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Figure 1: Our method enables video-rate, per-pixel surface normal and depth recovery of dynamic underwater objects

without any artificial constraints on one another such as smoothness. The recovered oriented points retain intricate surface

details including sharp geometric features that would otherwise be hard to capture with conventional methods.

Abstract

In this paper, we introduce a novel method for recon-

structing surface normals and depth of dynamic objects in

water. Past shape recovery methods have leveraged vari-

ous visual cues for estimating shape (e.g., depth) or surface

normals. Methods that estimate both compute one from the

other. We show that these two geometric surface proper-

ties can be simultaneously recovered for each pixel when

the object is observed underwater. Our key idea is to lever-

age multi-wavelength near-infrared light absorption along

different underwater light paths in conjunction with surface

shading. We derive a principled theory for this surface nor-

mals and shape from water method and a practical calibra-

tion method for determining its imaging parameters values.

By construction, the method can be implemented as a one-

shot imaging system. We prototype both an off-line and a

video-rate imaging system and demonstrate the effective-

ness of the method on a number of real-world static and dy-

namic objects. The results show that the method can recover

intricate surface features that are otherwise inaccessible.

*Equal contribution.

1. Introduction

Computer vision research has produced a variety of suc-

cessful methods for 3D geometry reconstruction that exploit

different visual cues ranging from focus to texture. Most

of these shape-from-X approaches, however, recover either

the 3D coordinates (i.e., shape) or the surface normals, but

not both. Surface normals are computed from the estimated

shape or the shape is integrated from the surface normals.

Although a number of methods have demonstrated com-

binations of these contrasting recovery approaches, they

require multiple views or active depth sensors and funda-

mentally cannot be used in a single exposure setup, which

precludes the possibility of dynamic surface reconstruc-

tion. Estimating both surface normals and 3D coordinates at

each and every observable pixel simultaneously, but not as

byproducts of each other, is crucial for 3D reconstruction of

general surfaces that can have arbitrary intricate geometric

features. Avoiding the use of multi-view appearance match-

ing is also essential to handle textureless surfaces.

In this paper, we show that per-pixel surface normals

and shape can be simultaneously but separately recovered

for an object immersed in water. In other words, as shown

in Fig. 1, we introduce a novel 3D sensing method to di-
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rectly recover 3D geometry as oriented points. Underwater

3D reconstruction may sound peculiar and limiting, but it

finds significant applications in a wide range of fields in-

cluding medicine (e.g., endoscopy), biology, oceanography,

archaeology, as well as general surveillance and navigation.

Moreover, immersing objects in water for measurements is

non-invasive as long as the object is nonabsorbent and is as

practical as other 3D reconstruction methods.

Our key idea is to leverage multi-wavelength near-

infrared light absorption along different underwater light

paths in conjunction with surface shading. The use of near-

infrared light absorption for shape recovery builds upon re-

cent work by Asano et al. [2]. The integration of shading

cues to this infrared spectral imaging is, however, nontrivial

since unlike regular photometric stereo, light is attenuated.

We derive a principled theory for this dense depth and sur-

face normal recovery, which we refer to as surface normals

and shape from water.

We show that surface normals and shape from water re-

quires at least four near-infrared directional light sources,

each illuminating the object surface whose radiance is cap-

tured with an orthographic camera. When using four light

sources, the theory reveals that one of the light sources,

which we refer to as the base light source, should lie within

the convex cone spanned by other light sources, and that

the remaining light sources can have the same polar angle

with respect to the viewing direction as long as they real-

ize different effective absorption coefficients and also span

a 3D space. Most important, we show when and how the

depth and surface normals can be separately and uniquely

estimated, leading to the identification of preferred combi-

nations of directions and wavelengths of light sources. We

also derive a practical calibration method that automatically

estimates light source directions and intensities.

We demonstrate the effectiveness of our method on a

number of static and dynamic real-world objects with com-

plex shape. We implement the method with two imag-

ing systems, one for off-line capture using an off-the-shelf

monochromatic camera and interchangeable near-infrared

bandpass filters, and another for video-rate capture using

a custom-built multi-wavelength camera. Experimental re-

sults demonstrate the method’s ability to recover intricate

details of shape that dynamically change, which would be

challenging for conventional methods.

