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Abstract

We introduce a novel method and dataset for 3D gaze
estimation of a freely moving person from a distance, typi-
cally in surveillance views. Eyes cannot be clearly seen in
such cases due to occlusion and lacking resolution. Exist-
ing gaze estimation methods suffer or fall back to approxi-
mating gaze with head pose as they primarily rely on clear,
close-up views of the eyes. Our key idea is to instead lever-
age the intrinsic gaze, head, and body coordination of peo-
ple. Our method formulates gaze estimation as Bayesian
prediction given temporal estimates of head and body ori-
entations which can be reliably estimated from a far. We
model the head and body orientation likelihoods and the
conditional prior of gaze direction on those with separate
neural networks which are then cascaded to output the 3D
gaze direction. We introduce an extensive new dataset that
consists of surveillance videos annotated with 3D gaze di-
rections captured in 5 indoor and outdoor scenes. Experi-
mental results on this and other datasets validate the accu-
racy of our method and demonstrate that gaze can be accu-
rately estimated from a typical surveillance distance even
when the person’s face is not visible to the camera.

1. Introduction

What if we could continuously trace the gaze direction of
a person from a distance, for instance, with cameras fixed to
room and street corners? If we can, the practicality of gaze
estimation will be significantly increased and its utility will
be greatly expanded. It will allow us to use already installed
surveillance cameras or those monitoring elderlies to follow
the dynamically changing gaze of a person, which will let
us gauge much deeper into the person’s internal state not
just her whereabouts.

Despite the large advances in gaze estimation research,
especially by leveraging deep neural networks [9,16,32,34,
35], most appearance-based methods cannot be applied to
videos taken from a distance. This is because they inher-

Figure 1. We introduce a novel method for estimating the gaze di-
rection of people (orange arrows) in videos captured from afar by
leveraging the temporal coordination of the gaze, head, and body
orientations in a Bayesian framework. Our method does not rely
on the appearance of the eyes, and can tell the gaze direction even
when the person is facing away from the camera. We introduce a
new dataset for gaze estimation in the wild with ground truth anno-
tation. Note that the markers, eye tracker, and body worn cameras
are only used for ground truth annotation.

ently require a clear and close-up view of the eyes. For in-
stance, most leading methods assume a person sufficiently
close to the camera (ranging from 10cm to 1m), or they are
only applicable to the frontal view (up to 90°) of a person.
We target typical surveillance and monitoring views which
may range from a few meters to 10m.

The few methods that demonstrate gaze estimation from
surveillance images approximate the gaze with the head or
body orientation, which is too crude for most downstream
tasks [25, 26]. A recent method [6] does estimate gaze di-
rection from surveillance cameras by regressing it from hu-
man body keypoints detected with OpenPose. The method,
however, only estimates gaze in 2D (i.e., in the image plane)
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and it is validated only on a limited number of surveillance
videos (1 scene with 2 cameras).

In this paper, we introduce a 3D gaze estimation method
for videos of freely moving people taken from a distance,
for typical room-sized surveillance scenarios. Our key idea
is to fully leverage the temporal coordination of the gaze,
head, and body orientations of a person to estimate the per-
son’s dynamically changing 3D gaze direction just from the
head and body orientations which can be estimated reliably
from afar. We show that we can estimate the gaze direc-
tion from a temporal sequence of head and body orientation
estimates even without seeing the eyes at all.

We formulate gaze estimation as Bayesian prediction
that capitalizes on a learned angular-temporal prior of the
gaze direction conditioned on the head and body orienta-
tions. The gaze, head, and body angular orientations have
strong but complex temporal dependencies. For example,
when we look for something in the room, our eyes first
move into the desired direction, and then our head moves
to follow the eyes. When our head is following the saccade,
our eyes move in the opposite direction to stabilize the im-
age on the retina during head movement. These seemingly
simple angular-temporal relationships are cascaded one af-
ter another and temporally blended together resulting in a
complex dependency that can no longer be captured with
a simple analytical model. We model this complex gaze-
head-body coordination with a cascade of two learned deep
networks that encode the head and body orientation like-
lihoods and gaze orientation conditioned on them, respec-
tively, to leverage their rich dependency to infer the gaze
direction just from the head and body orientations.

