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Section / figure / table / equation numbers prefixed with
“A” refer to those in this supplemental material. Others refer
to those in the main text unless specified otherwise.

A.1. Polarization

Within the temporal span of an observation (e.g., image
exposure), the observed light may consist of a collection of
linearly polarized light of varying magnitudes, i.e., ellipti-
cally distributed polarization. If we capture this partially
polarized light with a polarization filter, the observed inten-
sity becomes a function of the filter angle ϕc:

I(ϕc) = I + ρI cos (2ϕc − 2ϕ) , (A.1)

where Imax and Imin are the intensities in the major and
minor axes of the ellipse, I is the average intensity (=
Imax+Imin

2 ) and ρ = Imax−Imin

Imax+Imin
is the degree of linear po-

larization (DoLP). The angle ϕ is called the angle of linear
polarization (AoLP) which is the angle the major axis of the
ellipse makes in the image plane.

When light is reflected at a surface point, the light either
mirror reflects or transmits into the surface. This can be
described by the Fresnel equations, i.e., Fresnel reflectance
and transmittance. When light is mirror reflected, it is lin-
early polarized in the direction perpendicular to the plane of
reflection (i.e., s-polarized). Similarly, when light is trans-
mitted into the surface, it is linearly polarized in the direc-
tion parallel to the plane of reflection (i.e., p-polarized).

Let us express these polarization behaviors with Stokes
vectors which succinctly summarizes polarization states. In
the case of linear polarization, the Stokes vector is com-
puted from the intensity at filter angles 0, π/4, π/2, and
3/4π,

s =


s0
s1
s2
0

 =


I(0) + I(π

2
)

I(0)− I(π
2
)

I(π
4
)− I( 3

4
π)

0

 =


2I

2Iρ cosϕ

2Iρ sinϕ
0

 . (A.2)
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Figure A.1. DoLP errors of different pBRDF models. In body
reflection dominant regions, our model achieves smallest errors.

The DoLP can be extracted from the Stokes vector

ρ =

√
s21 + s22
s0

. (A.3)

We do not model circular polarization as it cannot be mea-
sured easily.

The polarization transform by reflection and transmit-
tance is expressed with their corresponding Mueller matrix
M

so = Msi , (A.4)

where si is the Stokes vector of incident light and so is the
Stokes vector of reflected or transmitted light.

In our model, we need the Mueller matrices of surface
reflection, Fresnel transmittance, subsurface scattering, and
rotation of a Stokes vector. The Mueller matrix of surface
reflection R is given by

R(θ) =

R+ R− 0 0
R− R+ 0 0
0 0 R× cos δ 0
0 0 0 R× cos δ

 , (A.5)

where R± =
Rs±Rp

2 , R× =
√

RsRp, θ is the incident light
angle, and cos δ is −1 when θ is less than the Brewster’s an-
gle and 1 otherwise. Rs and Rp are the Fresnel coefficients

Rs(θ) =

(
cos θ − µ cos θt

cos θ + µ cos θt

)2

, Rp(θ) =

(
µ cos θ − cos θt

µ cos θ + cos θt

)2

,

(A.6)
where µ is the index of refraction of the object material, and
θt is given by Snell’s law θt = sin−1

(
1
µ sin θ

)
. The polar-

ization transform by Fresnel transmittance is expressed with
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Figure A.2. Fitting results for a plaster sphere. The graphs show
observed and rendered graphs under three different lighting con-
ditions. The RMSE of each model is 0.0325, 0.0341, and 0.0245,
respectively. Our model subsumes and can accurately represent
Lambertian reflection.

the Fresnel coefficients

T (θ) =

T+ T− 0 0
T− T+ 0 0
0 0 T× 0
0 0 0 T×

 , (A.7)

where T± =
Ts±Tp

2 , T× =
√
TsTp, and θ is the incident

light angle. Ts and Tp are the Fresnel coefficients

Ts(θ) = 1−Rs(θ) , Tp(θ) = 1−Rp(θ) . (A.8)

Subsurface scattering depolarizes transmitted light, and its
Mueller matrix is given by

Dp

(
kb
π

)
=

 kb
π

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (A.9)

where kb is the body reflection albedo. Rotation matrix of
Stokes vector is given by

C(φ) =

1 0 0 0
0 cos(2φ) − sin(2φ) 0
0 sin(2φ) cos(2φ) 0
0 0 0 1

 , (A.10)

where φ is the rotation angle.

