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Abstract

We introduce a novel method and dataset for 3D gaze
estimation of a freely moving person from a distance, typi-
cally in surveillance views. Eyes cannot be clearly seen in
such cases due to occlusion and lacking resolution. Exist-
ing gaze estimation methods suffer or fall back to approxi-
mating gaze with head pose as they primarily rely on clear,
close-up views of the eyes. Our key idea is to instead lever-
age the intrinsic gaze, head, and body coordination of peo-
ple. Our method formulates gaze estimation as Bayesian
prediction given temporal estimates of head and body ori-
entations which can be reliably estimated from a far. We
model the head and body orientation likelihoods and the
conditional prior of gaze direction on those with separate
neural networks which are then cascaded to output the 3D
gaze direction. We introduce an extensive new dataset that
consists of surveillance videos annotated with 3D gaze di-
rections captured in 5 indoor and outdoor scenes. Experi-
mental results on this and other datasets validate the accu-
racy of our method and demonstrate that gaze can be accu-
rately estimated from a typical surveillance distance even
when the person’s face is not visible to the camera.

1. Introduction

What if we could continuously trace the gaze direction of
a person from a distance, for instance, with cameras fixed to
room and street corners? If we can, the practicality of gaze
estimation will be significantly increased and its utility will
be greatly expanded. It will allow us to use already installed
surveillance cameras or those monitoring elderlies to follow
the dynamically changing gaze of a person, which will let
us gauge much deeper into the person’s internal state not
just her whereabouts.

Despite the large advances in gaze estimation research,
especially by leveraging deep neural networks [9,16,32,34,
35], most appearance-based methods cannot be applied to
videos taken from a distance. This is because they inher-

Figure 1. We introduce a novel method for estimating the gaze di-
rection of people (orange arrows) in videos captured from afar by
leveraging the temporal coordination of the gaze, head, and body
orientations in a Bayesian framework. Our method does not rely
on the appearance of the eyes, and can tell the gaze direction even
when the person is facing away from the camera. We introduce a
new dataset for gaze estimation in the wild with ground truth anno-
tation. Note that the markers, eye tracker, and body worn cameras
are only used for ground truth annotation.

ently require a clear and close-up view of the eyes. For in-
stance, most leading methods assume a person sufficiently
close to the camera (ranging from 10cm to 1m), or they are
only applicable to the frontal view (up to 90°) of a person.
We target typical surveillance and monitoring views which
may range from a few meters to 10m.

The few methods that demonstrate gaze estimation from
surveillance images approximate the gaze with the head or
body orientation, which is too crude for most downstream
tasks [25, 26]. A recent method [6] does estimate gaze di-
rection from surveillance cameras by regressing it from hu-
man body keypoints detected with OpenPose. The method,
however, only estimates gaze in 2D (i.e., in the image plane)
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and it is validated only on a limited number of surveillance
videos (1 scene with 2 cameras).

In this paper, we introduce a 3D gaze estimation method
for videos of freely moving people taken from a distance,
for typical room-sized surveillance scenarios. Our key idea
is to fully leverage the temporal coordination of the gaze,
head, and body orientations of a person to estimate the per-
son’s dynamically changing 3D gaze direction just from the
head and body orientations which can be estimated reliably
from afar. We show that we can estimate the gaze direc-
tion from a temporal sequence of head and body orientation
estimates even without seeing the eyes at all.

We formulate gaze estimation as Bayesian prediction
that capitalizes on a learned angular-temporal prior of the
gaze direction conditioned on the head and body orienta-
tions. The gaze, head, and body angular orientations have
strong but complex temporal dependencies. For example,
when we look for something in the room, our eyes first
move into the desired direction, and then our head moves
to follow the eyes. When our head is following the saccade,
our eyes move in the opposite direction to stabilize the im-
age on the retina during head movement. These seemingly
simple angular-temporal relationships are cascaded one af-
ter another and temporally blended together resulting in a
complex dependency that can no longer be captured with
a simple analytical model. We model this complex gaze-
head-body coordination with a cascade of two learned deep
networks that encode the head and body orientation like-
lihoods and gaze orientation conditioned on them, respec-
tively, to leverage their rich dependency to infer the gaze
direction just from the head and body orientations.