Given a sequence of video frames of a person captured
at a distance, we first estimate the head and body orienta-
tions by devising a network that uses both the body appear-
ance and 2D trajectory. These orientations are estimated
as von Mises-Fisher distributions to canonically represent
their uncertainties. These head and body orientation likeli-
hoods are then multiplied with a learned conditional prior of
the gaze direction given the head and body orientations that
encode their natural temporal coordination. We model this
conditional prior with a network that encodes the tempo-
ral dependency of gaze direction in each frame on past and
future head and body orientations. Optionally, we extend
our method to opportunistically leverage the eye appear-
ance when they happen to be visible and multiview head and
body appearance when we have access to multiple cameras.

We introduce a new dataset of annotated surveillance
videos of freely moving people taken from a distance in
both indoor and outdoor scenes. The videos are captured
with multiple cameras placed in eight different daily envi-
ronments. People in the videos undergo large pose varia-
tions and are frequently occluded by various environmental
factors. Most important, their eyes are mostly not clearly

visible as is often the case in surveillance videos. We intro-
duce the first rigorously annotated dataset of 3D gaze direc-
tions of freely moving people captured from afar. Through
extensive evaluation using this new dataset, we show that
our method enables accurate 3D gaze estimation from afar.
We also demonstrate that our method generalizes well to
different scenes and camera poses. All data and code can
be downloaded from our project web page.

2. Related works
Gaze Estimation Models Gaze estimation methods
can be roughly categorized into geometry-based and
appearance-based. Geometry-based methods use 3D eye
models to exploit geometric or optical characteristics of the
eye [12, 14, 19, 36]. In exchange for high accuracy, these
methods usually require detailed information of the eyes,
which often necessitates hardware eye trackers. In contrast,
appearance-based methods directly estimate the gaze direc-
tion from images of eyes. Recent methods often use deep
neural networks to learn this mapping, and achieve high
accuracies [9, 32–35]. These methods, however, naturally
require a close-up frontal view of the target face or eyes,
which are not available in images and videos taken from
a distance (e.g., more than a meter). Recently, Gaze360
[16] created a large-scale dataset that contains head poses
with 360◦ of yaw, and showed that a model trained on
their dataset can estimate gaze even when the person is fac-
ing backward. Although Gaze360 contains diverse appear-
ances, their dataset only contains humans standing still and
limited head poses in terms of pitch and roll. In contrast, our
dataset is of freely moving people. Our dataset also contains
images of people with a wide, natural variety of head poses
reflecting realistic surveillance and monitoring scenarios.

Past methods for gaze estimation from surveillance im-
ages, in which eyes are basically not clearly or not at all
visible, typically use head orientation as a surrogate of gaze
direction [25, 26]. These methods are robust to low image
quality but the head orientation is rarely the true gaze direc-
tion. Dias et al. used facial keypoints to estimate 2D gaze
in still images, and evaluated the model with their dataset
of surveillance images manually annotated with 2D gaze di-
rections [6]. In contrast, we estimate dynamically changing
3D gaze direction in video. Gaze direction recovered in 3D
has wide utility in down stream applications as it allows 3D
reasoning of a person’s attention in the environment.
Gaze, Head, and Body Relationship. Head and eye co-
ordination has been studied extensively [1, 27, 31]. A linear
relationship between gaze and head orientations can be ob-
served, for example, during watching movies [7] or daily
activities such as tea making [18]. Vestibulo-Ocular Re-
flex (VOR) characterizes the coordinated temporal move-
ments of them; the eye moves in the opposite direction when
the head is moving to fixate the retinal image [1]. Various



research have studied the relation between gaze and body
as well as gaze and head orientations [8, 18]. Yamazoe et
al. [30] reported that a linear relationship, similar to that
of gaze and head orientations, was observed between the
gaze and body orientations during free walking. Murakami
et al. recently showed that the gaze direction can be esti-
mated from head and body orientations when their true di-
rections are known using a simple regression model [20],
which corroborates our intuition. Estimating gaze in actual
surveillance views without known head and body orienta-
tions, however, requires a significant leap, which we make
by seamlessly integrating learned angular-temporal relation
of the complex eye-head-body coordination in a canonical
Bayesian framework that can be learned end-to-end. Our
method also models and propagates estimation uncertain-
ties in a principled manner.

