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Figure 1: We introduce a novel method for reconstructing fine geometry of non-Lambertian objects from passive observations
under the sky. The method fully leverages the polarimetric properties of sky and sun light encoded in the reflection by the

surface to recover the surface normal at each pixel.
Abstract

The sky exhibits a unique spatial polarization pattern by
scattering the unpolarized sun light. Just like insects use
this unique angular pattern to navigate, we use it to map
pixels to directions on the sky. That is, we show that the
unique polarization pattern encoded in the polarimetric ap-
pearance of an object captured under the sky can be de-
coded to reveal the surface normal at each pixel. We de-
rive a polarimetric reflection model of a diffuse plus mir-
ror surface lit by the sun and a clear sky. This model is
used to recover the per-pixel surface normal of an object
from a single polarimetric image or from multiple polari-
metric images captured under the sky at different times of
the day. We experimentally evaluate the accuracy of our
shape-from-sky method on a number of real objects of dif-
ferent surface compositions. The results clearly show that
this passive approach to fine-geometry recovery that fully
leverages the unique illumination made by nature is a viable
option for 3D sensing. With the advent of quad-Bayer po-
larization chips, we believe the implications of our method
span a wide range of domains.

1. Introduction

Methods for 3D reconstruction have been of central in-
terest in computer vision since its inception. A robust solu-
tion to it underlies a wide range of applications within vi-

sion and in surrounding areas including robotics, extended
reality (XR), and medicine. The challenge of this 2D to 3D
inverse problem lies in the combination surface reflectance
and incident illumination that generates the complex ap-
pearance of a given geometry.

In this work, we are interested in recovering the fine ge-
ometry represented by per-pixel surface normals. Surface
normal recovery can be interpreted as decoding the incident
illumination from its reflectance-modulated pixel intensity.
If we know the spatial pattern of the illumination (e.g., three
point sources) and the reflectance dictated by the object ma-
terial properties (e.g., Lambertian), we can “demodulate”
the pixel intensity to obtain the surface normal.

Consider two simple models of the interaction of light
at a surface. On one hand, the appearance of a Lamber-
tian surface lit by a point source can be perfectly modeled
with simple linear equations from which we can recover
per-pixel surface normals. On the other hand, the appear-
ance of an ideal mirror surface captured under a rainbow-
like angularly unique illumination directly tells us per-pixel
surface normals by simple lookup.

The reality, however, lives somewhere in between a set
of simple point source illumination and an angularly unique
one, and we generally do not know the exact reflectance. As
a result, we are forced to solve an ill-posed problem blindly.
This has led to numerous methods in the space such as pho-
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tometric stereo of objects with reflectance of varying com-
plexity and inverse rendering with strong statistical priors.

Is there any real-world situation in which we can assume
a known illumination pattern that is sufficiently unique
across its spatial or angular span? If so, we could reduce this
disentanglement problem to decoding the unknown modu-
lation by the reflection while simultaneously recovering the
surface normal. Is there such a unique imaging setup that
is readily accessible, and how can we fully leverage it to
recover fine geometry, namely per-pixel surface normals of
arbitrary material objects?

In this paper, we show that indeed there exists a very con-
venient lighting setup right above us: the sky. The sky, on a
clear day, has an angular polarization distribution uniquely
defined by the latitude and longitude centered around the
sun. The Rayleigh sky model conveniently predicts both
the angle of polarization (AOP) and the degree of polariza-
tion (DOP) across the sky as illustrated in Figure 2 [28].
We show that this everyday, but special angular polariza-
tion pattern readily gives us sufficient incident cues that are
modulated by the unknown reflectance and unknown sur-
face normals so that we can robustly decode it to recover
spatially varying reflectance and per-pixel surface normals.

We conduct a number of experiments using real im-
ages taken outdoors with a linear polarizer at the camera or
with a quad-Bayer polarization camera. The results clearly
demonstrate that our method can recover accurate fine ge-
ometry of objects with complex reflectance from a single
or a few polarimetric images taken completely passively.
The implication of this work is far-reaching. With the ad-
vent of polarization cameras using quad-sensor chips, the
proposed work gives the ability to perform 3D reconstruc-
tion under natural lighting without point matching. Further-
more, while specular surfaces are typically challenging to
reconstruct with geometric methods, these surfaces are par-
ticularly well-suited for shape-from-sky.

