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Abstract. We introduce 2D blind spot estimation as a critical visual
task for road scene understanding. By automatically detecting road re-
gions that are occluded from the vehicle’s vantage point, we can proac-
tively alert a manual driver or a self-driving system to potential causes
of accidents (e.g ., draw attention to a road region from which a child
may spring out). Detecting blind spots in full 3D would be challenging,
as 3D reasoning on the fly even if the car is equipped with LiDAR would
be prohibitively expensive and error prone. We instead propose to learn
to estimate blind spots in 2D, just from a monocular camera. We achieve
this in two steps. We first introduce an automatic method for generat-
ing “ground-truth” blind spot training data for arbitrary driving videos
by leveraging monocular depth estimation, semantic segmentation, and
SLAM. The key idea is to reason in 3D but from 2D images by defining
blind spots as those road regions that are currently invisible but become
visible in the near future. We construct a large-scale dataset with this
automatic offline blind spot estimation, which we refer to as Road Blind
Spot (RBS) dataset. Next, we introduce BlindSpotNet (BSN), a simple
network that fully leverages this dataset for fully automatic estimation of
frame-wise blind spot probability maps for arbitrary driving videos. Ex-
tensive experimental results demonstrate the validity of our RBS Dataset
and the effectiveness of our BSN.

Keywords: autonomous driving, ADAS, road scene understanding, blind
spot estimation, accident prevention

1 Introduction

Fully autonomous vehicles may soon become a reality. Advanced Driver-Assistance
Systems (ADAS) have also become ubiquitous and intelligent. A large part of
these developments is built on advancements in perceptual sensing, both in hard-
ware and software. In particular, 3D and 2D visual sensing have played a large
role in propelling these advancements. State-of-the-art LiDAR systems can re-
solve to centimeters at 300m or longer, and image understanding networks can
recognize objects 100m away. A typical autonomous vehicle is equipped with up
to ten of these sensors’ visual perception, in addition to other modalities.
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Fig. 1.We introduce a new dataset and network for automatically detecting blind spots
on roads. Alerting manual and autonomous drivers of vehicles to such 2D blind spots
can greatly extend the safety on the road. Our network, BlindSpotNet, successfully
detects blind spots, from which pedestrians actually later spring out, without the need
for costly, error-prone 3D reconstruction.

These autonomous and assistive driving systems are, however, still prone
to catastrophic errors, even when they are operating at low speeds [23]. More
sensors would unlikely eliminate these errors. In fact, we human beings have
much fewer visual sensors (just our two eyes) but can drive at least as well as
current autonomous vehicles. Why are we able to do this? We believe, one of
the primary reasons is that, although we are limited in our visual perception,
we know that it’s limited. That is, we are fully aware of when and where we can
see and when and where we cannot see. We know that we can’t see well at night
so we drive cautiously; we know that we cannot see beyond a couple of hundred
meters, so we don’t drive too fast; we know that we cannot see behind us, so we
use side and room mirrors. Most important, we know that we cannot see behind
objects, i.e., that our vision can be obstructed by other objects in the scene. We
are fully aware of these blind spots, so that we pay attention to those areas on
the road with anticipation that something may spring out from them. That is,
we know where to expect the unforeseen and we preemptively prepare for those
events by attending our vision and mind to those blind spots.

Can we make computers also “see,” i.e., find, blind spots on the road? One
approach would be to geometrically reason occlusions caused by the static and
dynamic objects on the road. This requires full 3D scene reconstruction and
localization of the moving camera, which is computationally expensive and prone
to errors as it requires fragile ray traversal. Instead, it would be desirable to
directly estimate blind spots in the 2D images without explicit 3D reconstruction
or sensing. This is particularly essential for driving safety, as we would want to
detect blind spots on the fly as we drive down the road. Given a frame from a live
video, we would like to mark out all the occluded road regions, so that a driver
or the autonomous system would know where to anticipate the unforeseen.

How can we accomplish 2D blind spot detection? Just like we likely do, we
could learn to estimate blind spots directly in 2D. The challenge for this lies in
obtaining the training data—the ground truth. Again, explicit 3D reasoning is
unrealistic as a perfect 3D reconstruction of every frame of a video would be
prohibitively expensive and error prone, especially for a dynamic road scene in
which blind spots change every frame. On the other hand, labeling blind spots in
video frames is also near impossible, as even to the annotators, reasoning about
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the blind spots from 2D images is too hard a task, particularly for a dynamic
scene. How can we then, formulate blind spot estimation as a learning task?