A.2. Analysis of Masking and Shadowing Term
Let us analyze in detail the masking and shadow-

ing term M(n,ni) in Eq. (16) in the main paper that
takes into account light transport within the microgeome-
try S′(p,pi). The product of the masking and shadowing
function Gb

m(p)Gb
s(pi) has been studied as joint masking-

shadowing functions [4] when p = pi. We follow the
widely used separable masking-shadowing function which
we use for the surface reflection model and extend it to the

case of p ̸= pi. The separable masking-shadowing model
assumes that Gb

m(p) and Gb
s(p) are independent for p. Ex-

tending this assumption, we assume Gb
m(p) and Gb

s(pi) are
independent of the distance between p and pi. From this as-
sumption, the masking-shadowing function Gb

m(p)Gb
s(pi)

is independent of the distance between p and pi. Since
the light transport S′(p,pi) largely depends on the distance
between p and pi, we can assume that Gb

m(p)Gb
s(pi) and

S′(p,pi) have no correlation for p and pi. The average of
their product in Eq. (16) becomes the product of each aver-
age due to statistical independence between Gb

m(p)Gb
s(pi)

and S′(p,pi), and that of Gb
m(p) and Gb

s(pi). We obtain

M(n,ni) = Gm(n)Gs(ni)S′(n,ni) , (A.11)

where Gm(n), Gs(ni), and S′(n,ni) are the average of
Gb

m(p), Gb
s(pi), and S′(p,pi) for p and pi, respectively.

We analyze S′(n,ni) which is the average of light trans-
port incident on pi from L and outgoing from p to V under
the surface for all combinations of p and pi. Light trans-
ported from pi to p may be directional depending on the
direction from pi to p. However, when the direction from
pi to p is random for p in An and pi in Ani

, the aver-
age light is not directional. Moreover, sufficient scattering
weakens the effect of the incident direction L. We can thus
safely assume that S′(n,ni) does not depend on L and V .

The masking and shadowing function by Smith [11] as-
sume that there is no correlation between the microfacet
normals of different points on the microgeometry. In this
case, S′(n,ni) is constant for n and ni. It, however, can
also represent correlated surfaces [2] and we can safely use
it as an approximation.

A.3. Additional Results: Polarimetric Model
Accuracy

Figure A.1 shows the DoLP error map of the fitting re-
sults of the fourth row in Fig. 4 in the main paper. The
lighting condition is different from Fig. 4. The DoLP er-
rors of our model are the smallest among these different
pBRDF models near the edges of the sphere where body re-
flection is dominant. This result shows that our model can
represent the polarimetric behavior of body reflection more
accurately.

A.4. Additional Results: Radiometric Model
Accuracy

Figure A.2 shows fitting results for a plaster sphere
which is more or less a pure Lambertian object. We fit each
model to 10 images captured under different lighting con-
ditions and compute the root-mean-square error (RMSE)
for all images. The RMSEs of Torrance-Sparrow [12] plus
Lambertian model, Torrance-Sparrow [12] plus Oren-Nayar



