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Figure 1. We introduce DeePoint, a neural pointing recognition and 3D direction estimator. DeePoint trained on our newly constructed DP

Dataset recognizes when a person is pointing and estimates its 3D direction from video frames captured from a fixed-view camera. Each

arrow depicts the pointing direction and its color is green when the person is pointing, red when not. DeePoint successfully recognizes

when a pointing starts and ends and can estimate its 3D direction from the complex spatio-temporal coordination of the person’s body.

Abstract

In this paper, we realize automatic visual recognition

and direction estimation of pointing. We introduce the first

neural pointing understanding method based on two key

contributions. The first is the introduction of a first-of-its-

kind large-scale dataset for pointing recognition and di-

rection estimation, which we refer to as the DP Dataset.

DP Dataset consists of more than 2 million frames of 33

people pointing in various styles annotated for each frame

with pointing timings and 3D directions. The second is

DeePoint, a novel deep network model for joint recogni-

tion and 3D direction estimation of pointing. DeePoint

is a Transformer-based network which fully leverages the

spatio-temporal coordination of the body parts, not just the

hands. Through extensive experiments, we demonstrate the

accuracy and efficiency of DeePoint. We believe DP Dataset

and DeePoint will serve as a sound foundation for visual

human intention understanding.

1. Introduction

Gauging a person’s intent from passive visual observa-

tions is one of the key goals of computer vision research.

Successful visual intent understanding would be essential

for a wide range of applications including personal assis-

tance, elderly care, and surveillance. Visual recognition of

the gesticulations of a person is essential for this as they di-

rectly express those intents. Pointing, the act of extending

one’s (usually index) finger towards something in the per-

son’s view to call attention to it, is particularly important

as it conveys explicit information about the person’s inter-

actions with the environment including conversations with

others.

Despite the broad interest in gesture recognition, re-

search on visual understanding of pointing has been surpris-

ingly limited. Visual pointing interpretation requires both

recognition (is the person pointing) and direction estima-

tion (which direction is the person pointing). Past works

have relied on special cameras, such as RGB-D sensors,

or required the person to point in a specific way. For in-

the-wild natural pointing understanding, we must be able to

recognize and estimate their directions in 3D from regular

RGB cameras. A typical scenario we consider is a person

in a room pointing at various things around her while freely

moving around, which is observed by cameras fixed to room

corners.

Pointing recognition and direction estimation from fixed-

view cameras is particularly challenging. The person is usu-

ally small in the view and the fingers can hardly be dis-

cerned. The hand can even be completely occluded by the

person’s body. The pointing gesture would also typically

span only about half a second, which makes its recognition

in the video hard. Estimating the direction becomes even

more challenging. In a full HD video frame captured with a

fixed corner camera in a typical living room, the index fin-

ger would span only about 30 pixels. Analytical modeling

such as line regression to such observations would be futile.

Even if that were possible, due to intra- and inter-personal

variations of pointing, such estimations would be prone to

error. Accounting for those variations would naturally ne-

cessitate a learning-based approach that directly regresses to



the intended directions. This is also, however, not straight-

forward, as the task is inherently spatio-temporal and, most

important, large-scale data of pointing is difficult to collect

and currently devoid in the community.

In this paper, as illustrated in Fig. 1, we make two key

contributions to realize automatic visual recognition and di-

rection estimation of pointing. The first is the introduction

of a comprehensive dataset for pointing recognition and di-

rection estimation. We refer to this as the DP Dataset. It

consists of 2,800,000 frames of 33 people pointing at var-

ious directions in different styles captured in 2 different

rooms. Each of these frames is annotated with whether the

person is pointing or not, and, when pointing, the 3D di-

rection intended by the pointing person. This first of its

kind large-scale collection and annotation of natural point-

ing gestures is achieved semi-automatically with a combi-

nation of multi-view geometry and audio processing.