In this paper, we introduce a novel dataset and network for estimating oc-
cluded road regions in a driving video. We refer to the dataset as Road Blind
Spot (RBS) Dataset and the network as BlindSpotNet (BSN). Our major contri-
butions are two-fold: an algorithm for automatic generation of blind spot training
data and a simple network that learns to detect blind spots from that training
data. The first contribution is realized by implicitly reasoning 3D occlusions in
a driving video from its 2D image frames by fully leveraging depth, localization,
and semantic segmentation networks. This is made possible by our key idea of
defining blind spots as areas on the road that are currently invisible but visible in
the future. We refer to these as T -frame blind spots, i.e., those 2D road regions
that are currently occluded by other objects that become visible T frames later.
Clearly, these form a subset of all true 2D blind spots; we cannot estimate the
blind spots that never become seen in our video. They, however, cover a large
portion of the blind spots (cf . Fig. 6) that are critical in a road scene including
those caused by parked cars on the side, oncoming cars on the other lane, street
corners, pedestrians, and buildings. Most important, they allow us to derive an
automatic means for computing blind spot regions for arbitrary driving videos.

Our offline automatic training data generation algorithm computes T -frame
blind spots for each frame of a driving video by playing it backwards, and by
applying monocular depth estimation, SLAM, and semantic segmentation to
obtain the depth, camera pose, semantic regions, and road regions. By computing
the visible road regions in every frame, and then subtracting the current frame’s
from that of T -frames ahead, we can obtain blind spots for the current frame.
A suitable value for T can be determined based on the speed of the car and
the frame rate of the video. Armed with this simple yet effective algorithm for
computing blind spot maps, we construct the RBS Dataset. The dataset consists
of 231 videos with blind spot maps computed for 21,662 frames.

For on-the-fly 2D blind spot estimation, we introduce BlindSpotNet, a deep
neural network that estimates blind spot road regions for an arbitrary road
scene directly for a single 2D input video frame, which fully leverages the newly
introduced dataset. The network architecture is a fully convolutional encoder-
decoder with Atrous Spatial Pyramid Pooling which takes in a road scene image
as the input. We show that blind spot estimation can be implemented with a
light-weight network by knowledge distillation from a semantic segmentation
network. Through extensive experiments including the analysis of the network
architectures, we show that BlindSpotNet can accurately estimate the occluded
road regions in any given frame independently, yet result in consistent blind spot
maps through a video.

To the best of our knowledge, our work is the first to offer an extensive
dataset and a baseline method for solving this important problem of 2D blind
spot estimation. These results can directly be used to heighten the safety of
autonomous driving and assisted driving, for instance, by drawing attention of
the limited computation resource or the human driver to those blind spots (e.g .,
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by sounding an alarm from the side with an oncoming large blind spot, if the
person is looking away observed from an in-car camera). We also envision a
future where BlindSpotNet helps in training better drivers both for autonomous
and manual driving.

2 Related Work

Driver assistance around blind corners has been studied in the context of aug-
mented/diminished reality [2, 20, 30]. Barnum et al . proposed a video-overlay
system that presents a see-through rendering of hidden objects behind the wall
for drivers using a surveillance camera installed at corners [2]. This system real-
izes realtime processing, but requires explicit modeling of blind spots beforehand.
Our proposed method estimates them automatically.

Bird’s-eye view (BEV) visualization [14, 33] and scene parsing [1, 11, 12, 19,
25, 29] around the vehicle can also assist drivers to avoid collision accidents.
Sugiura and Watanabe [25] proposed a neural network that produces probable
multi-hypothesis occupancy grid maps. Mani et al . [19], Yang et al . [29], and Liu
et al . [14] proposed road layout estimation networks. These methods, however,
require sensitive 3D reasoning to obtain coarse blind spots at runtime, while our
BSN estimates blind spots directly in 2D without any 3D processing.