lo
g-

sp
ac

e
R

M
SE

ch
ro

m
e-

st
ee

l
tu

ng
st

en
-c

ar
bi

de
bl

ac
k-

ob
si

di
an

re
d-

m
et

al
lic

-p
ai

nt
ch

ro
m

e
st

ee
l

go
ld

-m
et

al
lic

-p
ai

nt
ss

44
0

gr
ea

se
-c

ov
er

ed
-s

te
el

ni
ck

el
al

um
in

iu
m

br
as

s
si

lv
er

-m
et

al
lic

-p
ai

nt
bl

ac
k-

ph
en

ol
ic

bl
ue

-m
et

al
lic

-p
ai

nt
si

lv
er

-m
et

al
lic

-p
ai

nt
2

bl
ue

-m
et

al
lic

-p
ai

nt
2

sp
ec

ul
ar

-b
la

ck
-p

he
no

lic
vi

ol
et

-a
cr

yl
ic

go
ld

-m
et

al
lic

-p
ai

nt
3

sp
ec

ul
ar

-m
ar

oo
n-

ph
en

ol
ic

bl
ue

-a
cr

yl
ic

go
ld

-m
et

al
lic

-p
ai

nt
2

sp
ec

ul
ar

-w
hi

te
-p

he
no

lic
gr

ee
n-

m
et

al
lic

-p
ai

nt
2

co
lo

r-
ch

an
gi

ng
-p

ai
nt

1
gr

ee
n-

ac
ry

lic
sp

ec
ul

ar
-b

lu
e-

ph
en

ol
ic

he
m

at
ite

sp
ec

ul
ar

-g
re

en
-p

he
no

lic
co

lo
r-

ch
an

gi
ng

-p
ai

nt
3

sp
ec

ul
ar

-y
el

lo
w

-p
he

no
lic

tw
o-

la
ye

r-
go

ld
co

lo
r-

ch
an

gi
ng

-p
ai

nt
2

al
um

-b
ro

nz
e

tw
o-

la
ye

r-
si

lv
er

gr
ee

n-
m

et
al

lic
-p

ai
nt

sp
ec

ul
ar

-r
ed

-p
he

no
lic

sp
ec

ul
ar

-o
ra

ng
e-

ph
en

ol
ic

sp
ec

ul
ar

-v
io

le
t-p

he
no

lic
si

lic
on

-n
itr

ad
e

av
en

tu
rn

in
e

m
ar

oo
n-

pl
as

tic
ny

lo
n

gr
ee

n-
pl

as
tic

gr
ay

-p
la

st
ic

re
d-

sp
ec

ul
ar

-p
la

st
ic

w
hi

te
-a

cr
yl

ic
re

d-
ph

en
ol

ic
ye

llo
w

-p
he

no
lic

al
um

in
a-

ox
id

e
w

hi
te

-m
ar

bl
e

ip
sw

ic
h-

pi
ne

-2
21

w
hi

te
-p

ai
nt

pi
nk

-ja
sp

er
bl

ac
k-

so
ft-

pl
as

tic pv
c

na
tu

ra
l-2

09
ye

llo
w

-m
at

te
-p

la
st

ic
ch

er
ry

-2
35

co
lo

ni
al

-m
ap

le
-2

23
da

rk
-s

pe
cu

la
r-

fa
br

ic
re

d-
pl

as
tic

pi
ck

le
d-

oa
k-

26
0

go
ld

-p
ai

nt
si

lv
er

-p
ai

nt
sp

ec
ia

l-w
al

nu
t-2

24
pu

rp
le

-p
ai

nt
de

lri
n

re
d-

fa
br

ic
2

re
d-

fa
br

ic
ye

llo
w

-p
la

st
ic

fr
ui

tw
oo

d-
24

1
pi

nk
-p

la
st

ic
te

flo
n

da
rk

-b
lu

e-
pa

in
t

bl
ac

k-
fa

br
ic

w
hi

te
-d

iff
us

e-
bb

al
l

bl
ac

k-
ox

id
iz

ed
-s

te
el

lig
ht

-b
ro

w
n-

fa
br

ic
pu

re
-r

ub
be

r
pe

ar
l-p

ai
nt

ne
op

re
ne

-r
ub

be
r

bl
ue

-r
ub

be
r

po
ly

et
hy

le
ne

lig
ht

-r
ed

-p
ai

nt
gr

ee
n-

la
te

x
gr

ee
n-

fa
br

ic
da

rk
-r

ed
-p

ai
nt

or
an

ge
-p

ai
nt

bl
ue

-f
ab

ric
ye

llo
w

-p
ai

nt
pi

nk
-f

ab
ric

2
be

ig
e-

fa
br

ic
vi

ol
et

-r
ub

be
r

po
ly

ur
et

ha
ne

-f
oa

m
pi

nk
-f

el
t

w
hi

te
-f

ab
ric

2
w

hi
te

-f
ab

ric
pi

nk
-f

ab
ric

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ours
T-S+Lambertian
T-S+O-N

Figure A.3. Evaluation on the MERL dataset shown in log-space root-mean-square error for each material. The results are sorted by the
error magnitude of our model. Our model expresses most measured BRDFs more accurately than other physically-based BRDF models.

[9] model, and our model are 0.0325, 0.0341, and 0.0245,
respectively. Our model accurately explains Lambertian re-
flection with Fresnel transmission and microgeometry light
transport by mirror microfacets without relying on the phys-
ically implausible Lambertian microfacet assumption.