2. Related Work

As light interacts with a surface, its polarization state
is altered. The light is transformed depending on sur-
face properties including local geometry and material type.
This effect has been modeled and utilized in Shape-from-
Polarization (SfP) to estimate the geometry of a surface.
Early works constrain the problem by estimating the geom-
etry of only dielectric materials and assume a solely diffuse
reflection polarization model [1, 18,20]. Other works use
polarization characteristics of specular reflection to recon-
struct specular surfaces such as metallic objects [19,23].

Realistically, light is reflected off of a material surface as
a mixture of diffuse and specular reflections. As such, meth-
ods that utilize a mixed diffuse and specular model gener-
ate more faithful representations of objects [16,24,26,29].
These methods include both reflectance types into their

models by imaging the object at specific orientations in or-
der to capture a diffuse polarized image or by classifying
each pixel as diffuse or specular dominant. Riviere et al.
separate the specular component of the reflected light by
imaging the planar surface several times near the Brew-
ster angle of incidence [24]. It is unclear how to extend
this imaging procedure to objects with less planar struc-
tures. Baek er al. develop a complete pPBRDF model that
can model both diffuse and specular polarized reflections
from a single projector and camera setup [2]. Other meth-
ods [6, 8] use polarized color gradient illumination for sur-
face normal estimation.

In many previous works, SfP is computed on objects
in possibly unknown but controlled illumination environ-
ments. Smith er al. reconstruct 3D geometries of objects
outside of a controlled setting by estimating the illumina-
tion source as a point source with 1st or 2nd order spheri-
cal harmonics [26]. Similar methods alternatively optimize
the surface geometry and illumination orientation to resolve
the Bas-relief ambiguity [25]. SfP is often combined with
methods such as Shape-from-Shading or photometric stereo
in order to resolve the ambiguity but require additional
imaging devices or procedures [15,20,30,34]. Zhu et al. re-
quire an RGB stereo pair for 3D estimation [34] while Ngo
et al. require several illumination views at sufficiently large
distances [20]. SfP combined with multi-view stereo re-
quires polarimetric images from multiple viewpoints [4,33].
Prior work that estimates surface normals in uncontrolled
outdoor illumination [10] assumes a simple model of an un-
polarized overcast sky.

In contrast, we take advantage of the polarization of sky-
light and its hemispherical pattern that can be expressed by
the Rayleigh sky model [9,27]. This distinct sky polariza-
tion pattern is important to insects and animals for naviga-
tion [12,13,17,31,32]; and for recognizing bodies of wa-
ter via sky reflections [7, 14]. In this work, we show that
the angular variation of polarization under the blue sky is a
key for surface normal estimation. Analogous to the use of
multiple polarized sources in polarization multiplexing for
reflectance estimation [5, 6], the sky provides a hemisphere
of distinctly polarized sources. We use a mixed polarization
reflectance model (diffuse and specular) with a monocular
polarized camera setup to reconstruct the geometry of an
object under uncontrolled natural illumination.

3. Linear Polarization and Reflection

Let us first review basic properties of light polarization
and how it is modulated by surface reflection including mir-
ror and diffuse reflection. We then review how we can
model polarization of sky light. Table | summarizes pri-
mary notations.
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Figure 2: The polarization pattern and geometry of sky re-
flection. Left. The angle of polarization of the sky, de-
picted with double-sided arrows is constant along great cir-
cles passing the sun (longitudes). The degree of polarization
is constant on the small circles perpendicular to the solar di-
rection (latitudes), where different thicknesses indicate their
magnitudes. Nomenclature is defined in Table 1. Right.
The hemispheres are real images captured at two times of
a day by the on-chip polarizer camera with a fisheye lens.
Our proposed method makes use of the unique and often
overlooked polarization pattern of the sky.