Amodal segmentation also handles occluded regions of each instance explic-
itly [8,10,15,24,27,32,34]. They segment the image into semantic regions while
estimating occluded portions of each region. These methods, however, do not
estimate objects that are completely invisible in the image. We can find a side
road while its road surface is not visible at all, e.g ., due to cars parked in the
street, by looking at gaps between buildings for example.

Understanding and predicting pedestrian behavior is also a primary objective
of ADAS. Makansi et al . [17] trained a network that predicts pedestrians crossing
in front of the vehicle. Bertoni et al . [3] estimated 3D locations of pedestrians
around the subject by also modeling the uncertainty behind them. Our method
explicitly recovers blind spots caused not only by pedestrians but also other
obstacles including passing and parked cars, street medians, poles, etc.

Watson et al . [28] estimated free space including the area behind objects in
the scene for robot navigation. They also generated a traversable area dataset
to train their network. Our dataset generation leverages this footprint dataset
generation algorithm to compute both visible and invisible road areas in a road
scene image (i.e., driving video frame). Blind spot estimation requires more than
just the area behind objects as it needs to be computed and estimated across
frames with a dynamically changing viewpoint.

3 Road Blind Spot Dataset

Our first goal is to establish a training dataset for learning to detect 2D blind
spots. For this, we need an algorithm that can turn an arbitrary video into a
video annotated with 2D blind spots for each and every frame. To derive such
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Visible Road Regions

True Blind Spots

T-frame Blind Spots

Fig. 2. We define blind spots as road regions that are currently invisible but visible in
the next T -frames, which we compute by aggregating road regions across future frames
and subtracting the visible road region in the current frame. These T -frame blind spots
form a subset of true blind spots, cover key regions of them and, most important, can
directly be computed for arbitrary driving videos (cf . Fig. 6 for a real example).

a method, we start by defining road-scene blind spots as something that we can
compute from 2D videos offline and derive a method for computing those for
arbitrary driving videos. With this algorithm, we construct a large-scale dataset
of road blind spot videos (RBS Dataset). This data will later be used to train a
network that can estimate 2D blind spots on the fly.

3.1 T -Frame Blind Spots

In the most general form, blind spots are volumes of the 3D space that are
occluded from the viewpoint by an object in the scene. Computing these “full
blind volumes” would be prohibitively expensive, especially for any application
that requires real-time decision making. Even though our goal in this paper
is not necessarily real-time computation at this point, a full 3D reasoning of
occluded volumes would be undesirable as our target scenes are dynamic. We,
instead, aim to estimate 2D blind spots on the road. Dangerous traffic situations
are usually caused by unanticipated movements of dynamic objects (e.g ., bikes,
pedestrians, children, etc.) springing out from road areas invisible from the driver
(or the camera of the car). Once we have the 2D blind spots, we can draw
attention of the drivers by, for instance, extruding it perpendicularly to the
road for 3D warning. By focusing on 2D blind spot estimation, we eliminate the
need of explicit 3D geometric reasoning, which makes it particularly suitable for
autonomous driving and ADAS applications.

As depicted in Fig. 2, given a frame of a driving video, we define our blind
spots to be the road regions that are obstructed but become visible in the future.
This clearly excludes blind spots that never become visible in any frame in the
future, and thus the blind spots we compute and estimate are a subset of the
true blind spots. That said, they have a good coverage of the true blind spots,
as pedestrians have to always go through the T -frame blind spots or visible
road regions to come out in front of the vehicle. These T -frame blind spots can
be reliably computed from just ego-centric driving videos. Although we only
investigate the estimation of these blind spots from ego-centric driving videos
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T-Frame Blind Spots

It It+1 It+T

rt rt+1 rt+T
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Projection & Aggregation

Fig. 3. Overview of algorithmic steps for generating T -frame blind spots for arbitrary
driving video. Visible and invisible road maps are aggregated into the current frame
from the next T frames, from which the visible road region is subtracted to obtain the
T -frame blind spots for the current frame.

captured with regular perspective cameras, the wider the field of view, the better
the coverage would become.

Formally, given a frame It, we define its blind spots as pixels x ∈ ΩT
t corre-

sponding to regions on the road Ω that are occluded but become visible in the
next T frames {It+i|i = 1, . . . , T}. Our goal is to compute the set of pixels in
the blind spots Ωt as a binary mask of the image ω(x, t;T ) : R2 × R 7→ {0, 1}.
Later BlindSpotNet will be trained to approximate this function ω(x, t;T ). We
refer to the blind spots of this definition as T -frame blind spots.