We also evaluate the radiometric accuracy of our FM-
BRDF model with the MERL dataset [8]. Figure A.3 shows
fitting results in log-space root-mean-square error [7] of our
model and other radiometric BRDF models for each mate-
rial. The RMSE in log-space is given by

Eℓ−RMSE =

√√√√√ ∑
θh,θd,ϕd

(
log f(θh, θd, ϕd)− log f̂(θh, θd, ϕd)

)2

N
,

(A.12)
where N is the number of sampled BRDFs, θh, θd, and
ϕd are half and difference angles of Rusinkiewicz param-
eterization [10], f(θh, θd, ϕd) is a measured BRDF, and
f̂(θh, θd, ϕd) is the fit BRDF model. The fitting errors of
our FMBRDF model are the smallest compared with other
physically-based BRDF models for all materials.

A.5. Application: Geometry Reconstruction
We demonstrate the use of FMBRDF for 3D geome-

try reconstruction of an object with an unknown BRDF by
jointly estimating the BRDF and geometry. We capture
the target object under different point source directions but
from the same viewpoint. We first obtain initial estimates of
surface normals by using the Lambertian model (i.e., clas-
sic photometric stereo). Using these inaccurate surface nor-

mals, we recover the FMBRDF parameter values. Once we
have these FMBRDF parameters, we update the surface ge-
ometry and iterate this alternating updates of surface normal
and FMBRDF parameters. After the convergence of alter-
nating updates, we jointly optimize the surface geometry
and FMBRDF parameters. For robust geometry reconstruc-
tion, we propagate the surface normal at each pixel to ad-
jacent pixels to minimize the loss function. We obtain the
final result by iterating the joint optimization and the sur-
face normal propagation.

The loss function for estimating the FMBRDF parame-
ters and surface normals consists of a radiance loss Erad, a
DoLP loss EDoLP, a polarization loss Es1,s2 , and a smooth-
ness loss Es. Each loss is defined by

Erad =
1∑K

k=1 Mk

K∑
k=1

Mk∑
i=1

(ski0 − ski0)
2 , (A.13)

EDoLP =
1∑K

k=1 Mk

K∑
k=1

Mk∑
i=1

(ρki − ρki )
2 , (A.14)

Es1,s2 =
1∑K

k=1 Mk

K∑
k=1

Mk∑
i=1

{
(ski1 − ski1)

2 + (ski2 − ski2)
2
}
,

(A.15)

Es =
1∑M

i=1 |N (i, r)|

M∑
i=1

∑
n′

i∈N (i,r)

1− ni · n′
i

2
, (A.16)

where M is the number of pixels of the object, Mk is the
number of pixels of the object masked with radiance in the
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Figure A.4. Reconstruction results of various objects with unknown BRDFs. The numbers report the mean/median angular normal errors
in degrees. Our FMBRDF achieves higher accuracy and robustness in geometry reconstruction, mainly as it can leverage both radiometric
and polarimetric information.

image k, K is the number of polarimetric images, ski0, ski1, and ski2 are each of the elements of the observed Stokes vec-



tor at pixel i in image k, si0, si1, and si2 are each of the
elements of the rendered Stokes vector at pixel i in image
k, ρki and ρki are the observed and rendered DoLPs at pixel
i in image k, respectively, ni is the estimated surface nor-
mal at pixel i, N (i, r) is the set of surface normals in the
(2r+1)×(2r+1) window centered at pixel i, and |N (i, r)|
is the cardinality of N (i, r).