2. Related works

We first discuss 3D reconstruction methods that focus

on recovering both surface normals and shape, and then re-

view other underwater surface normal or shape reconstruc-

tion methods.

Surface Normals and Shape Reconstruction in Air A

representative early work that achieves simultaneous pixel-

wise surface normal and shape estimation is Helmholtz

stereo [25, 19], which can also handle non-Lambertian sur-

faces. The method, however, requires interchanged viewing

and lighting directions, which precludes single-shot estima-

tion by definition.

In general, for image-based 3D reconstruction, spatial

disparity in stereo and temporal disparity in shape-from-

motion carry depth information of the scene, while shading

(e.g., photometric stereo and shape-from-shading), polar-

ization, and distortion (e.g., shape-from-texture) carry sur-

face normal information. Naturally, most past methods for

estimating both surface normals and shape combine these

reconstruction cues.

Patch-based stereo methods such as PMVS [7] and

PatchMatch stereo [3] explicitly model the scene as a col-

lection of oriented points. They, however, cannot provide

pixel-wise reconstruction of surface normals and shape as

they require local support of a certain size for evaluating

the stereo matching with slanted windows whose shape de-

forms according to the hypothesized depth and normal.

Surface normal estimation combined with 3D shape re-

construction can also be found in methods for refining out-

puts of active depth sensors. Kadambi et al. [13] proposed

a polarization-based depth enhancement method, and Wu

et al. [22] and Yu et al. [23] have proposed those based

on shape-from-shading. These methods, however, require

an initial estimate of the scene geometry provided by the

depth sensor (e.g., ToF or active stereo), since shading or

polarization themselves do not carry sufficient information

to estimate the normals independently. As such, the normal

estimates are dependent on the depth. One can interpret our

method as using near-infrared light absorption in lieu of an

active depth sensor. Our approach, however, directly recov-

ers both the normals and depth as separate estimates.

Photometric stereo combined with depth sensors [24, 9],

structured light [1], and structure-from-motion [14, 11] can

also return both surface normals and shape. These meth-

ods, however, require multi-view measurement of the target

and/or coarse-to-fine iterative alternating estimation, which

renders single-shot extensions impossible.

For surface normal recovery, Hernández et al. [10] intro-

duced the use of RGB lighting enabling single shot photo-

metric stereo. Our method similarly uses multi-wavelength

light that can be captured in a single exposure, but in the

near-infrared spectrum.

3D Reconstruction in Water Asano et al. [2] proposed

a bispectral imaging approach called shape from water for

underwater depth estimation. It estimates the scene depth

based on the differences in absorption by water at differ-

ent near-infrared wavelengths. Most other studies on 3D

reconstruction in water such as underwater stereo [15], re-

fractive structure-from-motion [12], underwater photomet-
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Figure 2: We leverage (a) wavelength-dependent near-infrared light absorption by water (reprinted from [2]) which can be

modeled with (b) the Beer-Lambert law that relates light attenuation with the absorption coefficient and light path length. We

derive the theory for and implement (c) a multi-wavelength imaging system to achieve simultaneous estimation of depth and

surface normals from multi-path light attenuation and surface shading due to multi-directional near-infrared lighting.

ric stereo [16, 6], shape from chromatic dispersion [4], and

underwater depth from light-field imaging [20] assume ab-

sorption by water plays little effect and focus on applying

in-air conventional 3D reconstruction methods to underwa-

ter imagery. Tsiotsios et al. [21] explicitly model the atten-

uation by medium for photometric stereo. Their method,

however, is an iterative approach involving a normal inte-

gration process for depth recovery.

To our knowledge, our work is the first to achieve simul-

taneous underwater recovery of surface normals and depth.