As depicted in Fig. 3, we compute the blind spot map ω by first computing
and aggregating visible road maps at frames It:t+T and then eliminating the
visible road map at target frame It. For this, similar to Watson et al . [28], we
compute an aggregated road map s(x, t;T ) by forward warping the road pixels
from the next T frames {It+i|i = 1, . . . , T} to the target frame It. To perform
forward warping, we assume the camera intrinsics are known, the extrinsic pa-
rameter and the depth are estimated by a visual SLAM algorithm [26] and an
image-based depth estimation network [21], respectively.

Let r(x, t) denote the visible road region defined as a binary mask represent-
ing the union of the road and pavement areas estimated by a semantic segmenta-
tion as introduced by Watson et al . [28]. We first project the visible road regions
from It+i (i = 1, . . . , T ) to It as r

′(x, t+ i; t), and then aggregate them as

s(x, t;T ) = r′(x, t+ 1; t) ∨ r′(x, t+ 2; t) ∨ · · · ∨ r′(x, t+ T ; t) , (1)

where ∨ denotes the pixel-wise logical OR. As blind spots are by definition
invisible regions in frame It, the visible road region r(x, t) is subtracted from
s(x, t;T ) to obtain the final blind spots ω(x, t;T ) by

ω(x, t;T ) = s(x, t;T ) ∧ r̄(x, t) , (2)

where ∧ and ·̄ denote the pixel-wise logical AND and negation, respectively.
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visibility maskT frame blind spot
moving direction

Fig. 4. Visibility mask. Left: If the vehicle makes a turn, the blind spots straight ahead
across the intersection never become visible. Right: To allow networks estimate such
blind spots, we prepare a mask image to indicate the visible area for each frame.

Our method relies on three visual understanding tasks, namely semantic seg-
mentation, monocular depth estimation, and SLAM. Although existing methods
for these tasks achieve high accuracy, they can still suffer from slight errors. In
the transformation from r to r′, we use two such estimates, those of the camera
pose and the depth, whose errors can cause residuals of blind spots after Eq. (2).

We can rectify this with simple depth comparison. We first define aggregated
depth mask da

da(x, t;T ) =
1

M

T∑
i=1

r′(x, t+ i; t)d′(x, t+ i; t) M =

T∑
i=1

r′(x, t+ i; t) , (3)

where d′(x, t+ i; t) is a depth map of frame It+i projected onto frame It, which
is calculated in a similar way as calculation of r′(x, t+ i; t). M is the pixel-wise
count of visible road mask over T frames. When we compare the depth map d(x)
of frame It with the aggregated depth mask da, the depth difference is large in
the true blind spot region because true blind spots are occluded by foreground
objects. On the other hand, it is small in erroneous blind spot regions because
the compared depth values come from nearby pixels. Based on this observation,
we remove erroneous blind spots by setting ω(x, t;T ) = 0 for the pixel x that
satisfy |d(x)− da(x)| < ld. Here, ld is a threshold value determined empirically.

We may be left with small blind spots caused by, for instance, a shadow of
a tire. These small blind spots are not important for driving safety. We remove
these blind spots of less than 100 pixels from the final blind spot Ωt.

For building our RBS Dataset, we opt for MiDAS [21] as the monocular depth
estimator, OpenVSLAM [26] for SLAM, and Panoptic-DeepLab [6] for semantic
segmentation. The scale of the depth estimated by MiDAS is linearly aligned
with least squares fitting to the sparse 3D landmarks recovered by SLAM.

We use KITTI [9], BDD100k [31], and TITAN [18] datasets to build our RBS
Dataset. By excluding videos for which the linear correlation coefficient in the
MiDAS-to-SLAM depth alignment is less than 0.7, they provide 51, 62, and 118
videos, respectively. We obtain blind spot masks for approximately 51, 34, and
12 minutes of videos in total, respectively. The videos are resampled to 5 fps,
and we set T = 5 seconds for each video. We refer to them as KITTI-RBS,
BDD-RBS, and TITAN-RBS Datasets, respectively.
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Fig. 5. Overall architecture of BlindSpotNet. We leverage the fact that blind spot es-
timation bears similarity to semantic segmentation by adopting a light-weight network
trained with knowledge distillation from a semantic segmentation teacher network.