3.1. Polarization

Light as an electromagnetic field propagates as a col-
lection of plane waves whose orientations can be defined
on the plane perpendicular to the direction of propagation
[3, 1'1]. For unpolarized light, these plane waves are ran-
domly oriented. However, for linearly polarized light, they
are aligned in one direction. Light is often composed of
various magnitudes of such linearly polarized light of dif-
ferent orientations. We call such light partially (linearly)
polarized. When viewed on the plane perpendicular to the
traverse direction, these plane waves carve out an ellipse
which can be collectively expressed with a single cosine
wave in the angular domain v

I(v) =1+ plcos(2v —2¢), ()

where [ is the radiance of the light, p is the degree of po-
larization (DoP), and ¢ is the angle of polarization (AoP).
Light can also be circularly polarized in which case the
plane-of-vibration rotates with a unique period. In this pa-
per, we only consider linear polarization, as regular surface
reflection primarily only causes linear polarization. In this
case, linearly polarized light can also be conveniently ex-
pressed with the first three entries of the Stokes vector as

21
2pI cos 2¢
2p1 sin 2¢

0

2

v viewing direction
n(x) | surface normal corresponding to pixel «

s sun direction
£(x) | directional vector to the sky in mirror direction
from pixel  (£(x) = v — 2 (an(a:)) n(z))
0 angle between £ and s
0 angular coordinate of incident and exitant light
(e.g.,0; = (0;, ;)
Ty tangent plane of sky at £, whose up vector yr,
points opposite to the camera’s up vector
ng, | normalized projection of m onto the tangent
plane at £
o1, | angle the projected normal makes with the up
vector of tangent plane (cos™! ng, - yr,) !
) angle of polarization of sky at £ (£ x s) from
Rayleigh sky model
nn | normalized projection of 7 onto image plane [1
©n angle the image projected normal () makes
with the up vector of image plane (yn)

Table 1: Nomenclature

3.2. Polarimetric Reflection

The linear polarization and intensity of an incident polar-
ized light S; to a surface is modulated by reflection before
observed as exitant polarized light S,,. This modulation can
be expressed with a Mueller matrix M

S, = MS,;. 3

Equation 3 provides relationship between the known
Stokes vectors of the sky (from the Rayleigh sky model)
to the observed Stokes vectors at the camera (observable
using a rotating polarizer at the camera or by using a quad-
Bayer polarization camera) via the Mueller matrix with the
local surface normal as the primary surface parameter that
we seek to recover.

For a mirror reflection the Mueller matrix can be ex-
pressed with a series of transformations

M = EC(p,)R(0)C(—i), “)

where k denotes a scalar coefficient depending on the nor-
mal n, C is a rotation matrix

1 0 0 0

|0 cos(2¢p) —sin(2¢) 0O
Cly) = 0 sin(2p) cos(2p) Of’ ©)

0 0 0 1

and R denotes polarization transformation by reflection.
The light is first rotated into the incident plane coordinate

I This is abbreviated from ¢""'Te .



frame with C'(—y;) where ¢; is the angle between the plane
of incident light and the y-axis of the coordinate frame in
which the incident light is defined. After reflection ex-
pressed by R, the polarization state is coordinate trans-
formed into the outgoing (viewing) direction ¢,,.

The polarization transform by reflection R can consist of
different components. A full polarization BRDF model has
been derived in [2]. In this paper, we assume the material
surface of interest exhibits a linear combination of specular
(mirror) and diffuse reflection.

Specular Reflection Polarization transform by specular
reflection can be fully expressed with Fresnel equations

Ry R_ 0 0
| R Ry 0 0
R<9) - [ 0 0 Rxcosd 0 ‘| ’ (6)
0 0 0 Ry cosd

where Ry = st;R”, Ry = /RpR,, 0 is the incident
angle of the light, and cos § is -1 when 6 is less than Brew-
ster’s angle and 1 otherwise. R, and R, are the Fresnel

coefficients defined as

R.(6) = (sin(@@t)>2 R0 = (tan(&@t)>2 7

sin(6 + 60;) tan(6 + 6;)
(N
respectively. Here 6, is given by Snell’s law as
0, = sin~! (“a s1n9> , (8)
MT’L

where pi, and ., denote the indices of refraction of air and
the object material, respectively.