Given a sequence of video frames of a person captured
at a distance, we first estimate the head and body orienta-
tions by devising a network that uses both the body appear-
ance and 2D trajectory. These orientations are estimated
as von Mises-Fisher distributions to canonically represent
their uncertainties. These head and body orientation likeli-
hoods are then multiplied with a learned conditional prior of
the gaze direction given the head and body orientations that
encode their natural temporal coordination. We model this
conditional prior with a network that encodes the tempo-
ral dependency of gaze direction in each frame on past and
future head and body orientations. Optionally, we extend
our method to opportunistically leverage the eye appear-
ance when they happen to be visible and multiview head and
body appearance when we have access to multiple cameras.

We introduce a new dataset of annotated surveillance
videos of freely moving people taken from a distance in
both indoor and outdoor scenes. The videos are captured
with multiple cameras placed in eight different daily envi-
ronments. People in the videos undergo large pose varia-
tions and are frequently occluded by various environmental
factors. Most important, their eyes are mostly not clearly

visible as is often the case in surveillance videos. We intro-
duce the first rigorously annotated dataset of 3D gaze direc-
tions of freely moving people captured from afar. Through
extensive evaluation using this new dataset, we show that
our method enables accurate 3D gaze estimation from afar.
We also demonstrate that our method generalizes well to
different scenes and camera poses. All data and code can
be downloaded from our project web page.

2. Related works
Gaze Estimation Models Gaze estimation methods
can be roughly categorized into geometry-based and
appearance-based. Geometry-based methods use 3D eye
models to exploit geometric or optical characteristics of the
eye [12, 14, 19, 36]. In exchange for high accuracy, these
methods usually require detailed information of the eyes,
which often necessitates hardware eye trackers. In contrast,
appearance-based methods directly estimate the gaze direc-
tion from images of eyes. Recent methods often use deep
neural networks to learn this mapping, and achieve high
accuracies [9, 32–35]. These methods, however, naturally
require a close-up frontal view of the target face or eyes,
which are not available in images and videos taken from
a distance (e.g., more than a meter). Recently, Gaze360
[16] created a large-scale dataset that contains head poses
with 360� of yaw, and showed that a model trained on
their dataset can estimate gaze even when the person is fac-
ing backward. Although Gaze360 contains diverse appear-
ances, their dataset only contains humans standing still and
limited head poses in terms of pitch and roll. In contrast, our
dataset is of freely moving people. Our dataset also contains
images of people with a wide, natural variety of head poses
reflecting realistic surveillance and monitoring scenarios.

Past methods for gaze estimation from surveillance im-
ages, in which eyes are basically not clearly or not at all
visible, typically use head orientation as a surrogate of gaze
direction [25, 26]. These methods are robust to low image
quality but the head orientation is rarely the true gaze direc-
tion. Dias et al. used facial keypoints to estimate 2D gaze
in still images, and evaluated the model with their dataset
of surveillance images manually annotated with 2D gaze di-
rections [6]. In contrast, we estimate dynamically changing
3D gaze direction in video. Gaze direction recovered in 3D
has wide utility in down stream applications as it allows 3D
reasoning of a person’s attention in the environment.
Gaze, Head, and Body Relationship. Head and eye co-
ordination has been studied extensively [1, 27, 31]. A linear
relationship between gaze and head orientations can be ob-
served, for example, during watching movies [7] or daily
activities such as tea making [18]. Vestibulo-Ocular Re-
flex (VOR) characterizes the coordinated temporal move-
ments of them; the eye moves in the opposite direction when
the head is moving to fixate the retinal image [1]. Various