Head and Body Orientation Estimation. Early head
pose estimation methods used facial landmarks to align a
geometric template [3]. Recent methods rely on deep neu-
ral networks and large image databases to directly estimate
the orientation of the head from its appearance [25]. Zhou
and Gregson [37] show that head pose can be estimated even
when the subjects are looking away from the camera. These
methods, however, can suffer from gimbal lock and are not
suitable for images with extreme head or camera poses. We
deal with this problem by estimating only the yaw and pitch
of head orientation, since the range of roll is relatively small
and hardly affects gaze estimation.

Human body orientation estimation has been widely
studied particularly for behavior analysis such as movement
prediction. A large body of work has demonstrated accu-
rate 2D body orientation estimation from images [5,13,23].
As with other tasks, recent methods greatly improve the ac-
curacy by using deep neural networks to directly estimate
the orientation of the body from its appearance. For exam-
ple, Wu et al. annotated 2D body orientations in 55K im-
ages from the COCO dataset, and showed that their method
generalizes well across different camera poses and back-
grounds [29]. Two-dimensional body orientation is, how-
ever, insufficient for us to estimate 3D gaze as the pitch can
also vary greatly. For this, we estimate 3D body orientation
in the same manner as we estimate head orientations.

3. Bayesian Gaze from Head and Body

Our goal is to estimate the gaze direction of a person
without relying on clear appearance of her eyes but instead
on the coordinated head and body movements. Figure 2
shows an overview of our framework. We formulate gaze
estimation as Bayesian prediction where we estimate the
likelihoods of head and body orientations given an input im-
age, and then multiply a learned conditional temporal prior
of gaze direction by cascading two neural networks.

3.1. Head and Body Network

We first estimate head and body orientations from an in-
put video. Instead of having independent networks for each,
we build a network that simultaneously estimates head and
body orientations from whole body images to reduce the
computational cost. The network also takes the binary mask
of the head bounding box, which is used to determine the
head position in the image. In addition, the network exploits
the in-image 2D velocity of the person to better estimate the
body orientation. The head bounding box and the velocity
of the person are normalized with respect to the height of
the person in the image.

Figure 2 left shows the architecture of the head and body
orientation estimation network. First, the network processes
multiple frames of whole body images to extract shared
features (Shared conv). The mask of the head position is
downsampled by an average pooling layer so that it aligns
the size of the feature map. The shared features and the
head mask are multiplied together and input to convolu-
tional layers (Head Conv), or are directly input to another
set of convolutional layers (Body Conv). The output of
Head Conv and Body Conv layers and the body velocity are
concatenated and fed into an LSTM layer to jointly estimate
the head and body orientations. For the backbone network,
we used the first two convolutional layers of EfficientNet-
b0 [28] for Shared Conv, and later layers of EfficientNet-b0
for Head Conv and Body Conv layers.

To canonically model uncertainties, we estimate head
and body orientations as 3D von Mises-Fisher (vMF) distri-
butions. A vMF distribution is a spherical directional statis-
tics distribution represented by two parameters {µ, κ}

vMF(x;µ, κ) =
κ

4π sinhκ
exp

[
κxTµ

]
, (1)

where µ is a 3D unit vector that represents the mean direc-
tion, and κ is the concentration parameter (the larger κ, the
higher confidence). This vMF distribution gives us a natural
interpretation of the directional estimate and its uncertainty.

To constrain the output to become a valid vMF distribu-
tion, we introduce a final layer to the network by extend-
ing the method of [2, 22] to 3D. This layer consists of two
branches to estimate the mean direction (µ) and the concen-
tration (κ), respectively. The mean direction branch (fµ)
makes the output a unit vector by performing normalization
on a fully connected layer and the concentration branch (fκ)
makes the output positive with a Softplus function

fµ(x;W, b) =
Wx+ b

∥Wx+ b∥
=

 sinϕ cos θ
sinϕ sin θ
cosϕ

 = µ̂ (2)

fκ(x;W, b) = Softplus(Wx + b) = κ̂ , (3)

where x, W , b are the input, weight, and bias, respectively.
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Figure 2. Model architecture. The head and body estimation network receives whole body images, head position, and body velocity, and
outputs directional statistics (vMF) distributions as their orientation estimates. Both distributions for multiple frames are fed into the gaze
estimation network that outputs the sequence of gaze direction estimates as vMF distributions. Optionally, we add a network that can
opportunistically estimate the gaze direction directly from the face appearance. The estimated gaze directions are integrated to produce the
final gaze estimate as vMF distributions.

