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Reflectance and Illumination Recovery
in the Wild
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Abstract—The appearance of an object in an image encodes invaluable information about that object and the surrounding scene.
Inferring object reflectance and scene illumination from an image would help us decode this information: reflectance can reveal
important properties about the materials composing an object; the illumination can tell us, for instance, whether the scene is indoors
or outdoors. Recovering reflectance and illumination from a single image in the real world, however, is a difficult task. Real scenes
illuminate objects from every visible direction and real objects vary greatly in reflectance behavior. In addition, the image formation
process introduces ambiguities, like color constancy, that make reversing the process ill-posed. To address this problem, we propose
a Bayesian framework for joint reflectance and illumination inference in the real world. We develop a reflectance model and priors that
precisely capture the space of real-world object reflectance and a flexible illumination model that can represent real-world illumination
with priors that combat the deleterious effects of image formation. We analyze the performance of our approach on a set of synthetic
data and demonstrate results on real-world scenes. These contributions enable reliable reflectance and illumination inference in the
real world.

Index Terms—Reflectance estimation, natural illumination estimation, real-world reflectance, DSBRDF
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1 INTRODUCTION

AN image is a function of several scene components:
object geometry, object reflectance, and scene illu-

mination. Inferring one or more of these components
from an image can, therefore, inform us about the world.
The reflectance properties of an object, for instance, can
provide valuable information about the materials that
make up the object (e.g., [1]). The illumination environ-
ment can tell us about the scene itself—for example,
it can indicate whether a scene is indoors or outdoors.
Acquiring the reflectance of an object would enable the
prediction of object appearance in a novel scene, helping
support appearance-based object tracking and recogni-
tion. The most critical factor in solving this problem
successfully is that we must design an approach with
real-world input in mind. Past methods have mostly
relied on limiting assumptions that confine them to
laboratory settings with specific requirements (e.g., point
light sources and Lambertian reflection).

In this work, we investigate the problem of estimating
object reflectance and scene illumination from a single
image given the geometry of that object. We would like
to solve this problem for images taken in the wild—
images of real-world objects taken under natural, com-
plex illumination. For this, we make as few limiting
assumptions about reflectance and illumination as pos-
sible: we don’t assume that reflectance can be accurately
represented by simple models like Lambert’s law [2] or
Torrance-Sparrow [3] and we don’t assume that illumi-
nation can be modeled by a small set of point lights or a
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small set of generic linear bases. Rather, we will leverage
highly expressive reflectance and illumination models
that do not constrain us to simple synthetic scenes. This
added flexibility significantly complicates the problem
by introducing many additional variables. To address
this difficulty, we must analyze the natural variation of
real-world reflectance and the effect of reflectance on the
illumination environment.

Reflectance and illumination separately contribute to
the difficulty of the joint inference problem. Fitting a
reflectance function from a single image is difficult even
when the illumination is known because a single im-
age only reveals a small fraction of the full reflectance
function [4]. An inference approach must therefore be
able to sensibly extrapolate this unseen information.
The addition of unknown natural illumination further
complicates the problem because of the sheer number
of variables introduced. Many approaches assume that
natural illumination can be modeled with a low-order
parametric model like spherical harmonics or a small
number of point light sources. These models fail to
accurately predict scene irradiance when the reflectance
model is not Lambertian. A full-color non-parametric
illumination model representing the sphere of incident
illumination is necessary to model real-world scenes.

Reflectance and illumination themselves are not the
only problem—their interaction compounds the diffi-
culty. Several ambiguities exist between reflectance and
illumination caused by the image formation process
that thwart inference algorithms. One is a bilinear am-
biguity between the magnitude of the reflectance and
the illumination. The consequence of the ambiguity is
that multiplying the reflectance by a scale factor and
dividing the illumination by that same scale factor will
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produce the same image as the unscaled reflectance and
illumination. The problem is compounded by the fact
that the bilinear ambiguity exists among each color chan-
nel independently and therefore gives rise to the color
constancy problem. If we observe an object in an image,
we cannot be sure whether the color of that object is
due to the reflectance function, the incident illumination,
or some combination of both. An ambiguity also exists
between the specularity of the reflectance function and
the sharpness of the illumination map, as first noted by
Ramamoorthi and Hanrahan [5]. This means that if we
increase the specularity of the reflectance function and
blur the illumination environment, we would produce
the same image as the original reflectance and illumina-
tion. Consequently, a trivial solution to the reflectance
and illumination inference problem is a perfect mirror
reflectance function. Careful use of prior knowledge is
required to resolve these ambiguities.

