed for the statue in the third
row of Fig. 8.

Shape reconstruction of transparent objects is challenging for contact-free
depth imaging. For shape from water, if the material happens not to absorb
near-infrared light, which is actually the case for many kinds of glasses, and the
light does not travel to the water behind the object (e.g., the bottom side of
the object is opaque), we can safely recover the surface geometry, as shown in
Fig. 10. Note that the 3D laser scanner can not correctly capture the shape of
the glass surface, unless it is uniformly painted.

The analysis in Sect. 4.2 implies that choosing two wavelengths with dras-
tically different absorption coefficients would benefit depth recovery accuracy.
That’s one major reason why we have used two images at 905 nm and 950 nm.
However, due to strong absorption, the image at 950 nm will be very dark, when
the object is slightly far away from the camera. One idea to resolve the resulting
poor SNR issue is to choose three shorter wavelengths with less absorption, and
assume instead that the reflectance spectrum values at these three wavelengths
are collinear. The details will be explored in near future.

8 Conclusions

In this paper, we introduced shape from water, a novel depth recovery method
based on light absorption in water. Shape from water builds on the newly
derived bispectral depth sensing principle based on the idea of leveraging the
light absorption difference between two near-infrared wavelengths to estimate
depth regardless of the surface reflectance. We constructed a co-axial bispectral
depth imaging system using low-cost off-the-shelf hardware to capture bispec-
tral image pairs for shape from water at video-rate. Experimental results show
that shape from water can recover accurate geometry of objects with complex
reflectance and dynamically deforming shapes.
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