3. Bispectral Shape from Water

Although water in the visual spectrum has extremely

small absorption coefficients (which is why water appears

transparent), as shown in Fig. 2(a), it increases almost lin-

early in the near-infrared range. As depicted in Fig. 2(b),

light absorption in water can be accurately modeled with the

Beer-Lambert law [18] that expresses transmitted radiance

E as that of incident light L0 which exponentially decays

as a function of the distance d it travels

E = L0 exp [−α(λ)d] , (1)

where λ is the wavelength of light, and α(λ) is the

wavelength-dependent absorption coefficient.

Asano et al. [2] exploited this near-infrared light absorp-

tion for shape recovery, by capturing the same surface with

two near-infrared wavelengths. In particular, they use one

broad near-infrared directional light source and a coaxial

camera system with two distinct near infrared filters (e.g., at

905nm and 950nm). They showed through extensive mea-

surements that the reflectance of object surfaces do not vary

much in the near infrared range, and thus by taking the ra-

tio of the bispectral near-infrared observations, light path

length to and from the object surface and hence its depth

can be estimated. We also leverage their findings that the

spectral characteristics of surface reflectance can be consid-

ered invariant to wavelength in the near-infrared range.

4. Surface Normals and Shape from Water

Our goal is to simultaneously estimate the depth and

surface normals of underwater objects without imposing

unwanted constraints on their dependency such as spatial

smoothness. We also aim to derive a method that can be

implemented as a real-time 3D sensing system. We show

that we can achieve these by capturing the target object un-

der near-infrared directional light sources of different wave-

lengths and directions with an orthographic camera.

4.1. Near-Infrared Multi-Wavelength Imaging

As illustrated in Fig. 2(c), we consider an orthographic

camera oriented fronto-parallel to the flat water surface.

The object in water is illuminated by monochromatic direc-

tional light sources each from a different direction. Let lc
and li denote the viewing direction and the direction of light

source i with wavelength λi and intensity Li, respectively.

Incident light to a surface point x of depth d(x) from the

water surface travels distance
d(x)
l⊤
c
li

in water before reflecting

at x and traveling d(x) into the camera. Recall that near-

infrared light is not absorbed in air, but only in water.

From Eq. 1, for a surface with a factorized reflectance

function s(λ)r(ω) where s(λ) is the spectral component

and r(ω) is the geometric component of reflectance, the in-

tensity of the light captured by the camera becomes

Ei =s(λi)r(ωi)Li exp

[

−

(

1 +
1

l⊤c li

)

α(λi)d(x)

]

=s(λi)r(ωi)Li exp [−α̂id(x)] , (2)

where we have defined the effective absorption coefficient

α̂i =

(

1 +
1

l⊤c li

)

α(λi) . (3)
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As we exploit surface shading, in addition to near-

infrared light absorption, we assume Lambertian surfaces.

Lambertian reflection has a factorized reflectance function

where the albedo is the spectral term and the shading is the

geometric term. Following Asano et al. [2], we assume that

the spectral term, in other words the per-pixel albedo, can

be approximated to be invariant to the near-infrared wave-

length of light

s(λi) = ρ . (4)

The geometric term (i.e. shading) can be expressed as

r(ωi) = l
⊤

i n(x) , (5)

using the surface normal n(x). Therefore we have

Ei = ρl⊤i n(x)Li exp [−α̂id(x)] . (6)

Note that we do not make any assumptions on the spatial

variation of surface albedo.

Suppose another observation of the same point (i.e., the

same pixel position in the camera image) is given for an-

other near-infrared light source j

Ej = ρl⊤j n(x)Lj exp [−α̂jd(x)] . (7)

If we assume Li = Lj by using light sources of equal in-

tensities, we obtain

Ej

Ei

=
l
⊤

j n(x) exp [−α̂jd(x)]

l⊤i n(x) exp [−α̂id(x)]
,

l
⊤

j n(x)

l⊤i n(x)
=

Ej

Ei

exp [(α̂j − α̂i)d(x)] . (8)

Given observations taken under K distinct light sources,

we obtain

1

l⊤1 n(x)
Ln(x) =

1

E1







E2 exp [(α̂2 − α̂1)d(x)]
...