We learn the vMF network parameters with maximum
likelihood estimation. For this, we define the loss function
as the negative log-likelihood of the vMF distribution

LvMF = − ln κ̂+ ln sinh κ̂− κ̂µT µ̂ . (4)

We optimize both the direction (µ̂) and the concentration
(κ̂) with this loss while alternatingly fixing each other.

We train the vMF network using a 3D human pose
dataset. In particular, we use the training set of the AGORA
dataset [21], which contains realistic human models placed
in various rendered 3D scenes. To deal with low image res-
olution, we randomly reduce the resolution of input images
between ×0.1 to ×0.9. Please see the supplemental mate-
rial for visualization.

3.2. Head–Body Conditional Temporal Gaze Prior

The second step of our Bayesian formulation is to esti-
mate the sequence of gaze directions from the distributions
of estimated head and body orientations. That is, given the
head and body orientation likelihoods, we now want to mul-
tiply the conditional temporal prior of the gaze direction
given those orientations. Our key idea is to learn the com-
plex angular-temporal dependency between gaze and head,
and gaze and body orientations with a recurrent neural net-
work. Note that it is a temporal prior, not an instantaneous
static one, that embodies the gaze coordination with the
head and the body as a dynamically changing system. For
this, we use a bidirectional LSTM which consists of two
bidirectional LSTM layers and a final layer to output the
parameters of a vMF distribution. It takes head and body

orientation estimates as inputs, and outputs the parameters
of the gaze vMF distribution (Fig. 2 right).

Another key idea is to modulate the estimated head and
body orientations by their estimated concentrations, which
lets us deal with highly uncertain situations such as when ei-
ther the head or the chest is not observable. For this, before
inputting the head and body orientations, we modulate them
with their estimated uncertainty to make our model robust to
occlusions. The weighted direction of body κb(µb

x, µ
b
y, µ

b
z)

and head κh(µh
x, µ

h
y , µ

h
z ) are concatenated to produce a 6D

vector and input to the bidirectional LSTM model.

3.3. Opportunistic Eye Appearance Integration

When a freely moving person is seen from afar, e.g., in
a surveillance view, the eyes are rarely (in our dataset, only
less than 6% of all the frames) clearly visible. Nevertheless,
when they are visible, we may leverage their appearance.
For this, we extend our framework to integrate (but not rely
on) the eye appearances.

As depicted in the upper part of Fig. 2, we add a set of
convolutional layers that are the same as the Head Conv
layer but directly estimates gaze direction from the appear-
ance of the eyes. The gaze direction estimated from eye ap-
pearance and from gaze-head-body coordination are com-
bined by weighting the estimated directions with their as-
sociated uncertainties. This enables us to exploit eye ap-
pearance only when the associated uncertainty is low, i.e.,
opportunistically when the eyes are clearly visible.



3.4. Multi-view Gaze Estimation

Multiple surveillance or monitoring cameras are often
installed in a single location. In such cases, we may op-
portunistically leverage the multiview observations to gain
further gaze estimation accuracy. We propose two exten-
sions for integrating multiview video feeds.

The difficulty of gaze estimation varies depending on the
appearance of the person in each camera. For example, the
person may be clearly visible from one of the cameras but
occluded from another. When occluded, the estimated gaze
has low certainty. We therefore combine the estimated gaze
directions from each view with their associated uncertain-
ties after converting them into the world coordinate. This is
naturally done by maximizing the sum of the log likelihoods
of the vMF distributions

µ = argmaxµ
[
Σi{− ln κ̂i + ln sinh κ̂i − κ̂iµ

T µ̂i}
]

(5)

=
r

∥r∥
, r = Σiκ̂iµ̂i , (6)

where i denotes the camera index.
In addition, we also test the use of 3D body velocity of

the person in the head and body network. We obtain the
3D position of the body center by triangulating the 2D body
centers from the multiple views, and compute the 3D body
velocity from them. We input the 3D velocity instead of
the 2D velocity to our head and body network and integrate
the head and body orientations from multiple cameras by
weighted averaging. The gaze direction is estimated from
the same network as introduced in Sec. 3.2.

