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Figure 1. We derive Fresnel Microfacet BRDF, a novel physically-based BRDF model which consolidates radiometric (left) and polari-
metric (right) reflection as well as body and surface reflections of surface microgeometry in a single model. The model outperforms past
physically-based models (e.g., Lambertian [17] plus Torrance-Sparrow [29] and pBRDF [2]) in accuracy and generality.

Abstract

Computer vision applications have heavily relied on the
linear combination of Lambertian diffuse and microfacet
specular reflection models for representing reflected radi-
ance, which turns out to be physically incompatible and
limited in applicability. In this paper, we derive a novel
analytical reflectance model, which we refer to as Fresnel
Microfacet BRDF model, that is physically accurate and
generalizes to various real-world surfaces. Our key idea
is to model the Fresnel reflection and transmission of the
surface microgeometry with a collection of oriented mirror
facets, both for body and surface reflections. We carefully
derive the Fresnel reflection and transmission for each mi-
crofacet as well as the light transport between them in the
subsurface. This physically-grounded modeling also allows
us to express the polarimetric behavior of reflected light in
addition to its radiometric behavior. That is, FMBRDF uni-
fies not only body and surface reflections but also light re-
flection in radiometry and polarization and represents them
in a single model. Experimental results demonstrate its ef-
fectiveness in accuracy, expressive power, image-based es-
timation, and geometry recovery.

1. Introduction

Reflection is a fundamental physical phenomenon of
light that serves as a key creator of our rich visual world.
Models of light reflection lie at the heart of visual infor-

mation processing both for synthesis and analysis. In com-
puter vision, reflectance models play an essential role in 3D
reconstruction, inverse rendering, and material estimation.
The goal is to invert light reflection to deduce its physical in-
gredients, such as the surface geometry, from images. Nat-
urally, devising simple yet accurate models that are faithful
to the underlying physics becomes vital. Analytical mod-
els provide a sound basis for solving these inverse problems
as parameter estimation and physically-based models lend
semantic interpretations of the results.

Physically-based analytical reflectance models have
been studied extensively. Parametric representations of the
Bidirectional Reflectance Distribution Function (BRDF) are
of particular importance, as they enable pixel-wise esti-
mation of its parameters. Most models widely adopted
in computer vision are built on two representative mod-
els corresponding to the two distinct reflection components,
namely body reflection and surface reflection. Body reflec-
tion refers to the light that transmits into the subsurface and
is eventually emitted from the surface. It is also called dif-
fuse reflection as it is comparatively scattered in directions.
The Lambertian reflectance model [17] which models it as
uniform distribution in the angular domain dominates com-
puter vision applications due to its simple linear form.

Surface reflection is the light that immediately reflects
off the surface. It is also referred to as specular reflection
as it primarily concentrates around the perfect mirror reflec-
tion direction of incident light. Torrance and Sparrow [29]
introduced the idea of modeling the microgeometry within a
single pixel that causes this angular spread of surface reflec-



tion with oriented mirror microfacets. Then on, many mod-
els have built on this key idea of oriented microfacets [5,30].
Oren and Nayar [22] applied the idea to body reflection by
assuming Lambertian instead of mirror microfacets.

A linear combination of these diffuse and specular re-
flection models, most often Lambertian or Oren-Nayar plus
Torrance-Sparrow, have been widely used in vision appli-
cations. There are, however, three problems that funda-
mentally limit the accuracy of such a reflection represen-
tation. The first is that the two reflection components are
modeled on inconsistent microgeometry. Lambertian and
other body reflection models assume a single Lambertian
microfacet or an oriented distribution of Lambertian micro-
facets [22], while specular reflection models assume mirror
microfacets [29]. This is physically implausible and also
hinders physical interpretation of the parameter estimates.

The second is that past diffuse reflection models do not
account for light transport inside the microgeometry. The
Oren-Nayar model ignores discrepancies in incident and
exitant microfacets. This can be fine for mesoscopic and
macroscopic geometry (i.e., Bidirectional Texture Func-
tion) as demonstrated in their work [22], but leads to signif-
icant inaccuracy for microgeometry (i.e., regular imaging
conditions). Incident light to one microfacet will likely exit
from a different microfacet whose effect cannot be ignored
for accurate body reflection representation.