The second key contribution is DeePoint, a novel deep

network model for joint recognition and 3D direction esti-

mation of pointing. To overcome the challenges stemming

from the fixed-view observations from a distance, our key

idea is to leverage the whole-body appearance and motion

to detect and estimate 3D pointing. For this, we introduce

a Transformer model, inspired by the STLT [28], that fully

leverages the spatio-temporal coordination of the body in-

cluding the head and joints in addition to the hand. By in-

corporating the appearance of these as tokens and through

cascaded attention transforms in space and time, we show

that pointing gestures can be detected in time and their 3D

directions can be estimated accurately.

We conduct extensive experiments to evaluate the ef-

fectiveness of DeePoint. We first evaluate the accuracy of

recognition and direction estimation on the DP Dataset. We

then evaluate the generalizability of DeePoint across differ-

ent people and scenes. Through ablation studies, we also

show that the spatio-temporal modeling of the body appear-

ance and movements are essential for the task. We also con-

duct comparative studies with related works, including eval-

uation on the PKU-MMD dataset [5]. The experimental re-

sults collectively demonstrate the accuracy and efficiency of

DeePoint. Our future work includes incorporating environ-

mental cues and audio including spoken words to enhance

the accuracy of pointing direction estimation, the challenge

of which lies in realizing this without overfitting to the par-

ticular context. We believe DeePoint provides a sound foun-

dation for these further studies.

2. Related Works

Gesture recognition has been a major topic of research

in the computer vision community but research specific to

pointing recognition and its direction estimation is fairly

limited. We review works relevant to our approach of us-

ing the whole body for visual pointing understanding and

also on construction of large-scale real-world datasets for

human behavior understanding.

2.1. Pointing Recognition

Early works of pointing recognition used wearable de-

vices to measure pointing directions directly. Various de-

vices such as magnetometers [2] and IMUs [3] have been

adopted. Since the person to be measured must wear a dedi-

cated device for pointing, however, the applications of these

methods were limited.

Most past pointing recognition methods require special

camera setups. These works include those that require

multiple cameras [15, 34, 6, 14, 20, 25], RGB-D cam-

eras [31, 13, 1, 10], or depth sensors [7, 8]. From the visual

observations captured with these specialized cameras or se-

tups, these methods estimate pointing direction in mainly

two ways: geometry-based or learning-based.

Geometry-based approaches first locate 3D coordinates

of specific body parts, e.g., face, hand, or fingertip, and cal-

culate the direction of pointing by extending the line con-

necting them. Results of such methods can be very noisy

as the detection and triangulation of these body parts can

be unreliable. Learning-based approaches estimate the 3D

direction from the observed appearance of the body parts,

e.g., hands or arms. Both of these approaches can achieve

accurate pointing direction recognition when certain imag-

ing conditions are met, e.g., the person is in fairly near dis-

tance from the camera and showing a perfect side-view of

the pointing. They, however, fundamentally rely on multi-

view observations or direct depth perception, which pre-

clude their use with regular RGB cameras.

A few recent works achieve pointing recognition from a

single RGB image to alleviate the needs for special cam-

era settings. Estimating pointing direction in 3D is inher-

ently challenging, as 3D locations of body parts or detailed

appearance of hands cannot be captured by a normal cam-

era. Past works resolve this by limiting the allowed postures

of the target person, for instance, by requiring the person

to stand upright with her arm fully extended when point-

ing [4, 30]. Jaiswal et al. [19] introduced a ConvNet point-

ing direction estimation, but is limited to when the person is

standing in front the camera with her body facing towards it.

These methods, in essence, recognize a special pre-defined

body posture as pointing, which does not generalize across

people and scenes. Our DeePoint, in contrast, realizes auto-

matic visual recognition and direction estimation of point-

ing by a person freely moving, regardless of walking or sit-

ting, in a room-size area from a single view of a regular

camera. To our knowledge, this is the first work to achieve

3D pointing understanding in the wild.



2.2. Action Recognition

Pointing can be viewed as a special gesture or action.

General gesture and action recognition research has a long

history in computer vision. Many benchmark datasets have

been released, such as UCF101 [22] and ActivityNet [12].