EK exp [(α̂K − α̂1)d(x)]






,

= d(x) , (9)

where we have defined the depth vector d(x) ∈ R
(K−1)×1

and the light source matrix L =
[

l2 · · · lK

]⊤
∈

R
(K−1)×3. We refer to l1 as the base light source and all

the other light sources (i.e., those in the light matrix L) as

auxiliary light sources.

4.2. Depth and Surface Normal Recovery

Eq. 9 is a system of K − 1 non-linear equations of both

depth d(x) and surface normal n(x). Although it does

not have a closed-form solution, we can recover a unique

depth value d(x) and surface normal n(x) for the surface

point x from it. Let us first left-multiply the Moore-Penrose

pseudo-inverse matrix L
+ = (L⊤

L)−1
L
⊤ to both sides of

Eq. 9:
1

l⊤1 n(x)
n(x) = L

+
d(x) . (10)

Then multiplying l
⊤
1 from the left yields

l
⊤
1 n(x)

l⊤1 n(x)
= l

⊤

1 L
+
d(x) , (11)

1 = bd(x) . (12)

where b = l
⊤
1 L

+ (∈ R
1×(K−1)).

We derive conditions on Eq. 12 for a unique and global

d(x), which turns out to be numerical root finding of a

monotonic function as we show in Section 4.3. This means

its global optimal solution can be obtained with conven-

tional numerical optimizers such as Newton-Raphson, effi-

ciently. Moreover, the optimization can utilize the first and

second-order derivatives of bd(x) w.r.t. d(x), thanks to its

simple sum-of-exponents form.

Given the depth d(x) from Eq. 12, we can compute the

surface normal scaled by l
⊤
1 n(x) using the right-hand side

of Eq. 10. The surface normal n(x) is then given by

n(x) =
L
+
d(x)

‖L+d(x)‖
. (13)

As this derivation shows, we can recover the surface nor-

mal and depth at each pixel in the overlapping area of light

sources captured from the single viewpoint. It is important

to note that auxiliary geometric constraints on the object

surface, such as smoothness, are not assumed.

4.3. Conditions for Unique Recovery

Let us now analyze the conditions for unique depth and

surface normal recovery. Once the depth is estimated, from

Eq. 13, we observe that the rank of matrix L must be at

least 3. This condition on light source directions, that they

should span the 3D space, is the same as in regular photo-

metric stereo. This, however, also means that in addition to

the base light source, we need at least three auxiliary light

sources, making the total number of light sources to be at

least four K ≥ 4.

When recovering depth, from Eq. 12, we observe that

the effective absorption coefficients of the auxiliary light

sources should all differ from that of the base light source

[

α̂2 − α̂1 · · · α̂K − α̂1

]

6= 0 . (14)

Recall that the effective absorption coefficient (Eq. 3) is a

function of both the absorption coefficient αi and shading

l
⊤
c li. This requirement of the effective absorption coeffi-

cient does not necessarily mean that all light sources should

have different wavelength or that they should have different
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polar angles with respect to the viewing direction as they

can be combined to satisfy Eq. 14.

The right hand side of Eq. 12 is a general exponential-

sum function of d(x) and therefore does not have a closed-

form solution. It, however, is a monotonic function of d(x),
if all signs of pairs of bi (i.e., the i-th element of b) and

α̂i−α̂1 match. In reality, the light sources cannot be located

in the water and they should be all on the same hemisphere,

which makes the elements of b either all non-negative or

negative. In this case, monotonicity holds when α̂i− α̂1 are

all non-negative or negative for i = 2, . . . ,K, respectively,

since a positive sum of monotonic functions is also mono-

tonic. Requiring that the effective absorption coefficient of

the base light source α̂1 be the minimum of those of all light

sources instead of the maximum also has the advantage for

robust depth estimation as discussed in Section 4.4. In this

case, since all differences in effective absorption coefficient

from the base light source becomes positive, we can obtain

a unique solution when all elements of b are non-negative.