The third is that estimation of the parameter values (i.e.,
reflectometry) of such linear combinations of diffuse and
specular reflection models is inherently unstable. Specular
reflection is usually either sparse (e.g., a shiny surface with
a narrow highlight) or weak (e.g., a rough surface with a
broad specular lobe). This makes estimation of specular
parameter values while disentangling diffuse and specular
components challenging. Most works thus require multiple
images captured from different imaging conditions.

In this paper, we derive a novel analytical reflectance
model that is physically accurate and generalizes to vari-
ous real-world surfaces. Our key idea is to build up from
the very atomic behavior of light reflection, namely Fresnel
reflection. We model surface microgeometry with a col-
lection of oriented mirror facets, both for body and surface
reflections. We carefully derive the Fresnel reflection and
transmission for each microfacet as well as the light trans-
port between them in the subsurface. By modeling the full
Fresnel behavior of light for an analytically oriented distri-
bution of mirror microfacets, we arrive at a generalized re-
flection model that subsumes past representative models as
special cases. This physically-grounded modeling allows
us to describe the polarimetric behavior of reflected light
by a rough surface, in addition to its radiometric behavior.
As a result, our novel reflectance model, which we refer to
as Fresnel Microfacet BRDF model (FMBRDF), unifies not
only body and surface reflections but also light reflection in

Model MSR MBR FT MLT Pol.
T-S [29] + Lambertian ✓
T-S [29] + O-N [22] ✓ ✓

Baek et al. [2] ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓

Table 1. Our Fresnel Microfacet BRDF model is, to our knowl-
edge, the first physically-based reflection model that accurately
expresses microfacet surface reflection (MSR), microfacet body
reflection (MBR), Fresnel transmission (FT), microscopic light
transport (MLT), and polarization (Pol.) in a single model.

radiometry and polarization in a single model.
We experimentally validate our FMBRDF model by

evaluating its accuracy with a wide range of measured
BRDFs and images of real surfaces. The results show that
FMBRDF can accurately model both the intensity and po-
larization, particularly in comparison with past representa-
tive models. We also show that FMBRDF can be estimated
from a single polarimetric image. In the supplemental ma-
terial, we demonstrate the use of FMBRDF for joint esti-
mation of reflectance and geometry from multiple images
taken under different light source directions.

To the best of our knowledge, FMBRDF is the first re-
flectance model to seamlessly unify body and surface reflec-
tions with the same microgeometry and also describe both
its radiometric and polarimetric light reflections in a single
model. We believe FMBRDF will provide an invaluable ba-
sis for accurate radiometric and polarimetric image analysis
and serve as a backbone for a wide range of computer vision
applications. All code and data can be found on our project
page.

2. Related Works
Light reflection at a surface point can be described by the

Bidirectional Reflectance Distribution Function (BRDF):
the ratio of the reflected surface radiance to the incident ir-
radiance [20]. Various models have been introduced to ap-
proximate the BRDF of real-world surfaces. Table 1 sum-
marizes the fundamental differences between our model and
representative physically-based models.
Phenomenological Models: Various empirical models
have been introduced in the past. Phong [23] proposed a
specular reflection model based on the power of the an-
gle made by the mirror reflected incident light direction
and the viewing direction. Lafortune et al. [16] generalized
the Phong model with multiple specular lobes. Koenderink
and van Doorn [14] used Zernike polynomials, Ramamoor-
thi and Hanrahan [24] spherical harmonics, and Edwards et
al. [7] 2D Gaussians on halfway disks to describe a BRDF
with basis expansion. These models are phenomenological
and do not describe the physical light interaction.
Data-driven Models: Inductive reflectance models can
also be derived by fitting to measurement data. Matusik



et al. [19] introduced a data-driven non-parametric reflec-
tion model using nonlinear dimensionality reduction of 100
measured BRDFs. Nishino [21] introduced the directional
statistical BRDF model by viewing reflected light as a hemi-
spherical statistical distribution. Romeiro et al. [25] ap-
plied non-negative matrix factorization to the angular tabu-
lation of BRDFs. More recently, Chen et al. [4] derived the
iBRDF model based on an invertible neural network. These
data-driven models are expressive, especially when model-
ing those BRDFs in the vicinity of the training data, but do
not offer physical interpretations of the surface. Their gen-
eralizability also solely hinges on the ability to collect dense
angular measurements of the actual BRDF.