3.2 Visibility mask

T -frame blind spots clearly do not cover blind spots that do not become visible
through the video. For example, as illustrated in Fig. 4, consider a frame where
the vehicle is making a right turn. The blind spots straight ahead across the
intersection never become visible and hence are not included in the dataset,
while BlindSpotNet should identify them once trained. To disambiguate such
invisible regions from non-blind spots in training BSN, as shown in Fig. 4, we
generate a binary mask Vt called visibility mask for each frame in addition to
the blind spots Ωt.

We use semantic segmentation and the distance from the camera to define the
visibility mask Vt. For each pixel x, we first classify x as visible, if the semantic
segmentation label is “sky.” For non-sky pixels, we classify x as visible if the
minimum distance from the 3D point at distance d(x, t) behind x to the camera
is less than a certain threshold L. In our implementation, we set L = 16 meters.

4 BlindSpotNet

Now that we have (and can create limitless) abundant video data with per-frame
blind spot annotations, we can formulate 2D blind spot detection as a learning
problem. We derive a novel deep neural network for estimating blind spots in an
image of a road scene. We refer to this network as BlindSpotNet and train and
test it on our newly introduced RBS Dataset.

4.1 Network Architecture

As we saw in Sec. 3, blind spots are mainly determined by the scene composition
of objects and their ordering in 2D. As such, at a higher level, direct image-based
estimation of blind spots shares similarity in its task to semantic segmentation.
The task is, however, not necessarily easier, as it is 2D dense labeling but requires
implicit 3D reasoning. Nevertheless, the output is a binary map (or its probability
map), which suggests that a simpler network but with a similar representation
to semantic segmentation would be suitable for blind spot detection.
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Fig. 5 depicts the network architecture of BlindSpotNet. BlindSpotNet con-
sists of three components: a depth estimator D, a semantic segmentation teacher
network S, and a blind spot estimator B. Given an input image I of size
W×H×3, the depth estimator D estimates the depth map D of size W×H from
I. The blind spot estimator takes both the RGB image I and the estimated
depth map D as inputs and generates the blind spot map B = {b ∈ [0, 1]}.

The semantic segmentation network S serves as a teacher network to help
train the blind spot estimator B. The blind spot estimator B should be trained
to reason semantic information of the scene similar to semantic segmentation,
but its output is abstracted as simple as a single-channel map B. This implies
that training the blind spot estimator B only with the T -frame blind spots can
easily bypass the semantic reasoning of the scene and overfit. To mitigate this
shortcut, we introduce the semantic segmentation network S pretrained on road
scenes as a teacher and use its decoder output as a soft target of a corresponding
layer output in the blind spot estimator B.

4.2 Knowledge Distillation

Blind spot regions are highly correlated with the semantic structure of the scene.
For instance, blind spots can appear behind vehicles and buildings, but never
in the sky. The blind spot estimator B should thus be able to learn useful rep-
resentations from semantic segmentation networks for parsing road scenes. For
this, we distill knowledge from a pretrained semantic segmentation network to
our blind spot estimator B. Based on the work of Liu et al . [16], we transfer the
similarity between features at an intermediate layer of each network.

Suppose we subdivide the feature map of an intermediate layer of size W ′ ×
H ′ × C into a set of w′ × h′ patches. By denoting the spatial average of the
features in the ith patch by fi ∈ RC , we define the similarity of two patches

i and j by their cosine distance aij =
f⊤
i fj

∥fi∥∥fj∥ . Following Liu et al . [16], given

this pairwise similarity for patches in both the teacher semantic segmentation
network S and the student network, i.e., the blind spot estimator B, as aSij and

aBij , respectively, we introduce a pair-wise similarity distillation loss lKD as

lKD =
1

(w′ × h′)
2

∑
i∈R

∑
j∈R

(
aSij − aBij

)2
, (4)

where R = {1, 2, . . . , w′ × h′} denotes the entire set of patches. In our imple-
mentation, we opted for DeepLabV3+ [5] as the teacher network S.