By the definition of pseudo inverse matrix [8], b = l
⊤
1 L

+

is the minimum norm solution for reconstructing l1 as a lin-

ear combination of l2 · · · lk. In the case of K = 4, i.e.,

when we use three auxiliary light sources, this suggests that

if the base light source lies within the cone spanned by the

other three light sources, all the elements of b will be non-

negative and we can attain a global unique solution. This

also intuitively means that making all elements of vector b

be negative is not physically feasible, although it can also

guarantee the monotonicity, since it corresponds to each of

the auxiliary light sources illuminating the target from the

opposite side of the base light source.

In the case of K > 4, identifying the space in which

b ≥ 0 holds is not trivial. In practice, however, since α̂i and

b depend only on the absorption coefficients and the light-

ing directions, and are shared by all pixels, once the illumi-

nation directions are calibrated, we can immediately verify

minimum effective absorption coefficient of the base light

source α̂1 and the non-negativity of elements b. That is,

once the calibrated light source directions satisfy the non-

negative constraint, the depth estimation by function Eq. 12

is guaranteed to be a monotonic function that results in a

unique and global solution.

In summary, the following conditions should be satisfied

when implementing surface normals and shape from water.

• At least four near-infrared directional light sources.

• Auxiliary light source directions should be indepen-

dent from each other.

• The effective absorption coefficient of auxiliary light

sources should be different from that of the base light

source.

• All elements of b should be non-negative.

These conditions leave room for different combinations

of wavelengths and directions of the light sources. For in-

stance, if we choose auxiliary light sources to have the same

wavelength, that wavelength should be different from the

base light source and each of their directions should differ

from one another as well as the viewing direction. If the

auxiliary light source wavelengths are all different, they can

all be situated such that they make the same polar angle

with respect to the viewing direction. Note that the latter

case enables image capture of all the necessary information

for surface normal and shape recovery in a single exposure,

as the multi-wavelength near-infrared lights do not interfere

with each other.

4.4. Depth Accuracy Analysis

If we hypothetically set all lights to have the same direc-

tion li = l1, the right hand side of Eq. 9 becomes an all-one

vector and the depth estimate becomes

d(x) = −
1

α̂k − α̂1
ln

(

Ek

E1

)

, (15)

for every k. This is equivalent to the depth estimate from

bispectral shape from water [2]. Eq. 15 suggests that the es-

timation of depth becomes more accurate as the ratio of the

observed radiance becomes larger. As this condition needs

to apply to all pairs of light sources with respect to the base

light source, in practice this means that the difference in ob-

served radiance from that by the base light source should be

as large as possible for all auxiliary light sources.

If we consider additive noise ǫ to the input images, the

absolute depth error ∆d becomes

∆d = −
1

α̂k − α̂1

(

ln
Ek + ǫ

E1 + ǫ
− ln

Ek

E1

)

= −
1

α̂k − α̂1
ln

(

1 + ǫ
Ek

1 + ǫ
E1

)

. (16)

Eq. 16 shows that the absolute error decreases (i.e., becomes

robust to noise) as the observed radiances become larger.

These results suggest that we should choose the wave-

lengths and light source directions so that the differences of

effective absorption coefficients are maximized, while the

observed radiance due to each corresponding light source is

also made as large as possible.

4.5. Calibration

Up to this point, we have assumed that the projec-

tion model of the camera is strictly orthographic, the light

sources are directional and have equal intensities. In prac-

tice, these requirements are not necessarily met, and we

must account for any deviation, for instance, by scaling ob-

servations by the light source intensities. Although light

source directions can be estimated by placing a chrome ball

at where the target object will be situated and by using the

highlights, the estimates can be erroneous. We derive a
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En = 0.069

En = 1.619

(a) Normal

Ed = 0.007

Ed = 0.015

(b) Depth

En = 29.054

En = 51.674

(c) Normal

from depth

Ed = 0.030

Ed = 0.053

(d) Depth

from normal

Figure 3: Evaluations with synthetic data. (a)(b) Normal

and depth maps estimated by the proposed method. (c)(d)

Normal map computed from the estimated depth map and

vice versa. Our method achieves higher accuracy for both.
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(b) Depth error

Figure 4: Estimation errors at different noise levels. Colors

denote different numbers of auxiliary light sources.

practical calibration method that simultaneously estimates

both light source directions and intensities to achieve robust

and accurate estimation of shape and surface normals.