As spatio-temporal visual information becomes crucial for

recognizing actions, a variety of approaches for capturing

temporal relations of body and other contextual movements

have been proposed such as CNN+LSTM [11] and 3DRes-

Net [16].

More recently, Transformers [32] have been applied to

learn such spatio-temporal coordination through their at-

tention mechanism [33, 35]. Among them, Radevski et

al. [28] proposed a two-stage transformer model which cap-

tures spatial relationships of object with the first transformer

for each frame and temporal relationships of their move-

ments with the second transformer. We build on this idea

of decoupling spatial and temporal information aggregation

with two cascaded Transformer encoders and extend it to

encoding body postures and their temporal coordination to

achieve accurate pointing recognition and direction estima-

tion.

2.3. 3D Direction Annotation

For learning-based 3D direction estimation, annotation

of images with 3D vectors becomes essential. This task

is, however, extremely challenging, if not impossible, to

achieve manually as the annotator needs to somehow in-

dicate the projected 2D direction from a 3D ground truth in

mind on the 2D image plane. Past works have mitigated this

difficulty by exploring automatic means to directly obtain

the 3D ground truth. Das [7, 8] attached a colored marker

or an IMU to the index finger to obtain ground-truth point-

ing directions. This is possible for their method as they rely

on direct depth perception for pointing recognition and arti-

ficial appearance of the person does not affect the input.

Other methods leverage multi-view geometry of cam-

eras to compute 3D directions of 3D gaze and pointing.

Kellnhofer et al. [21] proposed Gaze360, a large-scale 3D

gaze tracking dataset. The data was collected with an om-

nidirectional camera that simultaneously captures subjects

and their gaze targets. By using an AR marker as the gaze

target, the authors realize automatic annotation of the 3D

location of the target. Nonaka et al. [26] introduced GAFA,

a 3D gaze dataset with per-frame 3D gaze annotations. The

gaze directions were captured with an eyeglass gaze tracker.

For the ground truth head and body orientations, they used

body- and head-mounted cameras and AR markers attached

to compute the 3D orientations via SLAM. We automati-

cally annotate our DP Dataset with accurate 3D pointing di-

rections by identifying the pointed AR markers in the scene

from audio and by computing the 3D directions to them

with multi-view geometry. We also obtain the pointing tim-

(i) Living Room (ii) Office
Figure 2. The two environments of DP Dataset. The example

frames are captured by the cameras outlined in red in Fig. 3.

ing and duration with synchronized audio. We believe this

multi-modal automatic annotation would be useful in other

dataset annotation tasks.

3. DP Dataset

Our first key contribution is the first-of-its-kind large-

scale dataset for pointing recognition and 3D direction es-

timation. We make this dataset and code available to the

public1.

3.1. Dataset Capture

A large-scale dataset of videos capturing people pointing

in various directions as they naturally roam around and sit

and stand in an environment with accurate timing and 3D di-

rection annotations is essential for exploring learning-based

approaches to visual pointing understanding. The dataset

desiderata include variations in the people spanning age and

gender, the viewpoint and viewing directions, the pointing

styles and timings including duration, the pointed direc-

tions, the behaviors of people such as standing, walking,

and sitting, and the overall environments in which the peo-

ple are immersed. Also, in order to use the natural appear-

ance of people, they should not wear specific measurement

devices that affect their appearance, such as motion capture

devices, special markers, or gaze measurement devices, as a

learning-based approach would overfit to them. To the best

of our knowledge, there are no large-scale public datasets

for pointing recognition and direction estimation that fulfill

these.

We introduce DP Dataset, a first-of-its-kind large-scale

pointing dataset, which consists of 2,800,000 frames of 33

people of various ages and different genders pointing in a

wide range of directions in different styles in two different

rooms captured from a variety of viewing directions with

multiple fixed-view cameras at room-scale distances. Most

important, the dataset includes annotations of pointing tim-

ings and their 3D directions for each and every frame.