Diffuse reflection Diffuse reflection is slightly more in-
volved as the polarized light enters the object surface, gets
depolarized by scattering, but then becomes polarized again
when exiting from the interface to air. Assuming Lamber-
tian reflection, the diffuse reflection observed by a viewer
for an infinitesimally small solid angle of an incident polar-
ized light S; is
n-£
dS, = ?C(%’o)T(@o)D(OT(@i)C(*%’)Sidw, ©)
where 6, denotes the transmittance angle from the inte-
rior of the object surface to the viewer given as 6, =

sin™! (5—“ sin 9), ( is the diffuse albedo, m is the surface

normal, and £ is the direction of the incoming light (direc-
tion to a sky patch is used for example). D(() is the 4x4
depolarization matrix

D(¢) = (10)

S O Oy
o O OO
o O OO
o O OO

The polarization transform by transmission when enter-
ing and exiting the interface is

Y

T, T_ 0 0
|71 0 0
()= 0 0 Ty 0 |>

0 0 0 Ty

where Ty = T“jQETP , Ty = /TpTs and § is the incident

angle of the light. T and T}, are the Fresnel coefficients
defined as

Ts(0) =1 — Rs(0), Tp(e) =1- Rp(e) ) (12)
respectively.

The total irradiance of diffuse reflection to the observer
(e.g., camera) is the integration of this differential polarized
light (Eq. 9) over the upper hemisphere € of incident light
around the surface normal

1
So = %C(‘pO)T(GO)/ﬂ("'E)D(C)T(@)C(—wi)sidW.
(13)
4. Sky Polarization

As depicted in Fig. 2, the sky exhibits a unique pattern
of linear polarization. When observing an object surface
captured on a clear day sky with a polarization camera, we
are essentially observing this sky polarization pattern mod-
ulated by the surface reflection and geometry.

Sky Polarization Distribution The sky can be geomet-
rically modeled as a directional light distribution over the
upper hemisphere with its zenith aligned with the surface
normal of the ground. Let us denote the sun direction with
s. While the sun is unpolarized, Rayleigh showed that
Rayleigh scattering of sun light induces unique symmetry
in its polarization over the sky [28].

The angle of polarization form iso-contours (great cir-
cles, meridians) passing through the sun (i.e., in longitude).
That is, the polarization direction on the tangent plane T} is
£ x s. We consider a right-hand coordinate frame with the
z-direction pointing towards the viewing direction.

As depicted in Fig. 2, the camera coordinate frame in the
tangent plane coordinates becomes

T

.
Cr, = | &xl0-10 Lxxr, £| - (14)

~ Llexo =107

The sky polarization direction in the tangent plane coordi-
nate frame then becomes

T=Crfxs, (15)
and the observed angle of sky polarization is

¢p = tan"! (Ty/T2) - (16)



The degree of polarization of the sky pg, in contrast, form
iso-contours (parallels) around the sun (i.e., in latitude)
sin? y

Pe = Pmax (17)

1+ cos?~y’
where pmax iS an unknown scaling factor’ and v =
cos~ 1 £Ts.

Sky Intensity Distribution In addition to the polarization
characteristics, we must also take into account the radiance
distribution of the sky. The Perez sky model [22] expresses
the sky intensity distribution relative to a sampled reference
intensity at a known direction. Let us denote the zenith vec-
tor of the sky in the camera coordinate frame with g. The
sky intensity of the direction £(x) is then given by

f(g,s,£(x))

To(a) = (g, s, £(my)) 4@ (13)

where
f=0+aexp(b/(g"2)) (1 +cexp(dy) +e(s'€)?) .
(19)

The values of the coefficients a, b, ¢, d and e depend on the
conditions of sky.

5. Polarimetric Shape from Sky

We are now ready to derive a method for recovering the
surface normals of an object whose polarimetric image is
captured under the sky. Regardless of the image capturing
setup (e.g., rotated filter, quad-Bayer polarization camera,
etc.), we show that polarimetric observations at each pixel
can be turned into surface normals.

We make a few moderate assumptions about the target
surface and the imaging setup. We assume that the surface
reflection consists of a linear combination of Lambertian
diffuse reflection and perfect mirror reflection. This does
limit the applicability of our method to specular objects. We
leave extensions to glossy surfaces as our future work. We
assume that the camera model can be approximated with or-
thographic projection and that the polarimetric images are
taken under a clear sky. Clouds attenuate the sky polariza-
tion affecting the degree of polarization in addition to the
spatial intensity pattern. We plan to extend our method to
non-clear skies in our future work.

5.1. Polarimetric Sky Reflection

Let us first derive a generative model of the forward
imaging process of the sky polarization via object surface
reflection. For this, we denote the surface normal of the
object surface captured at image coordinates x with n(x),
which we recover in the 3D camera coordinate frame.