4. Gaze from Afar Dataset
Study on gaze estimation from afar, particularly from

typical surveillance views, necessitates a thorough dataset
of videos capturing people in their natural settings with var-
ious postures but with frame-wise annotation of their gaze
directions. In particular, videos of people freely roaming
around in daily environments would be preferable. More-
over, we are interested in 3D gaze estimation, not just 2D
estimates that would be view-dependent. Previous gaze
datasets [9, 10, 16, 17, 35] contain only close-up images of
faces or images of people standing still. Although a surveil-
lance image dataset [6] for gaze estimation has been intro-
duced in the past, it only contains 1 scene with 2 cameras
with manually annotated 2D gaze directions.

We introduce Gaze from Afar (GAFA) Dataset which
contains videos of freely moving people taken in 5 differ-
ent daily environments including a kitchen, library, labo-
ratory, living room, and courtyard. In contrast to previous
datasets, our dataset contains long-term rich gaze behaviors
guided by different environments, and surveillance videos
that have challenging head poses (e.g., back view or high
pitch), which is typical of people in unconstrained settings.
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Figure 3. Distribution of 3D gaze directions in GAFA dataset
shown with Mollweide projection. A wide range of gaze direc-
tions are uniformly captured in the dataset.

It consists of 882,000 frames of video that capture various
gaze behaviors. We automatically annotated them with ac-
curate 3D gaze directions as well as head and body orienta-
tions. Our dataset is the first publicly available dataset of its
kind and can serve as a common platform for advancing 3D
gaze estimation in the wild.

We set up our data collection to capture natural gaze be-
havior in daily environments. We chose five different envi-
ronments for our recordings, and asked participants to freely
walk around in the environments and to look for objects
in accord with verbal instructions. We chose target objects
that are commonplace in each environment. The behavior
of participants during the experiment was recorded with 3
to 9 cameras positioned at high places in each environment.
The distance between the camera and the participants varies
from 50 cm to 7 m, where the size of the person’s head re-
gion ranges from about 240× 240 to 10× 10 pixels.

We used wearable cameras to automatically compute
ground-truth gaze, head, and body orientations for each
frame. Each participant wore eye-tracking glasses (Pupil
Core [15]). The glasses are minimally visible as they only
have an upper frame. They have two infrared eye cameras
that capture binocular gaze direction. They also have a cam-
era pointing outwards which we used to compute the head
orientation. Participants also wore a camera (GoPro HERO
7) on their chests to obtain body orientation.

The ground-truth head and body orientations were ob-
tained by using an AR marker-based positioning system
(ArUco) [11, 24] from videos of the eye-tracking glasses’
outward pointing camera and the chest camera, respectively.
Thirty to fifty AR markers were placed at various locations
in each environment. All AR markers in the environment
were scanned beforehand to calculate their 3D positions in
the world coordinate system. We obtained head and body
orientations by solving a PnP problem from videos taken
with head- and body-mounted cameras. The gaze direction
relative to the head pose was obtained by the eye tracker and
was transformed into the world coordinate system.

We collected videos from 17 sessions of 8 subjects. The



GAFA dataset contains 882K frames in total (789K for
training and 93K for testing). To evaluate the generalizabil-
ity across subjects, we excluded data from 3 participants
for testing, whose data are never used in the training set.
Figure 3 shows the distribution of the gaze direction in the
camera coordinate. The yaw evenly spreads out over 360◦

degrees, which clearly shows that the GAFA dataset con-
tains wide range of head poses including back-views.

5. Experimental Results

To our knowledge, our method is the first to realize 3D
gaze estimation from surveillance views that works even
when the eyes are not visible. There are no other methods
that we can directly compare with nor are there any other
dataset than our GAFA dataset that can be used to fully
examine the accuracy of our and existing gaze estimation
models in the expected context (e.g., surveillance views of
people with 3D gaze annotations).

We thoroughly evaluate our method and compare it
against existing methods with a number of carefully de-
signed experiments. First, to evaluate how well our and
existing gaze estimation methods work in realistic surveil-
lance videos, we train and test these models with our GAFA
dataset. We conduct an ablation study to examine the va-
lidity of the key components of our method, in terms of the
effectiveness of each architectural component.