Physically-based Models: Deriving an analytical ex-
pression of the physical process of light reflection at a sur-
face point has been a long-standing problem. Torrance and
Sparrow [29] introduced the idea of modeling the micro-
geometry of a surface with a distribution of oriented mi-
crofacets each of which mirror-reflects light. Cook and
Torrance [5] extended it with the Beckmann distribution to
model wavelength-dependency. Walter et al. [30] applied
the Cook-Torrance model to model refractive transmission
of translucent materials. Holzschuch and Pacanowski [9]
modeled specular reflection by combining reflection on mi-
crogeometry and diffraction on nanogeometry. Oren and
Nayar [22] generalized the Lambertian model by modeling
the surface microgeometry with microfacets of purely Lam-
bertian reflection. These models, however, do not model the
full BRDF and should not be simply combined (see Sec. 1).

Polarimetric Reflection Model: Polarimetric reflection
models have been introduced mainly for geometry recovery
from polarization. Atkinson and Hancock [1] assume pure
diffuse reflection to estimate the zenith angles of surface
normals from observed degrees of polarization. Others as-
sume either pure diffuse or mirror reflection [11,18,28,31].
Baek et al. [2] introduced a polarimetric BRDF (pBRDF)
model consisting of both diffuse and specular reflections,
the latter of which is based on microfacet geometry (i.e., a
polarimetric version of Lambertian plus Torrance-Sparrow).
Extensions of this model with a unpolarized diffuse term
[15] and a single scattering term [10] have been introduced.
These models, however, consider diffuse reflection on a per-
fectly flat surface, and require special imaging setups (e.g.,
co-axial imaging [2]) for parameter estimation. Baek et
al. [3] acquired a pBRDF dataset consisting of 25 materi-
als and introduced a data-driven pBRDF model.

3. Radiometric Fresnel Microfacet BRDF
We first derive the radiometric FMBRDF, the intensity

behavior of our novel reflectance model, by expressing the
surface and body reflections caused by the same microge-
ometry consisting of mirror microfacets.
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Figure 2. We model the surface microgeometry with a collection
of statistically oriented mirror microfacets. Our model accurately
captures both the Fresnel reflection (i.e., mirror reflection) and
Fresnel transmission and re-transmission (i.e., body reflection) by
each microfacet. Light transmitted into the surface body can be re-
transmitted from a microfacet different from the incident one after
scattering in the body. We also model this light transport inside
the microgeometry.

As depicted in Fig. 2, a single pixel spans an area on
the surface. We model the microgeometry in this surface
area with a collection of oriented planar microfacets, each
of which is perfectly smooth and mirror-reflects light. If
we refer to the overall surface normal of this surface area
as the global surface normal N , this means that N actually
consists of many microfacets each with its own surface nor-
mal n oriented according to a statistical distribution. We
model the Fresnel reflection and transmittance by each of
these mirrored microfacets and express the aggregated re-
flections by the set of microfacets as surface reflection and
body reflection. In contrast, past physically-based models
assumed mirrored microfacets for specular reflection and
Lambertian microfacets for diffuse reflection, i.e., they had
mismatched assumptions on the atomic behavior of individ-
ual microfacets.

3.1. Generalized Radiometric Surface Reflection

Surface reflection is the aggregated light bundle each of
whose constituent light ray is mirror-reflected by the inter-
face of a microfacet. We follow, but significantly extend,
the Torrance-Sparrow model [29] to derive an expression
that accurately represents this surface reflection based on
the fundamental behavior of light reflection, namely Fres-
nel reflection.

The incident light as a bundle of uni-directional light
rays cut by the surface area corresponding to a single pixel
is mirror-reflected by microfacets whose normals happen to
be aligned with the bisector of the view direction V and
the incident light direction L, which is represented by the
halfway vector H = (L + V )/∥L + V ∥. The aggregated
radiance Ls of such reflected light by a distribution of ori-
ented microfacets becomes

Ls = ks
R(θd)D(θH)G(H)

4(N · V )
Eo , (1)



where N is the global surface normal at a pixel, ks is
the surface reflection albedo, θd is incident light angle to
the microfacet, R(θd) is the Fresnel reflectance, θH is the
zenith angle of H from N , D is the microfacet distribu-
tion, G is the geometric attenuation factor, and Eo is the
irradiance from the light source when the surface normal is
aligned with L [29]. For simplicity, we omit N , L, and V
from the notations. While G is derived from V-cavity mi-
crogeometry in Torrance-Sparrow model [29], we instead
use Smith’s masking function and the separable masking-
shadowing function [8, 27].