4.3 Loss Function

In addition to the similarity distillation loss lKD in Eq. (4), we employ a binary
cross entropy loss lBCE between the output of the blind spot estimator B and
the T -frame blind spots given by our RBS Dataset as

lBCE = − 1

|V |
∑
x∈V

(ω(x) log b(x) + (1− ω(x)) log(1− b(x))) , (5)
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Table 1. Quantitative evaluation of RBS Datasets. The two numbers in each cell
indicate the recall and the false-negative rate w.r.t. the ground truth blind spot. The
results show that our T -frame blind spots approximate true blind spots well.

CARLA KITTI
Rec.↑ FN rate↓ Rec.↑ FN rate↓

T -frame BS-GT 0.372 0.013 N/A1

T -frame BS (ours) 0.297 0.015 0.169 0.056

where x denotes the pixels in the visibility mask V , ω(x) and b(x) denote the
T -frame blind spots and the estimated probabilities at pixel x. |V | is the total
number of the pixels in V . The total loss function L is defined as a weighted
sum of these two loss functions L = lBCE + λlKD, where λ is an empirically
determined weighting factor.

5 Experimental Results

We evaluate the validity of RBS Dataset and the effectiveness of BlindSpotNet
(BSN), qualitatively and quantitatively with a comprehensive set of experiments.

5.1 RBS Dataset Evaluation

We first validate our T -frame blind spots with synthetic data generated by
CARLA [7] and with real data from KITTI [9]. How well do they capture true
blind spots? We use 360◦ LiDAR scans to obtain ground-truth blind spots (BS-
GT). Note again that for real use such ground truth computation will be pro-
hibitively expensive and would require LiDAR. We also use the ground-truth
depth maps to compute T -frame blind spots without noise (T -frame BS-GT).
In computing BS-GT, we find road regions in LiDAR points by fitting the road
plane manually in 3D. For T -frame BS-GT, we used the ground truth semantic
labels. We compare the T -frame blind spots generated by our data generation al-
gorithm (T -frame BS) and T -frame BS-GT with BS-GT, and evaluate its quality
in terms of the recall and the false-negative rate. Tab. 1 and Fig. 6 show the re-
sults. Since BS-GT is defined by sparse LiDAR points while T -frame BS-GT and
T -frame BS use dense depth-maps, the precision and the false-positive (type-I
error) rate do not make sense. These results show that our T -frame blind spots
approximate the ground-truth blind spot well.

5.2 BlindSpotNet Evaluation

BlindSpotNet We use MiDAS [21] and DeepLabV3+ [5] as the depth esti-
mator D and the semantic segmentation subnetwork S, respectively. We use

1 T -frame BS-GT is not available since KITTI does not have ground truth semantic
segmentation for most of the frames.
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Fig. 6. Comparison of T -frame blind spot and “ground truth” obtained from LiDAR
data. Top-left and bottom-left figures show the ground truth and T -frame blind spots,
respectively. Right figure shows the 3D projection of ground truth (yellow) and T -frame
blind spots (red) to LiDAR scan (blue). The green cross indicates the camera position.

ResNet-18 and Atrous Spatial Pyramid Pooling [5] for the blind spot esti-
mator B following DeepLabV3+. BlindSpotNet is trained by Adam [13] with
β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8, and weight decay 5 × 10−4. The learning
rate is initialized to 0.001 and a polynomial scheduler is applied. The knowledge
distillation coefficient λ in Sec. 4.3 is fixed to 1.0.

We divided the 10,135 frames from KITTI-RBS into training, validation, and
test sets by 8 : 1 : 1, and the 8,872 frames from BDD-RBS into training and test
sets by 8 : 2. We used all the 2,655 frames from TITAN-RBS for evaluation only
since each video is too short (10 to 20 seconds) to be used for training.

Metrics Blind spot estimation is a binary segmentation problem. For each input
frame, our BlindSpotNet outputs the probability map of blind spots. We thresh-
old this probability map to obtain the final binary blind spot mask, and compare
it with the T -frame blind spots by IoU, recall, and precision. The threshold is
determined empirically for each dataset as it depends on the road scene. We
plan to learn this threshold as part of the network in future work. Notice that
our RBS Datasets include blind spots that become visible in T frames only. For
IoU, recall, and precision, we only consider pixels in the visibility mask.