%It is set to 1.0 in textbooks in general.

We assume orthographic projection. The angle this sur-
face normal makes with the y-axis of the image plane is

on(x) = cos H(nn(z)" yn). (20)

The sky direction in perfect mirror direction to the ortho-
graphic viewing direction by this surface normal is

Lz)=v—-2(v n(z)n. 21

For any sky direction, we can compute its Stokes vector
Se(z) from its intensity, angle, and degree of polarization,
Eq. 19, Eq. 16 and Eq. 17, respectively,

1

e COS 200
pesin2¢g | (22)
0

Se(z) = 21g(a)

This Stokes vector Sy() is transformed into the observed
Stokes vector S, by surface reflection. For the coordinate
transforms between the incident sky light tangent plane 7
and the plane of reflection, as well as that between the plane
of reflection and the camera coordinate frame, we need the
angle the surface normal makes on the sky light tangent
plane o7, and the angle it makes on the image plane ¢n,
respectively

ﬁTe(w) (:B) = CT[<m)n(w) ) (23)
o 1 ﬁTE(m) (w)y o

(pTe (CC) = tan <ﬁT£(m) (w)w ) 2 ’ (24)

on(x) = cos™! nn(w)Tyn , (25)

where yn = [0 1 0]" and nr,,, (x) is n(z) in the tangent
plane coordinate frame.

Let us now derive each of the polarimetric reflection
components of an object surface captured under the sun and
sky. In the following, we drop pixel-dependency « from the
notation for brevity.

Diffuse Reflection of Sky Theoretically speaking, we
should integrate Eq. 18 in the upper hemisphere around the
surface normal. This, however, would necessitate evalua-
tion of the integral for each pixel in each step, causing an
unnecessary computational burden since, especially after
hemispherical integration, assuming uniform sky intensity
would only cause 1% error in the diffuse reflection intensity.
Instead, for diffuse reflection, unlike for specular reflection,
we assume that the sky has uniform intensity, which signif-
icantly simplifies our model without sacrificing accuracy.
The diffuse reflection then becomes

st = S T(0n) [ (n ) DIOTOIC ()5
™ Q
(26)



The integral of Eq. 26 yields a non-zero value only in the
first component due to the matrix D(():

St = C(en)T(6n) - 214¢aSo , 27

where Sg = [1,0,0,0]T, I is the uniform intensity of the
sky, and (y is a positive scalar value depending on the distri-
bution of S;. Note that (4 represents the “effective” diffuse
albedo including the effects of depolarization by { and pre-
ceding and following transmittance. We thus recover (g as
the diffuse albedo. Here we assume that the (1,2) compo-
nent of 7'(¢;) is sufficiently small when compared with its
(1,1) component. In this case, the polarization of S; does
not contribute to (4. This physically means that it does not
contribute to the DC component of light transmitted into the
object subsurface.
As aresult, (4 is represented by

@zgégpwnwmm, (28)

and depends only on ¢ and .

Diffuse Reflection of Sun The sun is unpolarized
Ss =2Es6(l — s)Sg, 29)

where Eg is the sunlight irradiance. When the upper hemi-
sphere around the surface normal includes the sun s, polar-
ization by diffuse reflection of the sun thus becomes

n=2(n-s)CaT4(0s)IsC(en)T(0n)So,  (30)
where 6, is the angle between the sun and the surface nor-
mal, and I is
Es

fo = T DT B

€2y

Specular Reflection of Sky We assume that, except for
the sun, the specular reflection Sf; consists of mirror reflec-
tion of the sky. In this paper, specular reflection of the sun
is ignored as it is a single saturated point with unreliable
Stokes vector. We can simply fill this point’s surface nor-
mal with surrounding estimates. For a given surface nor-
mal, we can compute the mirrored sky direction (Eq. 21),
whose specular reflection can be computed as a Stokes vec-
tor using Eq. 4.

The reflected light then would be the total of diffuse re-
flection of the sky and sun and also specular reflection of
the sky

Sn=ShH+Sh+Sh
=2(Ig+ (n - 8)IsT(05))CaC(n)T (0n)So
+ ((n"£)C(on)R(6n)C(—pe)Se , (32)

where (; is the specular albedo.