In the Torrance-Sparrow model, D is a Gaussian and its
parameter σ represents the surface roughness. Nishino in-
troduced the use of an exponential power distribution as the
basis of his directional statistics BRDF model [21], which
has also been adopted for modeling the microfacet orien-
tation distribution [9]. Similarly, we model the orientation
distribution D with the generalized normal distribution

D(θH) ∝ exp
[
− (θH/α)

β
]
. (2)

Image-based measurement of such a generic microfacet ori-
entation distribution would be impossible with a radiomet-
ric BRDF model due to the entanglement of surface and
body reflections. We later show that modeling the polari-
metric light behavior enables its robust estimation.

3.2. Generalized Radiometric Body Reflection

Let us first review foundational models of diffuse reflec-
tion, to derive an accurate model of body reflection by mir-
ror microfacets, i.e., the light that first transmits into the
microfacet with Fresnel transmittance before reemerging.
Lambert expressed the phenomenological body reflection as
angularly uniform “diffuse” reflection. Oren and Nayar [22]
extended this by devising a Gaussian microfacet orientation
distribution similar to the Torrance-Sparrow model, but by
assuming each microfacet to realize pure Lambertian reflec-
tion. In this model, the radiance observed from a surface
patch is the average of the projected radiance of the mi-
crofacets weighted by the slope-area distribution. The pro-
jected radiance Lrp of each microfacet is defined as

Lrp(n) =
dΦr(n)

(n ·N)dn(N · V )dωr
, (3)

where n is the normal of the microfacet, dΦr(n) is the flux
in the viewer direction, dn is the microfacet area, and dωr

is an infinitesimal solid angle to the viewer direction. The
reflected flux dΦr(n) is given by Lambertian reflection.

The projected radiance is weighted by the slope-area dis-
tribution, i.e., the foreshortened microfacet areas

Lb =

∫
Ω

Lrp(n)D(θn) cos θndωn , (4)

where θn is the zenith angle of n from the global surface
normal N , Ω is the upper hemisphere around N , dωn is an
infinitesimal solid angle subtended by the microfacet nor-
mal direction. The slope-area distribution is normalized by∫

Ω

D(θn) cos θndωn = 1 . (5)

In the Oren-Nayar model, the slope-area distribution is a
Gaussian function.

The Oren-Nayar model, however, has a few shortcom-
ings as a body reflection model as we reviewed in Sec. 1. Its
key assumption of Lambertian microfacets is fundamentally
incompatible with specular reflection models which rightly
assume mirror microfacets. In fact, it is not clear how a
Lambertian microfacet can be realized in the real world,
as Lambertian reflection can only result from rough sur-
faces (i.e., it cannot be an atomic behavior of light). The
original work [22] fits the Oren-Nayar model to mean in-
tensity values of a large surface patch similar to celestial
imaging conditions (e.g., lunar photography), effectively
demonstrating its use as a Bidirectional Texture Function
(BTF) [6] not a BRDF. In other words, it models the re-
flectance of meso/macrogeometry by assuming Lambertian
microgeometry, not individual microfacets. This renders its
use for BRDF modeling and per-pixel inverse rendering in-
appropriate for ordinary imaging conditions. Furthermore,
it does not model the light transport between microfacets.
This is actually essential to realize Lambertian reflection.

Let us now derive our body reflection model based on the
exact same microgeometry underlying the surface reflec-
tion. Unlike the Oren-Nayar derivation, we must consider
all combinations of incident and outgoing points within the
microgeometry of a pixel Ap to accommodate light trans-
port between microfacets. We first focus on a point p on
an oriented microfacet of normal n in Ap. We can rewrite
Lrp(n) with the projected radiance Lrp(p;n) at p as

Lrp(n) =
1

|An|

∫
An

Gb
m(p;n)Lrp(p;n)dAn , (6)

where Gb
m(p;n) is a binary masking function at p, An is

the region of microfacets oriented to n in Ap, | · | denotes
the area of a region, and dAn is an infinitesimal area in the
vicinity of p. The microfacets area |An| becomes

|An| = |Ap|D(θn)dωn . (7)

Similar to Eq. (3), Lrp(p;n) is defined by

Lrp(p;n) =
dΦr(p;n)

(n ·N)dAn(N · V )dωr
, (8)

where dΦr(p;n) is the flux in the viewer direction at point
p and dωr is an infinitesimal solid angle to the viewer di-
rection. The flux dΦr(p;n) is represented with the radiance