Next, we perform cross-dataset evaluation on the
MoDiPro dataset [6] which contains surveillance videos of
freely moving people in a post-hospitalization facility. Al-
though the MoDiPro dataset contains only one scene with
two cameras and only manually annotated 2D gaze anno-
tations, we use it to examine how well our method trained
with other datasets works on real surveillance videos. Note
that we cannot use the MoDiPro dataset for training our
method as the dataset only contains 2D gaze annotations.

Finally, we examine the effectiveness of our optional in-
tegration of eye appearance and multiview cameras on the
GAFA dataset. We also include quantitative validation of
estimated uncertainty and evaluation of our head and body
orientation estimates in the supplementary materials.

Models for comparison. We experimentally compare the
accuracy of representative gaze estimation methods with
ours. As far as we know, there are few methods applica-
ble to surveillance videos.

The method by Dias et al. [6] estimates 2D gaze in the
image plane from facial keypoints detected by OpenPose
[4]. We also compare with two appearance-based method.
Gaze360 [16] takes successive whole head images as in-
put and outputs the 3D gaze direction. Note that, in con-
trast, our method estimates gaze from head and body ori-
entations, not appearance. X-Gaze [32] takes face images
as input. X-Gaze assumes high-resolution facial images as

input, and thus is fundamentally not applicable to gaze es-
timation from afar. For fair comparison, we also train them
on back-facing images in addition to regular frontal-views
when fine-tuning. As a simple baseline, we compute the
mean gaze direction in the training set, and evaluate the
angular errors (MAEs) when that dataset mean is used as
the gaze estimate in the test set (Fixed bias). This baseline
shows the lower bound of the estimation accuracy.

For our models, we tested four variations: the model us-
ing temporal head-body coordination to estimate gaze di-
rection (Ours), opportunistic use of eye appearances (Ours
+ Face), multiview integration by weight averaging (Ours
Multiview-WA), and multiview integration using 3D tra-
jectory (Ours Multiview-3DTraj).

We also tested our model with different training strate-
gies. We either trained our model on GAFA dataset in an
end-to-end manner, or separately trained the head and body
network with the AGORA Dataset and trained the Gaze
LSTM network with the GAFA dataset. Throughout all ex-
periments, each model was trained with Adam with learning
rate = 10−4 and batch size = 32.

Results on the GAFA dataset To test our method on re-
alistic, if not truly real, surveillance videos, we first eval-
uate the accuracy on our GAFA dataset. The input video
is rescaled to 480p so that the quality of images matches
typical surveillance images. Table 1 shows the mean angu-
lar error (MAE) in 3D and 2D for each scene. Our method
achieves significantly higher accuracy compared with Dias
et al.’s method. Because the number of video frames with
clear eye appearances is limited, appearance-based mod-
els (Gaze 360 and X-Gaze) perform worse. Among the
5 scenes, Office has the largest space in which subjects
tend to walk without stopping exhibiting natural gaze-head-
body coordination, where our method shows higher accu-
racy. Accuracy becomes low in LR and outdoor scenes,
which contain furniture or trees that cause frequent occlu-
sions. These results demonstrate the effectiveness of our
method, i.e., estimating gaze just from the head and body
orientations which can be robustly estimated from surveil-
lance views by leveraging the angular-temporal dependency
of gaze-head-body orientations.

The second row of Tab. 1 shows the results of the four
variations of ablation study. “No temporal” has the same
architecture as our proposed model, but receives only one
input frame, thus the model does not consider the tempo-
ral relationship of gaze-head-body orientations. In “No un-
cert.,” the bidirectional LSTM layer does not receive the
estimated uncertainty of head and body orientations. “No
body input” and “No head input” do not receive either the
estimated body direction or head direction as input. The re-
sults indicate that all of these components are essential for
accurate estimation.