As shown in Fig. 2, we constructed a data capture imag-

ing setup for two different rooms. One is a living room with

a kitchen and sofa, and another is an open office with chairs,

1https://github.com/kyotovision-public/deepoint



(i) Living Room (ii) Office
Figure 3. Camera layout of DP Dataset. We mount cameras at

fixed viewpoints in the room to capture the pointing gestures from

a variety of directions at once. The orange cameras are installed

on the ceiling, the blue ones are put on the floor, and the green

ones are installed on the mid-level. The gray objects depict tables,

sofas, and obstacles.

Figure 4. Example frames from the DP Dataset (people are

cropped).

desks, and whiteboard, which we refer to as Living Room

and Office, respectively. Both rooms are about 64m2. As

depicted in Fig. 3, we installed 15 GoPro cameras in each

room to capture people in them and calibrated all the cam-

eras so that we could triangulate the 3D position of each

joint and marker in the environment. They were installed

in various locations in the room pointing towards the center

so that a person in the room can be captured from all direc-

tions roughly uniformly. For this, we mounted the cameras

on the tables, walls, the floor, and the ceiling. All cameras

were synchronized at the beginning of the capture.

We captured videos in 2.7K resolution at 60fps and drop

the frame rate to 15fps for the dataset we use for our exper-

iments. The raw dataset can also be released upon request.

To annotate the pointing direction, we installed roughly 40

ArUco [29] markers randomly on tables, walls, the floor,

and the ceiling, in each room. Each marker is observed by

multiple cameras and its 3D location is recovered with tri-

angulation.

As shown in Fig. 4, pointing style varies from person to

person and the dataset should capture this variation as much

as possible. For the dataset, we collected a total of 33 male

and female participants, uniformly ranging in generations

Figure 5. By identifying the marker to which the person is pointing

from recorded audio and triangulating the hand location, we com-

pute the unit 3D vector annotation for the 3D pointing direction.

from their twenties to sixties. We captured each participant

separately for about 5 minutes in each room. Each partici-

pant was free to walk around the room and point to markers

freely selected by themselves with their dominant hand, but

asked to verbalize the marker ID and click and hold down

on a handheld wireless mouse when pointing. They were

also allowed to point to the markers while sitting on a chair

or sofa. They pointed to a marker once every 3 to 5 seconds

while moving in the room. For each session, we collected

15 videos from the different fixed-view cameras.

3.2. Pointing Timing and 3D Direction Annotation

We fully annotate DP Dataset with pointing timings, i.e.,

the start and end of a pointing instance, and the 3D direc-

tions for all pointing instances. We annotate the pointing

timings by asking the participants to indicate the start and

duration of when he or she points to a marker. This is

achieved by providing the participants with a small click

button, for which we simply used a tiny wireless mouse,

held in the non-dominant hand so that it is not visible

from the camera. Participants pressed the button when they

started pointing to a marker and held it down until their

pointing gesture finished. The duration is typically less than

a second for a natural pointing behavior.

As depicted in Fig. 5, we automatically annotate the 3D

directions of each pointing instance with multi-view ge-

ometry. Participants were asked to verbally express which

marker they were pointing to, whose voice was recorded by

the observing cameras. By manually identifying the marker

ID from the recorded voice, we know the 3D coordinates

of the target pointing direction. To recover the other end

of the 3D vector, i.e., from where that marker is pointed,

we first apply 2D pose estimation to the videos captured by

the cameras and calculate the 3D hand locations based on

triangulation using only high-confident 2D pose estimation

results. We use OpenPifPaf [24] as the pose estimator, but

any method that is sufficiently accurate can replace it. Ac-
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Figure 6. The 3D angular distribution of pointing directions in the

DP Dataset shown with Mollweide projection. A variety of point-

ing behaviors with a wide range of pitch and yaw are captured in

the dataset.

curate pointing directions were calculated from each pair of

a 3D hand location and the pointed 3D marker location. We

describe each pointing direction as a 3D unit vector.

In total, the dataset contains about 2,800,000 frames of

33 people. Frames with pointing span 770,000 frames cap-

turing 6355 unique pointing instances. Although the num-

ber of located ArUco markers in a room was limited to

about 40, we were able to collect a large variety of pointing

directions in the dataset as the participants were allowed to

move around and change their postures freely in the rooms.