Lr(p;n) to the viewer direction at p as

dΦr(p;n) = Lr(p;n) · (n · V )dAndωr . (9)

The outgoing light Lr(p;n) at a point p is the sum of the
light transported from other incident points on the micro-
geometry. We define dLr(p,pi;n,ni) as the radiance of
light transported from an incident point pi on a microfacet
oriented to ni. Assuming that the surface is opaque enough
so that no light is transported from outside of the patch Ap,
we can express dLr(p;n) with dLr(p,pi;n,ni) as

dLr(p;n) =

∫
Ω

∫
Ani

dLr(p,pi;n,ni)

dωnidAni

dAnidωni ,

(10)
where dωni

is an infinitesimal solid angle that represents
the normal direction ni of an incident microfacet, dAni

is
an infinitesimal area in the vicinity of pi, Ani is the region
of microfacets oriented to ni in Ap, and its area |Ani | is
obtained by

|Ani
| = |Ap|D(θni

)dωni
. (11)

The incident flux Φi(pi;ni) at pi is scattered and dis-
tributed to other points on other microfacets near pi. To
represent outgoing radiance dLr(p,pi;n,ni) with the in-
cident flux dΦi(pi;ni) at pi, we define S(p,pi;n,ni) as

S(p,pi;n,ni) =
dLr(p,pi;n,ni)

dΦi(pi;ni)
. (12)

It describes how much light is transmitted into the surface,
transported from pi to p, and re-transmitted into the air. We
can decompose it into transmission, light transport, and re-
transmission terms and obtain

S(p,pi;n,ni) = T (θo)S
′(p,pi;n,ni)T (θi) , (13)

where T (θ) is the Fresnel transmittance for unpolarized
light from the air at incident angle θ, θi = cos−1(ni · L),
θo = cos−1(n ·V ), and S′(p,pi;n,ni) represents scatter-
ing and absorption. Note that our model is a BRDF and not
a Bidirectional Subsurface Scattering Reflectance Distribu-
tion Function (BSSRDF) [20] as p and pi are on the same
surface patch. In contrast to the BRDF approximation of
the BSSRDF proposed by Jensen et al. [12], in our model,
T (θi) and T (θo) depend on the microfacet.

When the light source direction is L, we obtain the inci-
dent flux dΦi(pi;ni) as

dΦi(pi;ni) = Gb
s(pi;ni) · (ni ·L)EodAni

, (14)

where Gb
s(pi;ni) is a binary shadowing function at pi.

From Eqs. (6) and (8) to (14) the projected radiance Lrp(n)
becomes

Lrp(n) =
n · V

(n ·N)(N · V )
T (θo)∫

Ω
M(n,ni)T (θi)(L · ni)|Ap|D(θni )dωni · Eo ,

(15)

where

M(n,ni) =
1

|An||Ani |

∫
An

∫
Ani

Gb
m(p)Gb

s(pi)S
′(p,pi)dAnidAn .

(16)
For simplicity, we omit n and ni from the notations for Gb

m,
Gb

s, and S′. From Eq. (16), M(n,ni) denotes the average
of the product of Gb

m(p), Gb
s(pi) for all combinations of

light transport S′(p,pi) between surface points p and pi on
microfacets oriented to n and ni respectively.

We provide a detailed analysis of this novel masking
and shadowing term M(n,ni) that takes into account light
transport between microfacets S′(p,pi) in the supplemen-
tary material. Through this analysis, we show that it can be
simply computed as

M(n,ni) = Gm(n)Gs(ni)S′(n,ni) , (17)

where Gm(n), Gs(ni), and S′(n,ni) are the average
of Gb

m(p), Gb
s(pi), and S′(p,pi) for p and pi, respec-

tively. The light transport S′(n,ni) does not depend on
L and V . For consistency with surface reflection, we
use Smith’s masking-shadowing function for Gm(n) and
Gs(ni) [8, 27].

The light transport S′(n,ni) follows the energy conser-
vation law. Since S′(n,ni) does not depend on L and V ,
energy conservation law becomes

π

∫
Ω

S′(n,ni) ·
|An|
dωn

dωn = kb , (18)

where kb is the body reflection albedo, π is the sum of en-
ergy to all directions, and the integration represents the sum
of energy at all points. We assume that kb is constant for the
surface patch. Although ks does not depend on the color of
the surface, kb depends on it due to absorption in the sub-
surface (i.e., dichromatic reflectance model [26]).