The loss functions for the estimation of the FMBRDF
parameters and the surface normals and the joint estimation
are defined by

min
µ,rk,ks,α,β,κ

Erad + λDoLPEDoLP , (A.17)

min
n1,··· ,nM

Erad + λs1,s2Es1,s2 + λsEs , (A.18)

min
n1,··· ,nM ,µ,rk,ks,α,β,κ

Erad+λDoLPEDoLP+λs1,s2Es1,s2 ,

(A.19)
respectively. The weights for DoLP and polarization losses
are λDoLP = 0.1 and λs1,s2 = 5.0, respectively. We de-
crease the weight λs and size r of the smoothness loss as
the alternating optimization progresses. We set λs = 0.05
and r = 5 for the first three iterations, λs = 0.03 and r = 3
for the next three iterations, and λs = 0.01 and r = 1 af-
ter that. We use the loss function of the joint estimation for
surface normal propagation.

To render the Stokes vector captured with a perspective
polarization camera, following [3], we compute AoLP as
the projection of polarization direction of ss + sb in a 3D
space onto the image plane. Other BRDF models use radi-
ance values in a similar alternating minimization to jointly
estimate their parameter values and surface normals.

Figure A.4 shows 3D geometry reconstructions of vari-
ous objects with unknown BRDFs. Our model clearly re-
constructs the shape more accurately and robustly thanks to
the radiometric and polarimetric accuracy of our model.

A.6. Limitation
Our model is derived for dielectric surfaces and linear

polarization, and it cannot represent metallic surfaces and
circular polarization. Our model cannot represent retrore-
flection, as seen in the right graph of Fig. 6 in the main pa-
per, and asperity scattering. Since we use a generalized nor-
mal distribution function as a microfacet distribution, our
model cannot represent an anisotropic surface. We plan to
explore modeling these in our future work.
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Gutierrez, Xin Tong, and Min H Kim. Sparse Ellipsometry:
Portable Acquisition of Polarimetric SVBRDF and Shape
with Unstructured Flash Photography. ACM TOG, 41(4):1–
14, 2022. 1

[6] Yuhi Kondo, Taishi Ono, Legong Sun, Yasutaka Hirasawa,
and Jun Murayama. Accurate Polarimetric BRDF for Real
Polarization Scene Rendering. In ECCV, pages 220–236.
Springer, 2020. 1

[7] Stephen Lombardi and Ko Nishino. Reflectance and Illumi-
nation Recovery in the Wild. IEEE TPAMI, 38(1):129–141,
2016. 3

[8] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and
Leonard McMillan. A Data-Driven Reflectance Model. ACM
TOG, 22(3):759–769, July 2003. 3

[9] Michael Oren and Shree K. Nayar. Generalization of the
Lambertian Model and Implications for Machine Vision. In-
ternational Journal of Computer Vision, 14:227–251, 1995.
2, 3

[10] Szymon M Rusinkiewicz. A New Change of Variables for
Efficient BRDF Representation. In Eurographics Workshop
on Rendering Techniques, pages 11–22. Springer, 1998. 3

[11] Bruce Smith. Geometrical Shadowing of a Random Rough
Surface. IEEE transactions on antennas and propagation,
15(5):668–671, 1967. 2

[12] Kenneth E Torrance and Ephraim M Sparrow. Theory for
Off-Specular Reflection From Roughened Surfaces. Josa,
57(9):1105–1114, 1967. 2


	. Polarization
	. Analysis of Masking and Shadowing Term
	. Additional Results: Polarimetric Model Accuracy
	. Additional Results: Radiometric Model Accuracy
	. Application: Geometry Reconstruction
	. Limitation