Figure 6 shows the 3D angular distribution of pointing di-

rections. The histogram clearly shows that we were able to

capture a wide variety of pointings in the dataset. Note that

each of these instances are captured with a wide range of

viewing directions using the 15 cameras.

4. DeePoint

We introduce DeePoint, a novel method for accurate

pointing recognition and 3D direction estimation. Unlike

past works, the method does not rely on specific poses

taken by the target person and only requires regular RGB

video frames as input. As depicted in Fig. 7, DeePoint is

a Transformer-based model which leverages attention for

spatio-temporal information aggregation as first introduced

for video understanding by Radevski et al. [28]. In contrast

to learning the spatio-temporal coordination of objects in a

scene for video understanding, we leverage the STLT archi-

tecture [28] to learn the structured spatio-temporal coordi-

nation of body parts of a person when she is pointing and

simultaneously detect and estimate its 3D direction. Given

a sequence of input frames, DeePoint first detects the joints

using an off-the-shelf 2D human pose estimator [24], and

extracts visual features around them. The visual features

are first processed by Joint Encoder in a frame-wise man-

ner, and then fed to Temporal Encoder to integrate features

from multiple frames. The output of Temporal Encoder is

transformed by an MLP head to the probability p indicating

whether the target is in a pointing action, and its 3D direc-

tion ν in the camera coordinate system.
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Figure 7. DeePoint consists of two Transformer encoders which

we refer to as Joint Encoder and Temporal Encoder. Joint Encoder

learns to model the spatial coordination of body parts and Tempo-

ral Encoder learns to extract their temporal coordination to jointly

recognize and estimate the 3D direction of pointing from RGB

video frames.

Pose Feature Extraction We use the output of the third

block of ResNet-34 [18] pre-trained by ImageNet-1K [9]

as the backbone for extracting 256-channel visual fea-

tures from each of the input video frames, and apply ROI

align [17] around each joint to obtain 3 × 3 × 256 feature

vectors of a constant size regardless of the apparent joint

size. These feature vectors are then projected by a learnable

linear layer to 192 dimensions.

Though these visual features around the joints collec-

tively cover a certain area over the target person, they do not

explicitly describe the relative positions between the joints,

i.e., the pose. We encode the 2D pose information by two

additional features per joint: the joint indices and the 2D

relative position w.r.t. the midpoint of the shoulders normal-

ized by the bounding box size. Both the joint indices and the

normalized relative positions are projected to the size of the

visual features so that they are added as positional encod-

ings [32]. These projections are randomly initialized and

refined in the training.

For undetected joints or joints with confidence below

a certain threshold due to, for example, occlusions, cor-

responding visual features are padded with a dummy ten-

sor and ignored in the subsequent steps by masked atten-

tion [32].

Joint Encoder The Joint Encoder takes the visual fea-

tures of human joints and a class token, and computes multi-

head attention [32] between them. We set Joint Encoder to

accept L = 17 tokens corresponding to the joints detected

by pose estimation. Joint Encoder processes such tokens

with 6 iterations of attention layers, and returns the output

corresponding to the class token for the last attention layer

as the final output.

Temporal Encoder Our Temporal Encoder takes the out-

put of Joint Encoder of the current frame together with those

of past N frames as input tokens. Temporal Encoder has 6



layers of multi-head attention, and the output token corre-

sponding to the current frame at the last layer is used as the

output of Temporal Encoder.

MLP head The output of Temporal Encoder is trans-

formed by an MLP into the pointing probability p and the

pointing direction ν. The pointing probability p is im-

plemented as binary classification and the MLP outputs

a 2-dimensional vector normalized by the sigmoid func-

tion. The pointing direction ν is first regressed as a 3-

dimensional vector of arbitrary norm, and then normalized

to be a unit vector.

Training We train DeePoint using DP Dataset in a super-

vised manner, by measuring the cross entropy of p and the

angular error of ν between their ground truths. The weight-

ing parameter to balance these two terms is determined em-

pirically. During training, we randomly sampled frames so

that pointing and non-pointing frames appear evenly.