Let us introduce a microfacet correlation function
f(n,ni) to interpret Eq. (18)

S′(n,ni) =
kb

|Ap|π
f(n,ni) . (19)

From Eqs. (7), (18) and (19), f(n,ni) is normalized by∫
Ω

f(n,ni)D(θn)dωn = 1 . (20)

The microfacet correlation function f(n,ni) encodes the
spatial bias of the microfacet orientation distribution. For
example, if most microfacets oriented near ni are located
near microfacets with ni, f(n,ni) becomes an angularly
narrow distribution function. In the case of randomly dis-
tributed microfacets, f(n,ni) become the uniform distri-
bution function. Since the biased microfacet distributions
compose the mesoscopic surface, f(n,ni) also represents



the mesoscopic surface geometry. When f(n,ni) is the
uniform distribution, the incident light is distributed to mi-
crofacets oriented in any direction uniformly and reflected
light is hardly directional, i.e. the gross body reflection is
similar to Lambertian. On the other hand, when f(n,ni)
is an angularly narrow distribution, the incident light is dis-
tributed within the same mesogeometry and the reflected
light is directional to the incident direction, i.e. it behaves
similarly to the Oren-Nayar model.

We model the microfacet correlation function with a 3D
von Mises–Fisher distribution re-normalized by Eq. (20)

f(n,ni;κ) ∝ exp [κ(ni · n)] , (21)

where κ is the concentration parameter.
From Eqs. (4), (15), (17) and (19), we obtain the body

reflection for the same general microgeometry of surface
reflection (Eqs. (1) and (2))

Lb(N ,L,V ) =
1

N · V

∫
Ω

∫
Ω
Gm(n)D(θn)T (θo)(V · n)·

kb

π
f(n,ni) ·Gs(ni)D(θni )T (θi)(L · ni)dωndωni · Eo . (22)

4. Polarimetric Fresnel Microfacet BRDF
Let us now extend the radiometric model to a full polari-

metric model. By carefully deriving the Fresnel reflection
and transmittance on microgeometry, we show that the po-
larimetric behavior embodies distinct signatures of the un-
derlying microgeometry in its reflection. For primers on
polarization, including Stokes vector and Mueller matrix,
please see the supplemental material.

To express the polarization direction, we need to define
the coordinate system (CS) of incident light (incident CS)
and reflected light (outgoing CS). We define the z-axis of
each CS as L and −V . The x-axis and y-axis of each CS
can be defined arbitrarily for different purposes. We denote
them as x{i,o} and y{i,o}, respectively.

4.1. Polarimetric Microfacet Surface Reflection

For surface reflection, we can follow the polarimetric
specular BRDF model by Baek et al. [2]. To consider po-
larization, the Fresnel reflectance in Eq. (1) is replaced with
the Mueller matrix of surface reflection R, which consists
of Fresnel coefficients determined by the incident angle θd
and the index of refraction µ, and a rotation matrix C that
represents the polarization direction. Due to limited space,
these Mueller matrices are shown in the supplemental ma-
terial. The Stokes vector of surface reflection ss becomes

ss = ks
D(θH)G(H)

4(N · V )
C(φo,s)R(θd)C(−φi,s)si , (23)

where φ{i,o},s is the angle between the y{i,o} and the mi-
crofacet normal H projected onto x{i,o}y{i,o}-plane, and
si is the Stokes vector of the incident light.

Figure 3. Our FMBRDF provides intuitive interpretations of sur-
face reflection polarization, particularly of its degree of polariza-
tion. See text for details.

4.2. Polarimetric Microfacet Body Reflection

We need to express the body reflection Eq. (22) as the
aggregated retransmitted light from the oriented mirror mi-
crofacets with a Stokes vector and Mueller matrix. The po-
larization is transformed by the transmission, scattering in
the subsurface, and then the retransmission into air. The
Mueller matrices of Fresnel transmission T , which con-
sists of Fresnel coefficients, and depolarization by subsur-
face scattering Dp are shown in the supplemental mate-
rial. Replacing T (θo), T (θi), and kb

π in Eq. (22) with
C(φo,b)T (θo), T (θi)C(φi,b), and Dp

(
kb

π

)
, the Stokes

vector of body reflection sb becomes

sb =
1

N · V

∫
Ω

∫
Ω
Gm(n)D(θn)(V · n)C(φo,b)T (θo) ·Dp

(
kb

π

)
f(n,ni) ·Gs(ni)D(θni )(L · ni)T (θi)C(φi,b)dωndωni · si .