Baselines As discussed earlier, our work is the first for image-based 2D blind spot
estimation, and there are no other existing methods to the best of our knowledge.
For comparison, we adapt state-of-the-art traversable region estimation [28],
2D vehicle/pedestrian/cyclist detection by semantic segmentation [5], and 3D
vehicle/pedestrian/cyclist detection [4] for 2D blind spot estimation as baselines
and refer to them as Traversable, Detection-2D , and Detection-3D , respectively.

For Traversable we use the hidden traversable regions, estimated by the orig-
inal implementation of Watson et al . [28], as blind spots. Detection-2D is a
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Table 2. Quantitative results on the test sets from KITTI-RBS, BDD-RBS, and
TITAN-RBS. The lines with “w/ KITTI-RBS” and “w/ BDD-RBS” report the re-
sults by the networks trained with KITTI-RBS and BDD-RBS Datasets, respectively.
These results show that depth estimation and knowledge distillation contribute inde-
pendently to the final accuracy, and our BSN successfully estimates blind spots across
different scenes (i.e., datasets).

KITTI-RBS BDD-RBS TITAN-RBS
Model IoU↑ Rec.↑ Prec.↑ IoU↑ Rec.↑ Prec.↑ IoU↑ Rec.↑ Prec.↑
Traversable based on [28] 0.176 0.462 0.222 0.088 0.198 0.136 0.135 0.303 0.196
Detection-2D based on [6] 0.129 0.581 0.142 0.184 0.652 0.204 0.142 0.435 0.182
Detection-3D based on [4] 0.182 0.368 0.265 0.059 0.067 0.316 0.048 0.057 0.216
BSN-D w/ KITTI-RBS 0.296 0.601 0.368 0.295 0.438 0.475 0.250 0.474 0.345
BSN-KD w/ KITTI-RBS 0.305 0.646 0.367 0.225 0.249 0.700 0.168 0.249 0.342
BSN (Ours) w/ KITTI-RBS 0.330 0.563 0.444 0.283 0.349 0.599 0.187 0.280 0.360
BSN-D w/ BDD-RBS 0.270 0.629 0.321 0.360 0.478 0.593 0.244 0.420 0.367
BSN-KD w/ BDD-RBS 0.187 0.210 0.633 0.350 0.443 0.624 0.253 0.529 0.326
BSN (Ours) w/ BDD-RBS 0.314 0.599 0.398 0.364 0.533 0.535 0.257 0.554 0.324

simple baseline that detects vehicle, pedestrian, and cyclist regions estimated by
DeepLabV3+ [5] as blind spots. Detection-3D utilizes a single-image 3D detec-
tion of vehicles, pedestrians, and cyclists by Brazil et al . [4]. Given their detected
3D bounding boxes, Detection-3D returns the intersection of the projection of
their far-side faces and the results by Detection-2D as blind spots.

We also compare with BSN without depth estimation (BSN-D), and BSN
without knowledge distillation (BSN-KD) for ablation studies. In BSN-D, the
depth estimator D is removed from BSN, and the blind spot estimator B is mod-
ified to take the original RGB image directly. BSN-KD disables the knowledge
distillation loss by setting λ = 0 in Sec. 4.3 in BSN.

Quantitative Evaluations Tab. 2 shows the results on the test sets from
KITTI-RBS, BDD-RBS, and TITAN-RBS Datasets. The lines with “w/ KITTI-
RBS” and “w/ BDD-RBS” indicate the results of the networks trained with
KITTI-RBS and BDD-RBS, respectively. Each network, after pre-training, was
fine-tuned using 20% of the training data of the target dataset to absorb scene
biases. It is worth mentioning that this fine-tuning is closer to self-supervision
as the T -frame blind spots can be automatically computed without any external
supervision for arbitrary videos. As such, BlindSpotNet can be applied to any
driving video without suffering from domain gaps, as long as a small amount
of video can be acquired before running BlindSpotNet for inference. The 20%
training data usage of the target scene simulates such a scenario. Note that none
of the test data were used and this fine-tuning was not done for TITAN-RBS.