5. Experimental Results

Network architecture DeePoint uses visual features

around the detected joints to encode the body posture and

its specific instantiation. In addition, we may also leverage

visual features of the whole body and even encode the en-

tire captured image. Since each token of Joint Encoder is a

192-dimensional vector, we can add these contextual visual

features that encode the body and scene appearance into the

class token since it is not associated with a specific joint.

As the same for the visual features at each joint, we can

apply the same pre-trained ResNet-34 to the image cropped

by the bounding box of the detected person and the entire

image, apply ROI align to obtain 16 × 16 × 256 feature

vectors and project them into 192-dimensional vectors with

the same linear projection. These vectors are then added to

the learnable class token. In what follows, we denote the

barebone DeePoint as DP, a variant adding the whole-body

visual feature to the class token as DP-B, and yet another

variant adding both the whole-body and the entire-image

visual features to the class token as DP-BI.

Data split Our DP Dataset consists of roughly 2,800,000
frames of captured sessions of 33 subjects in two different

rooms (Living Room and Office). We define the following

three splits for evaluation.

Split-T (temporal split) Each session of the subjects is split

into 70%, 15%, and 15% from the beginning and used in the

training, validation, and test sets, respectively. The three

sets share the same subjects and the scenes, but not the

pointing instances and their directions. This split lets us

evaluate the intra-personal accuracy of DeePoint.

Model Split-T Split-S Split-P

DP 14.05 17.52 13.85
DP-B 13.66 17.63 13.93
DP-BI 14.12 17.62 14.91

Table 1. Pointing direction estimation errors, denoted in degree.

We can observe that the proposed model generalizes well in every

split.

Model Split-T Split-S Split-P

DP 0.625/0.838 0.629/0.685 0.476/0.816
DP-B 0.627/0.852 0.597/0.732 0.445/0.823
DP-BI 0.650/0.837 0.634/0.740 0.456/0.855

Table 2. Recall (left) and precision (right) for the pointing action

detection. Note that these values are calculated frame by frame

and the percentage of pointing actions that are missed completely

are much lower.

Split-S (scene split) The training set does not share the

same room with the validation and test set. That is, the

training set is only taken from Living Room, and the val-

idation and the test sets are from Office. This split lets us

study the cross-scene accuracy of DeePoint.

Split-P (person split) Each of the 33 subjects appears only

in one of the training, validation, or test set. We allo-

cated 25, 4, and 4 subjects for the training, validation, and

test sets, respectively. This split lets us evaluate the inter-

personal accuracy of DeePoint.

Tables 1 and 2 each reports the mean angular errors of

pointing direction and recall/precision of pointing detection

by frame. Each model is trained using the training set with

learning rate = 10
−4 with Adam [23] optimizer and batch

size = 64 until convergence. We use the best parameter

within the epochs in terms of angular error measured with

the validation set.

The results provide insights into the role of the body and

scene context. For the intra-personal split (Split-T), DP-B

and DP-BI detects pointing better than DP as they can lever-

age the access to scene context. Performance for direction

estimation and precision gets worse for Split-S, which indi-

cates changes in the way of pointing and background could

affect the performance and the importance of training with

a dataset that contains multiple venues. On the other hand,

as for Split-P, recall is relatively low, which indicates the

way of pointing differ in people. While integrating whole-

body and scene context contributes to improving the per-

formance for 3D direction estimation, the performance for

pointing detection is better without them for Split-S and

Split-P, likely due to overfitting. How to encode personal

(i.e., body appearance) and scene (i.e., image) context in

DeePoint such that we may fully leverage their represen-

tational power while avoiding overfitting is a challenge we
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Figure 8. Pointing direction estimation by DeePoint trained with Split-T (i.e., DP). In each image, the blue arrow denotes the ground truth

direction and the other arrow denotes the estimated 3D direction by DeePoint. The color of the prediction arrow represents the result of

pointing action recognition. It is green when the person is pointing (p = 1), red when not (p = 0), and gradually transitions between

the two colors based on estimated probability. Note how DeePoint correctly recognizes the timing of pointing. For instance, it learns to

recognize when the person looks away as the finish of pointing and finds the onset of pointing from change in speed of the movements of

the body coordination.
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Figure 9. Examples of HandOccNet reconstruction on the DP