(24)

where φ{i,o},b is the angle between y{i,o} and ni and n
projected onto the x{i,o}y{i,o}-plane.

4.3. Polarimetric Interpretation

As our FMBRDF model is physically-based, it provides
an intuitive interpretation of polarization of surface reflec-
tion. Polarimetric image interpretation is notoriously dif-
ficult but our model lets us map key characteristics to its
physically explicable parameters. As shown in Fig. 3, let
us consider the degree of linear polarization (DoLP) of a
sphere, i.e., an object that has all possible frontal facing
surface normals. The roughness and shape of the micro-
facet orientation distribution function dictate the DoLP dis-
tribution on the surface. The further the surface normal is
from the half vector, the more the observed surface reflec-
tion light attenuates and the smaller the DoLP as body re-
flection dampens the polarization by surface reflection. This
relation of the DoLP and the angle between the half vector
and surface normal θH,n embodies the shape β of the dis-
tribution function. The roughness is encoded in the width
of this DoLP lobe for θH,n. The index of refraction de-
termines the Fresnel transmittance, which in turn governs
the DoLP of the region dominated by body reflection. The
albedo ratio rk = kb

ks
determines the scale of the DoLP lobe

for θH,n. The microfacet correlation parameter κ controls
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Figure 4. Polarimetric accuracy shown with DoLP values plotted
as a function of the angle between the global surface normal and
the viewing direction. Each graph shows the fitting results for one
of the lighting conditions. The number under the graph is the root
mean square error. Our FMBRDF model accurately captures the
characteristics of the DoLP distributions both for surface and body
reflections regardless of the surface roughness and color.

the DoLP of body reflection in surface areas whose global
surface normal is aligned with the lighting direction. For in-
stance, when κ is large, the polarization by the microfacets
aligned with the global surface normal is dampened less by
light from other microfacets.

5. Polari-Radiometric Reflectometry
The newly derived FMBRDF describes both the polari-

metric and radiometric behaviors of light reflected by a sur-
face. This allows us to estimate its parameters from a single
polarimetric image captured with a known directional light
of an object of known geometry and then use those parame-
ters to analyze and synthesize not just polarimetric but also
radiometric appearance of that surface.

Given a single polarimetric image, the parameters of
FMBRDF, namely the index of refraction µ, albedo ratio
rk = kb

ks
, surface reflection albedo ks, surface roughness

α, and shape of orientation distribution β, can be estimated
with least squares optimization

min
µ,rk,ks,α,β,κ

1

M

M∑
i

(Ii − Ii)
2 +

∑M
i wi(ρi − ρi)

2∑M
i wi

, (25)

where ρi and ρi are the observed and rendered (i.e., com-
puted with FMBRDF) DoLPs at pixel i, respectively, Ii and
Ii are the observed and rendered intensity at pixel i, respec-
tively, and M is the number of pixels. The weight wi is
set to the ratio of the number of inliers and outliers when
pixel i is an outlier, and 1 otherwise, to account for the im-
balance in the surface areas dominated with surface or body
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Figure 5. Radiometric accuracy shown with intensity values as a
function of the angle between the global surface normal and the
light source direction. Each graph shows the fitting results for one
of the lighting conditions. The number at the top of the graph is the
RMSE. Our FMBRDF model accurately represents both surface
and body reflections regardless of the surface roughness and color.

reflection. We avoid the costly integration of body reflection
and Smith’s masking function by approximating each with
a simple multi-layer perceptron (MLP) and leverage their
fast inference and differentiability. We solve the non-linear
optimization using Adam [13].

6. Experimental Results
We evaluate the effectiveness of our model by examin-

ing its accuracy in expressing real-world surface appearance
both in polarimetry and radiometry. We also show that our
FMBRDF can be estimated from a single polarimetric im-
age under a known directional light. For all experiments,
input images are captured with a commercial monochrome
polarization camera (Lucid TRI050S-PC) that uses quad-
Bayer polarization filter chips (Sony IMX250MZR). In the
supplemental material, we also demonstrate the use of FM-
BRDF for joint reflectance and geometry recovery.