research have studied the relation between gaze and body
as well as gaze and head orientations [8, 18]. Yamazoeet
al. [30] reported that a linear relationship, similar to that
of gaze and head orientations, was observed between the
gaze and body orientations during free walking. Murakami
et al. recently showed that the gaze direction can be esti-
mated from head and body orientations when their true di-
rections are known using a simple regression model [20],
which corroborates our intuition. Estimating gaze in actual
surveillance views without known head and body orienta-
tions, however, requires a signi�cant leap, which we make
by seamlessly integrating learned angular-temporal relation
of the complex eye-head-body coordination in a canonical
Bayesian framework that can be learned end-to-end. Our
method also models and propagates estimation uncertain-
ties in a principled manner.

Head and Body Orientation Estimation. Early head
pose estimation methods used facial landmarks to align a
geometric template [3]. Recent methods rely on deep neu-
ral networks and large image databases to directly estimate
the orientation of the head from its appearance [25]. Zhou
and Gregson [37] show that head pose can be estimated even
when the subjects are looking away from the camera. These
methods, however, can suffer from gimbal lock and are not
suitable for images with extreme head or camera poses. We
deal with this problem by estimating only the yaw and pitch
of head orientation, since the range of roll is relatively small
and hardly affects gaze estimation.

Human body orientation estimation has been widely
studied particularly for behavior analysis such as movement
prediction. A large body of work has demonstrated accu-
rate 2D body orientation estimation from images [5,13,23].
As with other tasks, recent methods greatly improve the ac-
curacy by using deep neural networks to directly estimate
the orientation of the body from its appearance. For exam-
ple, Wu et al. annotated 2D body orientations in 55K im-
ages from the COCO dataset, and showed that their method
generalizes well across different camera poses and back-
grounds [29]. Two-dimensional body orientation is, how-
ever, insuf�cient for us to estimate 3D gaze as the pitch can
also vary greatly. For this, we estimate 3D body orientation
in the same manner as we estimate head orientations.

3. Bayesian Gaze from Head and Body

Our goal is to estimate the gaze direction of a person
without relying on clear appearance of her eyes but instead
on the coordinated head and body movements. Figure 2
shows an overview of our framework. We formulate gaze
estimation as Bayesian prediction where we estimate the
likelihoods of head and body orientations given an input im-
age, and then multiply a learned conditional temporal prior
of gaze direction by cascading two neural networks.

3.1. Head and Body Network

We �rst estimate head and body orientations from an in-
put video. Instead of having independent networks for each,
we build a network that simultaneously estimates head and
body orientations from whole body images to reduce the
computational cost. The network also takes the binary mask
of the head bounding box, which is used to determine the
head position in the image. In addition, the network exploits
the in-image 2D velocity of the person to better estimate the
body orientation. The head bounding box and the velocity
of the person are normalized with respect to the height of
the person in the image.

Figure 2 left shows the architecture of the head and body
orientation estimation network. First, the network processes
multiple frames of whole body images to extract shared
features (Shared conv). The mask of the head position is
downsampled by an average pooling layer so that it aligns
the size of the feature map. The shared features and the
head mask are multiplied together and input to convolu-
tional layers (Head Conv), or are directly input to another
set of convolutional layers (Body Conv). The output of
Head Conv and Body Conv layers and the body velocity are
concatenated and fed into an LSTM layer to jointly estimate
the head and body orientations. For the backbone network,
we used the �rst two convolutional layers of Ef�cientNet-
b0 [28] for Shared Conv, and later layers of Ef�cientNet-b0
for Head Conv and Body Conv layers.

To canonically model uncertainties, we estimate head
and body orientations as 3D von Mises-Fisher (vMF) distri-
butions. A vMF distribution is a spherical directional statis-
tics distribution represented by two parametersf �; � g
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where� is a 3D unit vector that represents the mean direc-
tion, and� is the concentration parameter (the larger� , the
higher con�dence). This vMF distribution gives us a natural
interpretation of the directional estimate and its uncertainty.