Dataset, sorted by index finger direction error. HandOccNet fails

to reconstruct the pointing index finger for most cases, especially

as the hands are small in regular videos of people, showing the

fragility of 3D hand reconstruction-based pointing understanding.
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Figure 10. Error histograms of past methods compared with that of

DeePoint evaluated on the test data of the DP Dataset. DeePoint

clearly outperforms all.

will explore in future work.

As can be seen in Fig. 8, in general, DeePoint achieves

high recall and reasonable angular accuracy, especially for a

completely passive method relying only on viewpoint from

relatively far distance. Even though roughly 18 degrees of

error may appear large, given the relative distance to the ob-

jects in the scene, in many cases, it is sufficient to identify

what is actually pointed at. Note that the detection recall

and precision are calculated by each frame and only a frac-

tion of pointing actions are missed completely. For exam-

ple, DP on Split-T test set missed only 5.8% of pointing

actions (94.2% recall).

5.1. Ablation Study On Temporal Window

The size of the temporal window, i.e., the number of to-

kens N given to Temporal Encoder is set to N = 15 as the

default value. Table 3 shows the results with different val-

ues of N from N = 1 to N = 30. N = 1 corresponds to

single-shot pointing detection and direction estimation, and

N = 5, 15, and 30 correspond to 1/3, 1, and 2 seconds of

the observed video.

From these results, we can conclude that N = 15, which

is used in DeePoint, is a reasonable design choice as the

Temporal window Angular error (↓) Prec./Rec. (↑)

N = 1 17.08◦ 0.519/0.801
N = 5 14.90◦ 0.585/0.828
N = 15 14.05◦ 0.625/0.838
N = 30 13.58◦

0.637/0.833

Table 3. Contributions of the size of the temporal window N . We

can observe that N = 15 corresponding to 1 second of the obser-

vation is a reasonable design choice as the performance gain by

N = 30 is marginal.

performance gain by N = 30 is marginal, while N = 1 and

N = 5 do not perform well, especially in action detection.

This result can be interpreted intuitively that most pointing

instances can last up to a second and not shorter than 1/3

seconds, and N = 15 is a reasonable length to cover such

actions.

5.2. Comparison with Baseline Methods

We implement baseline methods that represent past

methods and evaluate them using the test split of the DP

dataset, and compare their results against that of DeePoint.

Directly evaluating DeePoint on the datasets used in the past

methods is not possible, as most of them are simply not

published [1, 4, 10, 13, 19, 30]. Even when they are, they

contain only images (not videos) and capture only hands or

arms [8, 31]. To the best of our knowledge, the only ex-

ception is PKU-MMD [5], a video dataset annotated with

various action timings, including pointing. We’ll discuss it

in Sec. 5.3.

To evaluate the accuracy of a single-view learning-based

approach, we use HandOccNet [27] to recover a 3D hand

mesh from a single image and use the recovered hand to

estimate the pointing direction. Since pointing is a manual

gesture, it may appear possible to estimate pointing direc-

tion by connecting vertices of the mesh. As shown in Fig. 9,

we applied HandOccNet to hand image regions extracted

from the DP dataset to test this. We tried two alternatives

for direction estimation: from the wrist to the tip of the in-

dex finger (i.e., from the center of the blue vertices to that of

the red ones in Fig. 9) [7, 8] and from the base to the tip of

the index finger (from green to red). Figure 10 shows that

the results are poor. This is because, as can be seen in Fig. 9,

HandOccNet fails to reconstruct the index finger accurately

for most cases due to the low resolution of the hand regions.