6.1. Polarimetric Model Accuracy

We first evaluate the polarimetric accuracy of FMBRDF
using polarimetric images of real surfaces with known sur-
face normals. In particular, we use spheres captured un-
der various lighting conditions and evaluate the accuracy of
FMBRDF and other existing pBRDF models in fitting the
DoLP values. Figure 4 shows the DoLP values on the sur-
face as a function of the angle between the global surface
normal and the viewing direction for the input polarization
observation, our model, and representative physically-based
pBRDF models. It clearly shows that our FMBRDF model
accurately explains the DoLP for all surface normals for
various materials of different surface roughnesses. Other
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Figure 6. Radiometric fitting results on objects with non-
Lambertian diffuse reflectance. The microfacet correlation func-
tion enables our model to represent Oren-Nayar diffuse reflection
caused by rough mesogeometry.

pBRDF models result in large errors for rougher surfaces as
they do not model the microfacet body reflection.

6.2. Radiometric Model Accuracy

We evaluate the radiometric accuracy of our FMBRDF
model by fitting our model and others to images of real sur-
faces. Figure 5 shows the results of our FMBRDF and other
radiometric BRDF models on several images taken under
different light source directions. These results clearly show
that a Gaussian microfacet distribution is hardly appropriate
for real-world surfaces. Furthermore, our FMBRDF model
can represent observed body reflection more accurately than
the Lambertian and Oren-Nayar models.

Our FMBRDF model subsumes the Oren-Nayar diffuse
reflection model as a special case when the concentration
parameter κ of the microfacet correlation function is large.
We capture a planar sample with rough mesogeometry by
rotating the camera around it. The global surface normal
N , the viewing direction V , and the light source direction
L are on the same plane. We compute the average inten-
sity over all pixels within the surface region shared across
all images. Figure 6 shows the fitting results of our FM-
BRDF and other radiometric BRDFs. The results show that
our model can represent non-Lambertian diffuse reflection
including Oren-Nayar diffuse reflection, in particular with
its microfacet correlation function. Please see the supple-
mental material for more results.

6.3. Polari-Radiometric Reflectometry Accuracy

Now, we estimate our FMBRDF from a single polari-
metric image of an object with known geometry by solving
Eq. (25). We quantitatively evaluate the accuracy of the es-
timated FMBRDF by rendering a radiometric image under
a novel lighting condition. Figure 7 shows rendered images
under novel lighting conditions and prediction errors of FM-
BRDF and other physically-based BRDF models for objects
of different color, surface roughness, and shape. The pa-
rameters of the other models and ours only radiance are es-
timated from the observed radiance values. Ours only polar-
ization is estimated from only DoLPs. Radiometric BRDF

Observation
T-S [29] +
Lambertian

T-S +
O-N [22, 29]

Ours only
radiance

Ours only
polarization Ours

RMSE=0.0700 0.104 0.106 0.0474 0.0462

0.629 0.668 0.517 0.265 0.267

0.201 0.210 0.214 0.198 0.195

0.639 0.650 0.659 0.548 0.538

Figure 7. Radiometric renderings using BRDF parameters esti-
mated from single polarimetric images (ours), DoLP images (ours
only polarization), and radiometric images (others). The number
under the rendered image is the RMSE from the observation di-
vided by the average of observed radiance. In contrast to BRDFs
estimated with only radiance, FMBRDF estimated with radiance
and polarization results in accurate radiometric appearance both in
surface and body reflection for different surfaces.

models, including ours when estimated from observed ra-
diance, fail to accurately predict the surface reflection. In
contrast, images rendered with FMBRDF using parameter
estimates from polarization are accurate, especially near the
highlights regardless of the albedo ratio, roughness, and
shape of the object. These results clearly demonstrate the
accuracy of polari-radiometric reflectometry and the advan-
tage of FMBRDF which enables it by unifying radiometric
and polarimetric reflection.

7. Conclusion
In this paper, we derived Fresnel Microfacet BRDF, a

novel analytical reflectance model that is physically accu-
rate and generalizes to various real-world surfaces. FM-
BRDF models body and surface reflection with the same
microgeometry represented with an oriented distribution of
mirror microfacets and also unifies radiometric and polari-
metric behaviors of the reflections in a single model. This
resolves the physical implausibility of traditional diffuse
plus specular reflection models widely adopted in computer
vision and enables accurate and robust reflectance estima-
tion for a wide range of real-world surfaces. We believe
FMBRDF will serve as a sound, versatile reflectance model
for radiometric and polarimetric image understanding.
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