To constrain the output to become a valid vMF distribu-
tion, we introduce a �nal layer to the network by extend-
ing the method of [2, 22] to 3D. This layer consists of two
branches to estimate the mean direction (� ) and the concen-
tration (� ), respectively. The mean direction branch (f � )
makes the output a unit vector by performing normalization
on a fully connected layer and the concentration branch (f � )
makes the output positive with a Softplus function
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f � (x; W; b) = Softplus( Wx + b) = �̂ ; (3)

wherex, W , bare the input, weight, and bias, respectively.



Figure 2. Model architecture. The head and body estimation network receives whole body images, head position, and body velocity, and
outputs directional statistics (vMF) distributions as their orientation estimates. Both distributions for multiple frames are fed into the gaze
estimation network that outputs the sequence of gaze direction estimates as vMF distributions. Optionally, we add a network that can
opportunistically estimate the gaze direction directly from the face appearance. The estimated gaze directions are integrated to produce the
�nal gaze estimate as vMF distributions.

We learn the vMF network parameters with maximum
likelihood estimation. For this, we de�ne the loss function
as the negative log-likelihood of the vMF distribution

L vMF = � ln �̂ + ln sinh �̂ � �̂� T �̂ : (4)

We optimize both the direction (�̂ ) and the concentration
(�̂ ) with this loss while alternatingly �xing each other.

We train the vMF network using a 3D human pose
dataset. In particular, we use the training set of the AGORA
dataset [21], which contains realistic human models placed
in various rendered 3D scenes. To deal with low image res-
olution, we randomly reduce the resolution of input images
between� 0:1 to � 0:9. Please see the supplemental mate-
rial for visualization.

3.2. Head–Body Conditional Temporal Gaze Prior

The second step of our Bayesian formulation is to esti-
mate the sequence of gaze directions from the distributions
of estimated head and body orientations. That is, given the
head and body orientation likelihoods, we now want to mul-
tiply the conditional temporal prior of the gaze direction
given those orientations. Our key idea is to learn the com-
plex angular-temporal dependency between gaze and head,
and gaze and body orientations with a recurrent neural net-
work. Note that it is a temporal prior, not an instantaneous
static one, that embodies the gaze coordination with the
head and the body as a dynamically changing system. For
this, we use a bidirectional LSTM which consists of two
bidirectional LSTM layers and a �nal layer to output the
parameters of a vMF distribution. It takes head and body

orientation estimates as inputs, and outputs the parameters
of the gaze vMF distribution (Fig. 2 right).

Another key idea is to modulate the estimated head and
body orientations by their estimated concentrations, which
lets us deal with highly uncertain situations such as when ei-
ther the head or the chest is not observable. For this, before
inputting the head and body orientations, we modulate them
with their estimated uncertainty to make our model robust to
occlusions. The weighted direction of body� b(� b

x ; � b
y ; � b

z )
and head� h (� h

x ; � h
y ; � h

z ) are concatenated to produce a 6D
vector and input to the bidirectional LSTM model.

3.3. Opportunistic Eye Appearance Integration

When a freely moving person is seen from afar,e.g., in
a surveillance view, the eyes are rarely (in our dataset, only
less than 6% of all the frames) clearly visible. Nevertheless,
when they are visible, we may leverage their appearance.
For this, we extend our framework to integrate (but not rely
on) the eye appearances.

As depicted in the upper part of Fig. 2, we add a set of
convolutional layers that are the same as the Head Conv
layer but directly estimates gaze direction from the appear-
ance of the eyes. The gaze direction estimated from eye ap-
pearance and from gaze-head-body coordination are com-
bined by weighting the estimated directions with their as-
sociated uncertainties. This enables us to exploit eye ap-
pearance only when the associated uncertainty is low,i.e.,
opportunistically when the eyes are clearly visible.
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