5.2. Surface Normal Recovery

Given the generative model of observed polarization Sp
for a given surface normal n(x) (Eq. 32), our goal is to
estimate the surface normal n for each pixel from as few as
a single observation of the object captured under the sky.

Let us first assume that we know the sun direction s,
maximum degree of polarization of the sky pp,ax, refrac-
tive index p, the parameters of Perez sky model a, b, ¢, d,
e, and sky zenith direction g. The unknowns in Eq. 32 are
then the intensity 14, Is, Iy(z,) in Sg, albedo values ¢, and
(4, and surface normal n.

If we assume that the object surface consists of homo-
geneous material, only the surface normal n(x) will de-
pend on pixel  in Eq. 32 and the other unknowns I, I,
Ig(wy)> Cd» and (s will be shared among all pixels. To fur-
ther reduce the number of parameters, we can define I,
as Ic, = Iy(z,)Cs without loss of generality. At the end, N
pixel observations will have 342N degrees of freedom and
3N constraints when n(z) is unique to the observed Stokes
vectors Sp (). In addition, polarimetric object appearance
with N pixels captured from the same viewpoint but at M/
different times of the day will have 2M 42N +1 degrees of
freedom and 3M x N constraints. As we can safely assume
N > M, this suggests that, given a few images of the same
object taken at different time instances (i.e., changing solar
direction) we can robustly estimate the object geometry.

We achieve this by alternating between estimating the
pixel-shared parameters from a few pixels and then using
those values to estimate the per-pixel parameters including
the surface normals and albedo values. Assuming I, = tly
with a constant ¢ for all the M images, unknowns Iy, t, (4
and I, are obtained by minimizing an Lo Stokes error with
the observed Stokes vector én as

arg min \/Eiv Ziw ||S|-| —Snl?. (33)

Tat,Ca,lcy

Using these estimates, we then estimate the surface nor-

mals
arg minx/Ziw 1Sn — Snl|2. (34)

These two steps are iterated until convergence.

For the homogeneous material case with known sun di-
rection, we can recover per-pixel surface normals from a
single polarimetric image M = 1. In this case, we have
3+ 2N unknowns and 3N equations and the same alternat-
ing minimization algorithm can be used.

When assuming homogeneous material, even when we
only have one polarimetric observation, we can further re-
lax the requirement of known sky parameters: solar and sky
zenith directions and Perez sky model parameters since, in
general, the problem is well-conditioned (N > 3). The
losses (Eq. 33 and Eq. 34) are, however, non-convex. To
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Figure 3: Quantitative results. Polarimetric input images were captured with an on-chip polarization camera. See color
wheel in first row GT normal for normal directions. Quantitative analysis is shown with the three numbers under each surface
normal map representing mean, median, and standard deviation of the angular errors from ground truth in degrees. Our
method achieves quantitatively and qualitatively accurate geometry reconstructions of real objects with both homogeneous

and spatially varying materials.

avoid local minima, we manually initialize these two direc-
tions (e.g., by specifying the brightest point as the reflection
of sun) and let the alternating minimization also estimate
them as part of the pixel-shared parameters.

Finally, we can solve for texture, i.e., spatially varying
diffuse albedo (4(x), for the general case of unknown sun
and sky parameters. Object surfaces are often coated with
the same material but can have underlying texture. In this
case, for M images of an object surface occupying N pix-
els, we have 2M + 3N parameters for 3M x N equations,
and thus multiple polarimetric observations become essen-
tial. The required minimum number of observations at dif-
ferent times of the day are, however, just two ( 31%1\77 5 < M
holds for any positive integer M larger than 1 for N > 2).
We typically use 2 or 3 polarimetric images captured one or
two hours apart in our experiments.

6. Experimental Results

We experimentally evaluate the effectiveness of our
method with a number of real objects of different materi-
als. We captured polarimetric images of these objects under
a clear sky using a monochrome polarization camera with
four on-pixel polarization filters of different angles (LUCID
PHXO050S-P) or a color digital SLR with a rotated polariza-
tion filter in front of the lens. For each image, we compute
the Stokes vector at each pixel from these angular polari-
metric observations. For some experiments, we captured
the same object from the same viewpoint at different times
of the day (i.e., different sun directions).