In particular, we immerse a Lambertian sphere at differ-

ent known depths from the camera, within the space the tar-

get objects will cover. As the radius of the sphere is known

beforehand, we can compute the ground truth of depth d̂(x)
and surface normal n̂(x) at any given point x on the sphere.

The light source direction vectors l = {l1 · · · lK} and their

intensities L = {L1 · · ·LK} can then be estimated by min-

imizing the L2 error

argmin
l,L

n
∑

i=1

m
∑

j=1

(

k1‖d̂(x
i
j)− d(l, L, xi

j)‖

+ k2‖1− n̂(xi
j) · n(l, L, x

i
j)‖
)

,

(17)

where n is the number of captured images, m is the number

of valid pixels, k1 and k2 are scalar weights, and d and n

are the estimated depth and normals, respectively.

5. Experimental Results

We experimentally validate our method using synthetic

and near-infrared real light sources in the range of 900nm

to 1000nm. The absorption coefficient in this wavelength

range varies dramatically from roughly 5×10−3 to 3×10−2.

5.1. Quantitative Evaluation with Synthetic Data

We quantitatively evaluate the reconstruction accuracy

and noise robustness of our method using 8-bit synthetic

images rendered with PBRT [17]. We render the images

with an orthographic camera facing the target under K light

sources, one coaligned with the camera as the base light

source and others around it forming a regular (K−1)-sided

polygon as auxiliary light sources. The K absorption coef-

ficients are defined as an arithmetic sequence from 5×10−3

to 3×10−2.

Fig. 3 shows results for the minimal imaging configura-

tion of K = 4. In addition to the recovered surface normals

and depth by our method (a,b), Fig. 3 shows surface nor-

mals computed from the estimated depth by numerical dif-

ferentiation (c), and depth integrated from estimated surface

normals[5] (d), each of which corresponds to how surface

normals and shape would be estimated using conventional

methods such as stereo and photometric stereo, respectively.

The errors En and Ed represent RMSEs of the estimated

normals in degrees and the estimated depth normalized by

the object size, respectively. These results clearly demon-

strate the fundamental advantage of our simultaneous per-

pixel estimation of surface normal and depth. Conventional

methods inevitably rely on one estimate to obtain the other,

which results in significant reduction in accuracy.

Fig. 4 plots estimation errors at different noise levels.

The value σ is the standard deviation of zero-mean Gaussian

noise injected to the input intensities ranging in [0 : 1]. The

blue to purple curves show results when using 3 to 8 aux-

iliary light sources, respectively. The brown curve shows

results by bispectral shape from water [2], using two light

sources of absorption coefficients 5 × 10−3 and 3 × 10−2

coaligned with the camera. These results show that the er-

rors increase linearly with more noise, but that increasing

the number of light sources dampens the effect.

5.2. Static Object Reconstruction

We implemented the method for off-line surface normal

and shape recovery of static underwater objects using off-

the-shelf imaging components. The imaging system con-

sists of four light sources each with a Fresnel lens and a

monochromatic camera (Grasshopper3 GS3-U3-41C6NIR)

equipped with interchangeable near-infrared bandpass fil-

ters. We use four distinct near-infrared wavelengths of

880nm, 905nm, 925nm, and 950nm. Each light source is

placed in different angles w.r.t. the viewing direction, while

satisfying the convex cone requirement. We opt for this

imaging configuration of four different wavelengths and di-

rections of light sources as it gives maximum difference in

effective absorption coefficients.

The absorption coefficients, four light source directions,

and their intensities need not be known beforehand, which

significantly increases flexibility in the imaging setup. Ab-

7835



Figure 5: Reconstruction results of static objects captured with our multi-wavelength near-infrared imaging system using a

regular near-infrared camera with interchangeable band-pass filters. For each object, from left to right, we show the room-

light appearance, recovered surface normals, depth, and 3D surface as oriented point clouds from two different viewpoints.