We also replicated geometry-based approaches using the

3D keypoints of the DP dataset. Most of these meth-

ods calculate the pointing direction by estimating the 3D

coordinates of keypoints and connecting them (elbow to

wrist [10, 13, 19] or face to hand [1]). The triangulated

keypoints in the DP Dataset can be used to simulate these

approaches (elbow to hand or nose to hand). The results

are also depicted in Fig. 10 and they clearly show that our



Figure 11. Qualitative evaluation with the PKU-MMD dataset [5]. Note that our model is not retrained on the PKU-MMD and applied

out-of-the-box. DeePoint generalizes well to a completely different dataset.
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Figure 12. Mean angular error (i.e., 3D direction estimate accu-

racy) distribution for each ground truth pointing direction. The re-

sults show that errors increase for pointing with high/low pitches.

DeePoint estimates are more accurate by a wide margin.

These results clearly show that modeling the whole body

movements is essential to achieve accurate pointing di-

rection estimation, especially for in-the-wild scenarios in

which the person is captured from afar.

5.3. Cross­Validation with PKU­MMD dataset

Although there does not exist a large-scale pointing

dataset in the community, PKU-MMD [5], a video dataset

of various actions, contains a small number of pointing

videos in it. We used PKU-MMD Phase # 2 which origi-

nally consists of 7,000 action instances of 41 action classes,

performed by 13 subjects. We use one of the 41 action

classes named “pointing to something with finger” (class

24) for validation. The dataset contains 817,314 non-action

frames, 497,296 non-pointing action frames, and 6,708

pointing frames. The pointing directions, however, are not

annotated in PKU-MMD and we can only conduct qualita-

tive evaluations.

Figure 11 shows the pointing directions estimated by

DeePoint (DP) trained with Split-T of DP Dataset. Note that

the model is not fine-tuned with PKU-MMD (as there are no

ground truth directions to fine-tune on). The detection ac-

curacy was 72.2% for the pointing + non-action frames, and

69.9% for the entire pointing + non-pointing + non-action

frames. From these results, we can conclude that our DeeP-

oint trained with DP Dataset generalizes reasonably well to

new scenes and subjects.

5.4. 3D Direction Accuracy Across Pointing Direc­
tions

To better understand the 3D direction estimation accu-

racy of DeePoint, we evaluate the relationship between the

ground truth pointing directions and the angular error of 3D

direction estimates. Figure 12 shows the angular error as a

distribution over ground-truth pointing directions in Moll-

weide projection. The results show that DeePoint struggles

with pointing with high yaw (> 120◦) with high/low pitches

(> 60◦ or < −60◦). The error is especially high with low

pitches, where the person points down while facing away,

which means the arms are often occluded by the body.

6. Conclusion

In this paper, we introduced a novel method for pointing

recognition and 3D direction estimation. DeePoint lever-

ages the spatio-temporal coordination of a person’s body to

recognize and estimate the timing and direction of pointing

from video frames captured from a fixed-view in a relatively

far distance. We also introduced the DP Dataset, the first

large-scale visual pointing dataset with full annotation of

the timings and 3D directions of natural pointing behaviors

of a variety of people in different scene contexts. We believe

these two fundamental contributions significantly advance

visual pointing understanding and serve as a sound founda-

tion for human behavior and intent understanding. We make

all the data and code publicly available to catalyze further

advances in this field.

Limitation DeePoint can incorporate scene context but

only as 2D images from the fixed viewpoint. Our future

work includes incorporating such explicit visual cues of the

environment, e.g., object detection in the scene to aid in nar-

rowing down the exact object the person is pointing to. We

also plan to explore the use of audio, particularly spoken

words for this. Incorporating more scene context in these

forms has the danger of overfitting to the particular con-

text. We believe DeePoint provides a robust springboard

for these further studies.
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Rafael Medina-Carnicer. Speeded up detection of squared

fiducial markers. Image and Vision Computing, 76:38–47,

Aug. 2018. 4

[30] Yuuichiro Shiratori and Kazunori Onoguchi. Detection of

pointing position by omnidirectional camera. In Proc. of In-

ternational Conference on Intelligent Computing: Intelligent

Computing Theories and Application, pages 774–785, Aug.

2021. 2, 8
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