In addition, we also tested our model using eye appear-



Method Office LR Kitchen Library Courtyard Front 180◦ Back 180◦ Mean
Fixed bias 88.0/76.0 85.5/76.7 86.0/82.4 89.0/85.1 89.7/87.8 86.3/99.4 90.3/55.0 88.1/79.7
Dias et al. [6] -/27.2 -/25.2 -/19.8 -/24.9 -/36.1 -/22.89 -/34.8 -/27.1
Gaze 360 [16] 24.0/19.2 41.1/31.3 32.4/21.2 27.5/20.7 28.2/28.3 21.8/19.6 36.3/26.7 30.4/24.5
X-Gaze [32] 24.2/23.0 42.0/40.9 23.3/22.9 24.6/22.3 30.2/31.9 26.2/23.5 31.5/31.7 29.2/28.4
No temporal 20.0/18.1 25.6/25.5 21.5/18.6 21.9/20.1 28.4/30.5 22.9/20.0 25.0/25.7 24.1/23.3
No uncert. 17.5/17.6 23.9/26.3 20.2/19.6 20.6/18.5 23.9/25.6 20.9/18.1 23.6/24.1 22.1/21.6
No body input 17.3/15.2 31.3/28.0 22.0/19.4 21.7/19.5 25.7/27.1 21.9/19.6 26.5/24.7 24.1/22.5
No head input 20.5/21.9 31.7/30.8 24.0/23.8 23.2/22.0 24.7/27.2 23.2/20.6 27.0/28.3 24.9/24.8
Ours (AGORA) 24.9/22.8 25.7/24.2 23.4/20.8 27.7/27.1 30.1/32.2 27.3/22.2 28.3/28.2 27.3/26.8
Ours (GAFA) 14.4/14.3 25.1 /22.6 20.4/19.6 19.8/18.4 25.4/26.9 20.7/17.4 23.2/21.9 21.7/20.9
Ours + Face (GAFA) 15.3/14.3 24.0/24.2 19.1/17.2 18.2/19.0 24.4/26.0 19.3/16.8 21.7/21.5 20.4/20.0

Table 1. Quantitative evaluation in comparison with existing methods on our GAFA dataset (mean angular errors (MAE) on test data). The
last column shows the mean MAE for all scenes. All models were trained on our training dataset. The MAEs are shown in 3D/2D. Our
method consistently outperforms past methods on these challenging real-world data.
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Figure 4. Example 3D gaze estimates on the GAFA dataset. Es-
timated (orange) and true gaze directions (blue) are shown with
mean angular errors (MAE). Top, middle, and bottom rows show
the results with high, average, and low accuracy, respectively.

ances (Ours + Face) and our model with the head and body
network trained on the AGORA dataset. As the bottom
rows of Tab. 1 shows, the model trained on the AGORA
dataset is slightly less accurate compared with that trained
on the GAFA dataset. The accuracy of our model slightly
improves when using the appearance of eyes, especially for
front facing images (Front 180◦).

Figure 4 shows example results of our gaze estimation
on the GAFA dataset. As shown in the top row, our model
tends to show higher accuracy when the person is looking at
a certain object. The estimation becomes more challenging
when the person is walking (middle row). The bottom row
shows samples from failure cases, in which the head or body

part is often out of sight. Although gaze estimation becomes
challenging in these cases, our model returns best guesses
based on the head or body orientations whenever either of
the two is observable. Please see the supplemental video for
results in image sequences.

Results on the MoDiPro dataset Next, to understand the
generalization performance of our and existing models in a
different scene, we conducted a cross-dataset experiment on
the MoDiPro dataset. The first row of Tab. 2 shows the re-
sults when the models are trained on the GAFA dataset and
tested on the MoDiPro dataset. Note that our estimates are
in 3D, which is projected onto the image plane to evaluate
against the 2D ground truth of the MoDiPro dataset. Our
model performs the best. The estimation accuracy can be
increased by fine-tuning on any new scene if some 3D gaze
supervision can be prepared.