The results show that our method successfully simultaneously recovers both surface normals and depth at each pixel and

retain geometric details as shown in the zoomed-in insets.

sorption coefficients can be calculated from the Beer-

Lambert law by capturing a flat white target in water at a

known depth. Both light source directions and intensities

are estimated with the calibration method in Sec. 4.5. En

and Ed before and after calibration were 27.039 and 0.183,

and 7.728 and 0.002, respectively. En and Ed of another

sphere not used in calibration put at a different position were

Figure 6: We implement a video-rate surface normal and

shape from water imaging system using four light sources

each placed with a Fresnel lens and a near-infrared band-

pass filter and a custom-built multi-wavelength camera. A

visible spectrum light source is used to also capture texture.

7.85 and 0.002, which validates the accuracy of calibration.

We apply our method to real objects with complex sur-

face geometry including sharp bumps and creases as well as

discontinuities. Fig. 5 shows the estimated surface normals

and depth of real objects with varying color and texture.

We can observe that our method is capable of reconstruct-

ing accurate per-pixel depth and surface normals that pre-

serve surface details irrespective of surface discontinuities

or abrupt changes in normal orientations.

6. Dynamic Object Reconstruction

We also implement our method as a video-rate 3D sens-

ing system. For this, as shown in Fig. 6, we replace the

camera with a custom-built 10-bit multi-wavelength cam-

era by EBA Japan that can capture the scene in six different

wavelengths each at 14fps. We used 852, 880, 905, 950nm

for the near-infrared band-pass filters. We used two addi-

tional filters in the green and blue wavelength ranges, which

combined with the 852nm provide regular RGB color infor-

mation of the scene. To capture this color information, we

added a regular light source (as shown in Fig. 6). Note that

this additional light source does not interfere with the near-

infrared light sources. The fact that we can capture tex-

ture information simultaneously with the surface normals

and shape is another advantage of our method. Theoreti-
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Figure 7: Results of video-rate reconstruction of a swimming Siamese fighting fish using an implementation of our method

with a custom-built multi-wavelength camera. From top to bottom, each row shows the texture, surface normal, depth, and

shaded oriented points.

cally speaking, this implementation is not a one-shot imag-

ing system, as the six images are captured consecutively not

at once. In practice, the time difference between the differ-

ent wavelengths was small enough for the dynamic objects

we used in the experiments. If necessary, we can align the

observations using estimated optical flow. Fig. 7 shows sev-

eral frames from the video-rate normal and shape recovery

of a swimming fish.

7. Conclusion

In this paper, we introduced a novel method for simulta-

neous recovery of surface normals and depth of objects in

water. We derive the near-infrared multi-wavelength imag-

ing principle based on the idea of leveraging light absorp-

tion along different underwater light paths associated with

surface shading. Experimental results show that our method

can reconstruct accurate pixel-wise depth and surface nor-

mal of complex dynamic surfaces with challenging geomet-

ric features. We believe surface normals and shape from

water would be a viable option for 3D sensing, especially

as it can directly measure dynamic 3D surfaces as textured

oriented points in real-time.
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Stamminger, Shahram Izadi, and Christian Theobalt. Real-

time shading-based refinement for consumer depth cameras.

ACM Trans. Graph., 33(6):200:1–200:10, Nov. 2014. 2

[23] Lap-Fai Yu, Sai-Kit Yeung, Yu-Wing Tai, and Stephen Lin.

Shading-based shape refinement of rgb-d images. In Proc.

CVPR, pages 1415–1422, 2013. 2

[24] Qing Zhang, Mao Ye, Ruigang Yang, Yasuyuki Matsushita,

Bennett Wilburn, and Huimin Yu. Edge-preserving photo-

metric stereo via depth fusion. In Proc. CVPR, pages 2472–

2479, 2012. 2

[25] Todd E. Zickler, Peter N. Belhumeur, and David J. Krieg-

man. Helmholtz stereopsis: Exploiting reciprocity for sur-

face reconstruction. IJCV, 49(2-3):215–227, Sept. 2002. 2

7838


