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Evaluation of head/body orientation estimation Even
though head and body orientation estimation is not our end
goal, the proposed vMF network performs well as a stan-
dalone head and body orientation estimator. This can be at-
tributed to the joint estimation architecture of head and body
orientations, the use of body velocity, and the fact that they
focus on the simpler tasks of 3D orientation estimation, in
contrast to full head and body pose estimation (i.e., we only
estimate the yaw and pitch of the head orientation, and all
three angles but for the whole body as body orientation).

We evaluated the head and body network on the valida-
tion set of the AGORA dataset [3]. We compare with the
state-of-the art head pose estimation model, WHENet [5],
which estimates the full head orientation (pitch, yaw, and
roll) unlike our method which does not recover the roll as it
is not necessary for gaze estimation. As far as we know, our
model is the only model that can handle head poses with
360° degrees of yaw. The top rows in Tab. S1 show the
MAE computed on the estimated pitch and yaw. Our model
shows slightly better accuracy than WHENet.

We also tested our vMF network for body orientation es-
timation as a standalone estimator. We compare with the
state-of-the-art 3D pose estimation model (SPIN [2]). For
SPIN, we defined the body orientation as the outer product
of the line connecting both shoulders and the line connect-
ing the neck and the pelvis. As bottom rows in Tab. S1
show, our vMF network achieves better accuracy for whole
body orientation estimation.

These results demonstrate the accuracy of our head and
body orientation estimates. They are at least comparable
to state-of-the-art methods and sufficient for estimating the
gaze. These head and body orientation estimates may find
applications in other tasks beyond gaze estimation.

Uncertainties We examine the relationship between the
estimated uncertainty and angular error. We use the recip-
rocal of estimated concentration (x) as a measure of un-
certainty. We compute the angular error and the uncer-

Method MAE
Fixed bias 85.5
Head WHENet [5] 20.1
Ours (Head) 17.6
Fixed bias 90.0
Body SPIN [2] 49.8
Ours (Body) 17.2

Table S1. Comparison of head and body orientation estimation on
the AGORA dataset. 3D mean angular errors (MAEs) are shown.
Albeit only for the pitch and yaw for the head orientation and all
three angles but only for the whole body (not its full pose), our
vMF networks show slightly better accuracy when compared with
state-of-the-art full head pose and body pose estimation methods.
These results demonstrate the advantage of limiting the estimation
to only those angles necessary for gaze estimation.

tainty estimate for each test sample, and evaluate the mean
uncertainty and angular errors for every 5 degrees in the
ascending order of angular errors. As clearly shown in
Fig. S1, there is a positive correlation between the estimated
uncertainty and actual estimation errors in gaze directions
(r = 0.26). These values would be useful for downstream
tasks that use our gaze estimates as we demonstrate with
our multiview extensions.

Effects of camera distance between camera and person
To examine how camera distance affects the performance of
our model, we evaluated estimation accuracy with respect to
the camera distance. The estimation error was the smallest
at 12.1° when the person is closest to the camera (below 1
m), and the largest at 29.0° when the person is farthest from
the camera (above 7 m). For a typical in-room distance of 3
to 5 m, the mean error was 22.6°.

Annotation acquisition from the AGORA dataset
When training, we compute the head and body orientations
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Figure S1. Estimated uncertainty versus angular error. The uncer-
tainty estimates clearly positively correlate with the angular errors,
suggesting that they faithfully quantify gaze direction uncertainty
for downstream tasks.

from the 3D keypoints provided in the AGORA dataset and
use them as ground truth. We define the body orientation as
B = [ xl,,, where [, is the line connecting the left and right
shoulders, and ,,, is the line along the torso. Specifically, I
and [, are computed by Iy = T,5 — Tis, Ly = Ty — Tinp
where x,, Zis, Tn, Tmh are the 3D coordinates of the right
and left shoulders, neck, and mid-hip, respectively.

The head orientations for training are obtained from the
3D coordinates of facial keypoints following [5]. First,
a reference camera matrix (R.¢) and reference keypoints
(wret) are manually defined so that the camera looks at the
face from the front. Then, the reference camera matrix is
transformed so that the reference keypoints align with the
actual keypoints, which produces the transformed camera
matrix (Ryirt). This Ry 1S a virtual camera matrix that is
looking at the front of the face. Finally, a rigid transform
(T') from Ry to the actual camera matrix (Ryea)) iS com-
puted. The head orientation is defined by H = T-[0, 0, —1].

Implementation details Given an input sequence of im-
ages, we use OpenPose [ 1] to detect 2D keypoints of a per-
son, and crop the images so that they contain all head or
body keypoints. For the backbone, we use EfficientNet-
b0 [4] up to its final average pooling layer, and obtain its
output feature of size = 1280 x 1. The extracted features
from head and body images are concatenated to produce a
vector of size = 2560 x 1 which is input to a GRU layer. The
hidden size of the LSTM layer is 128. For the gaze estima-
tion module, we use bidirectional LSTM with two layers of
hidden size = 512. We use 7 video frames as inputs.

Runtime analysis Inference for 1 frame was 5.5 ms (180
fps) on a NVIDIA GTX 1080Ti GPU, Inference including
head/body orientation estimation and gaze estimation for
1 frame takes about 5.5 ms (180 fps) on a NVIDIA GTX
1080Ti GPU. For this, we believe the computational speed
is sufficient for real-time usage.
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