Our model has a two-stage architecture that enables us
to separately train the head and body network with other
large-scale datasets such as for human pose estimation. This
is particularly useful because the first stage of the model
takes images as input, and a larger image variation leads
to better generalization. This is also the case for Dias et
al.’s method which is built on OpenPose [4]. To make most
of this point, we separately trained the first-stage network
(the head and body network) on the AGORA dataset, and
trained the second-stage network with the GAFA dataset.
In addition to the Dias et al.’s original model with Open-
Pose trained on COCO dataset, we also retrained OpenPose
on the AGORA dataset for fair comparison. The bottom
rows of Tab. 2 shows the results. Our model trained on the
AGORA dataset shows better accuracy than Dias et al.’s
model regardless of the training dataset. This result indi-
cates that the temporal relationship of gaze-head-body ori-
entations is a more robust and generalizable cue for estimat-
ing the gaze direction compared to static facial keypoints
used in Dias et al.’s method. Figure 5 shows example out-



Method Training data MAE (2D)
Gaze 360 [16] GAFA 52.5
X-Gaze [32] GAFA 51.4
Ours GAFA 46.3
Dias et al. [6] COCO (OpenPose) + GAFA 28.1
Dias et al. [6] AGORA + GAFA 32.1
Ours AGORA + GAFA 25.6

Table 2. Cross-dataset evaluation. Each model is trained on the
specified dataset and tested on MoDiPro dataset. 2D MAEs on
MoDiPro dataset are shown. Our model partly trained on the
AGORA dataset shows the highest accuracy.

Dias et al.
Ours

True

Figure 5. Example gaze estimates on the MoDiPro dataset. The
output of the proposed model trained with AGORA, Dias et al.’s
model trained with COCO, and ground-truth directions are shown.

puts of our and Dias et al.’s model on the MoDiPro dataset.

Cross-scene analysis We also conducted cross-scene ex-
periments, in which the model was trained on 1 of 5 scenes
and tested on the remaining 4 scenes in the GAFA dataset.
Table 3 summarizes the results. Training on the library data
achieves the best generalization accuracy. This is likely due
to the fact that the library data contains a wide variety of
gaze behaviors, for example, looking up and down to scan
bookshelves. On the other hand, training on kitchen data
leads to low generalization performance. This is because
the viewpoints of the cameras are limited (most of the data
is backward-looking images of people).

Multiview experiment We tested our multiview models
on the GAFA dataset. We discard frames from camera
views where no one is detected. On average, the multiview
models uses 4.6 camera views. Table 4 shows the results of
our monocular model, the weighted average from the out-
put of monocular models, and the model using 3D body ve-
locity trained and tested on the GAFA dataset. The simple
weighted averaging produces slightly better accuracy than
the monocular method. The model using 3D body velocity
performs even better.

To validate our multiview method, we split the test set

Test sets
Office LR Kitchen Library Courtyard

Tr
ai

ni
ng

se
t Office - 23.3 36.4 31.2 33.5

LR 36.6 - 32.9 29.8 43.4
Kitchen 39.2 32.9 - 49.1 45.1
Library 28.6 32.4 27.7 - 29.9

Courtyard 33.4 35.6 37.0 32.4 -

Table 3. Cross-scene evaluation for different combinations of
training/test sets. 3D MAEs for each scene are shown.

Method Occluded No occlusion Mean
Baseline (Monocular) 24.8 20.2 21.6
Multiview -WA- 21.6 20.5 20.8
Multiview -3DTraj- 19.9 18.2 18.9

Table 4. Evaluation of our monocular and multiview models on
GAFA dataset. Mean 3D MAEs across all scenes are shown. Com-
bining multiple views with our model leads to better accuracy.

into the case where a part of the person is occluded and
the case where the person is clearly visible from all cam-
eras based on the number of detected keypoints from Open-
Pose [4]. While the performance of the monocular model
significantly drops when the person is occluded, the multi-
view models are less affected, because they can appropri-
ately assign a low weight to occluded cameras based on the
estimated uncertainty.
Limitation Since our method uses the temporal coordi-
nation of gaze-head-body orientations to estimate gaze di-
rection, the accuracy of gaze estimation is limited when the
person does not move at all (e.g., while reading a book).
We plan to address this by exploiting other cues such the
saliency of the scene in our future work.

6. Conclusion
In this paper, we introduced a novel method for 3D gaze

estimation from a distance without relying on the appear-
ance of eyes. We formulate gaze estimation as a Bayesian
prediction that leverages learned angular-temporal depen-
dency between gaze, head, body orientations. The exper-
imental results clearly show that our method can robustly
estimate gaze direction from afar, from typical surveillance
views. We also introduced an extensive dataset for gaze es-
timation from afar which will be made public. We believe
these results open new avenues of research on gaze estima-
tion and human behavior analysis.
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