BSN outperforms Traversable, Detection-2D , and Detection-3D . These re-
sults show that blind spot estimation cannot be achieved by simply estimat-
ing footprint or “behind-the-vehicle/pedestrian/cyclist” regions. The full BSN
also performs better than BSN-D and BSN-KD. This suggests that both the
depth estimator and knowledge distillation contribute to its performance inde-
pendently. Furthermore, the performance of BSN w/ KITTI-RBS on BDD-RBS
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Fig. 7. Blind spot estimation results. BlindSpotNet successfully achieves high preci-
sion and recall for complex road scenes (KITTI, BDD, and TITAN from left to right)
by estimating nuanced blind spots caused by parked and moving cars, intersections,
buildings, poles, gates, etc. BlindSpotNet also estimates intersection blind spots that
are even not in the “ground-truth” T -frame blind spots. This demonstrates the effec-
tiveness of the visibility mask and the advantage of BlindSpotNet of being able to train
on a diverse set of scenes thanks to the fact that T -frame blind spots can be easily
computed on arbitrary driving videos.

and TITAN-RBS and that of BSN w/ BDD-RBS on KITTI-RBS and TITAN-
RBS demonstrate the ability of BSN to generalize across datasets.

Qualitative Evaluations Fig. 7 shows blind spot estimation results for the
test sets. Compared with baseline methods, our method estimates the complex
blind spots arising in these everyday road scenes with high accuracy. It is worth
noting that BlindSpotNet correctly estimates the left and right blind spots in the
left column example, even though the “ground-truth” T -frame blind spots do
not capture them due to the visibility mask. These results clearly demonstrate
the effectiveness of the visibility mask and the training on diverse road scenes
whose T -frame blind spots can be automatically computed. BlindSpotNet can be
trained on arbitrary road scenes as long as T -frame blind spots can be computed,
i.e., SLAM, semantic segmentation, and depth estimation can be applied. In
this sense, it is a self-supervised method. Fig. 8 shows a failure case example.
By definition of T -frame blind spots, BlindSpotNet cannot estimate intersection
blind spots in videos that do not have any turns. We plan to explore the use of
wider perspective videos, including full panoramic views, to mitigate this issue.

Network Architecture Evaluation We compare large/medium-sized blind
spot estimators as well as a simple U-Net [22] baseline with our small-sized
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Fig. 8. Failure example. Left: T -frame blind spot (“ground truth”) from a frame in
BDD-RBS. Right: Blind spot estimation results from BlindSpotNet trained on BDD-
RBS. Due to the bias of BDD-RBS, which lacks left and right turns at intersections,
BSN cannot estimate the blind spots caused by the intersection. We plan to address
these issues by employing a panoramic driving video for pre-training.

Table 3. Network architecture comparison. Our model achieves comparable perfor-
mance to larger models and its frame-rate is promising for realtime processing.

Architecture IoU Recall Precision # of params GMACS FPS

U-Net based [22] 0.289 0.484 0.417 17.3M 280.2 139.9
Small (ours) 0.330 0.563 0.444 18.1M 47.1 37.5
Medium 0.315 0.478 0.482 32.0M 93.0 19.5
Large 0.337 0.508 0.500 59.3M 160.9 11.3

(light-weight) blind spot estimator. The differences between the large/medium-
sized blind spot estimators and the small-sized one are backbone, channel size,
and the number of decoder layers. The backbones of the large/medium-sized ones
are ResNet101 and ResNet50, respectively. Tab. 3 lists the IoU, recall, precision,
the number of the parameters, the computational complexity in GMACS, and
the inference speed with a single NVIDIA TITAN V 12GB. The results show
that our model achieves comparable performance to larger models with much
smaller cost and runs sufficiently fast for real-time use.

6 Conclusion

We introduced a novel computer vision task for road scene understanding, namely
2D blind spot estimation. We tackle this challenging and critical problem for safe
driving by introducing the first comprehensive dataset (RBS Dataset) and an
end-to-end learnable network which we refer to as BlindSpotNet. By defining 2D
blind spots as road regions that are invisible from the current viewpoint but be-
come visible in the future, we showed that we can automatically compute them
for arbitrary driving videos, which in turn enables learning to detect them with
a simple neural network trained with knowledge distillation from a pre-trained
semantic segmentation network. We believe these results offer a promising means
for ensuring safer manual and autonomous driving and open new approaches to
extending self-driving and ADAS with proactive visual perception.
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