The ground truth sun direction was computed by cap-
turing a chrome sphere with the target, and the Perez sky
parameters were set to represent the CIE standard clear sky
[21]. The ground truth shape and normal of the target ob-
jects were computed by photometric stereo and structured
lighting in a separate imaging session indoors.

Quantitative Evaluation We applied our method to real
objects with different material compositions, including ho-
mogeneous and spatially varying diffuse albedo as well as
different combinations of specular and diffuse reflection.
Figure 3 shows the estimated surface normals and depths.
Reconstructions are shown for surface regions reflecting
the sky with manually specified masks. The overall shapes
are visualized with shaded renderings of surfaces computed
by integrating the normal maps for qualitative evaluation.
We also show results of applying the method by Tozza et
al. [30] to the same input images, which were computed
with the code disseminated by the authors. Note that we
chose this shape-from-polarization method as a baseline for
comparison, but to our knowledge our method is the first
to recover shape from sky polarization, so additional SOTA
comparisons are not possible. The three errors for each nor-
mal estimate are the mean, median, and standard deviation
of the angular errors between the ground truth in degrees.
For these experiments, we used ground truth sun and sky
parameters. For the first two objects, we further assumed
homogeneous diffuse albedo. For each object, we used up
to 3 polarimetric images (black fish: 1, turtle, cup: 2, and
clownfish: 3) captured at different times of the day (e.g.,



Figure 4: Grayscale images and reconstructions of ob-
jects of the same shape with different diffuse albedo
corresponding to diffuse-dominant, mixed, and specular-
dominant polarization from left to right, respectively.
The mean/median/standard deviation of the normal er-
rors in degrees are 14.69/14.44/6.10, 16.38/16.22/5.72, and
14.48/14.49/5.28, respectively. These results demonstrate
the robustness of our method to different combinations of
diffuse and specular reflection magnitudes.

2 hours apart). The results show quantitatively and quali-
tatively that our method can recover accurate fine geome-
try, except for areas that suffer from cast shadows or satu-
ration by sun light, and significantly outperforms the base-
line method. Even from a single polarimetric observation,
we are able to reconstruct the complex shape for the black
fish, and only up to 3 images are necessary to reconstruct
fine geometry of texture objects (e.g., clownfish). For the
clownfish, the estimated normals have larger errors in the
top center of the image. These errors are caused by insuffi-
cient separation in time between the input images.

Effect of Larger Diffuse Magnitude We also quantita-
tively evaluate the effect of varying magnitudes of diffuse
reflection. Although our method can handle arbitrary com-
binations of diffuse and specular albedo at each pixel, as
diffuse reflection is depolarized in the subsurface and its
transmittance polarization is perpendicular to that of spec-
ular reflection, stronger diffuse reflection would retain less
of the unique sky polarization pattern. As a result, surface
normal estimation becomes more challenging as diffuse re-
flection becomes more dominant in magnitude (e.g., white
surfaces). Figure 4 shows reconstructions of three objects
of the same shape (turtle) but in different colors, i.e., black,
green, and white, each representing predominantly specu-
lar, mixed, and diffuse object surfaces, respectively. The
results show, both quantitatively and qualitatively, that our
method is robust to changes in diffuse and specular relative
magnitudes. These results demonstrate that our method can
robustly handle a wide range of materials.

Fig. 1 and Fig. 5 show reconstruction results of differ-
ent objects made of various materials ranging from natural
to man-made, and strong diffuse to predominantly specu-
lar. Polarimetric input images were captured with either an
on-chip polarization camera or a DLSR with a hand-rotated
filter. The results show that our method can achieve fine
geometry recovery for various types of real objects.

Figure 5: Reconstructed geometry of other real objects of
complex materials and shapes. Reconstructions are shown
for surface regions reflecting the sky with manually speci-
fied masks.

7. Conclusion

In this paper, we introduced a novel method for recover-
ing surface normals from polarimetric images captured un-
der the sky. Our method estimates the surface normal at
each pixel by decoding the unique polarization pattern of
the sky from its surface reflection. We demonstrated its ef-
fectiveness on a number of objects with different material
compositions and showed that it can recover accurate fine
geometry of a complex object even from a single polarimet-
ric image. Especially with the advent of quad-Bayer po-
larization cameras, our method provides a simple and easy,
completely passive tool for outdoor 3D sensing that would
likely benefit a wide range of application domains.
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