In this paper, we develop a framework for reflectance
and illumination inference from a single image. Our ap-
proach incorporates an expressive yet low-dimensional
reflectance model. This is achieved through the use of
a flexible bidirectional reflectance distribution function
(BRDF) model with a data-driven component that per-
mits compactness. We augment the reflectance model
with a data-driven prior that enables intelligent extrapo-
lation of unobserved portions of the reflectance function.
In addition, we use a flexible illumination representation
with simple but powerful priors that enable tractable
illumination inference. We combine these elements using
a Bayesian framework that allows for canonical inference
by means of maximum a posteriori (MAP) estimation.

The reflectance model is based on the Directional
Statistics BRDF (DSBRDF) model originally introduced
by Nishino [6] and later extended by Nishino and Lom-
bardi [7]. The DSBRDF represents reflectance as a sum
of “lobes” that are each written as a directional statistics
distribution in the half vector BRDF parameterization
[8]. We further enhance the model by separating color
and intensity from each reflectance lobe. This separation
allows us to develop an additional reflectance prior
that captures the joint variation of lobe color. We also
extend the reflectance prior introduced by Lombardi and
Nishino [9] by modeling the distribution of DSBRDF
coefficients as a mixture of Gaussians. These extensions
allow for a more expressive yet compact modeling of
real-world reflectance.

Our illumination model is a non-parametric repre-
sentation of the incident illumination field. A non-
parametric model allows for a great deal of expressibility
that must be constrained in order to reduce the solution
space. We use several priors to do this. First, we adopt
the entropy prior introduced by Lombardi and Nishino
[10] that models the entropy loss of the illumination
due to its interaction with the object reflectance. We also
utilize a natural image statistic prior that encourages a
plausible natural illumination environment to be recov-
ered.

We thoroughly evaluate the effectiveness of our
Bayesian joint estimation with synthetic and real images.
First, we show how our reflectance model can accurately
express a wide variety of real, measured reflectance
functions from the MERL BRDF database [11]. Next, we
demonstrate the ability of our model to successfully infer
reflectance and illumination in a number of synthetic
scenes. We quantitatively evaluate results on synthetic
scenes by computing the log-space root-mean-square
error between the ground truth and inferred reflectance
and illumination. We qualitatively discuss results on real
scenes and compare inferred illumination to the ground
truth. In the end, we show that the key features of the
model greatly ease this difficult inference problem.

2 RELATED WORK

The problem of inferring reflectance and other scene
properties from an image has received considerable at-
tention in computer vision. Photometric stereo [12] and
shape-from-shading [13] are two early algorithms that
attempt to solve an instance of this problem. Many
early methods, however, impose simplistic assumptions
about objects (e.g., that they exhibit ideal Lambertian
reflectance) that inherently limit their applicability. Al-
though many of these restrictions have been relaxed as
the body of work has grown, there is still a need for
methods that function effectively in the wild.

It is commonly assumed in the literature that ma-
terials exhibit simple reflectance behavior. Ikeuchi and
Sato [14] propose a method to recover diffuse (Lamber-
tian) and specular (Torrance-Sparrow) reflectance from
known geometry under a single unknown point light
source. Although this is done from a single view, the
reflectance model is unable to capture the visual ap-
pearance of many real-world materials. Sato et al. [15]
recover spatially-varying reflectance properties from the
full geometry and image intensity from multiple views.
This work also uses a Lambertian plus Torrance-Sparrow
reflectance and a point-light illumination model that
limits its applicability.

Advanced models of reflectance have been developed
that can capture real-world behavior more accurately.
Properly measuring a real-world reflectance function re-
quires taking many different angular samples of both the
incident and exitant directions of light. Numerous meth-
ods have been developed to do this. Ward [16] develops
a curved mirror apparatus to easily capture multiple in-
cident light directions at once. This apparatus is used to
measure real-world reflectance functions and fit them to
a parametric anisotropic BRDF model. Marschner et al.
[17] move the camera around a curved object illuminated
by a point light to measure the reflectance function. This
method is primarily designed for BRDF measurement in
laboratory settings. Dana et al. [18] extend the concept
of a BRDF by including the spatial domain, giving rise
to the bidirectional texture function (BTF). They use a
robotic arm to automatically rotate material samples to
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sufficiently cover the angular domain of the reflectance
function. Matusik et al. [11] introduce an image-based
BRDF capture apparatus that relies on curved surfaces to
provide many surface normals so that only a light source
must be moved. They construct a novel BRDF model that
leverages a large set of measured reflectance functions
to create non-parametric data-driven reflectance bases.
These developments have made it possible to capture
a large number of real-world reflectance functions from
an image easily. Unfortunately, these methods require a
specialized apparatus in a controlled laboratory environ-
ment to acquire reflectance data and many observations
to properly acquire a BRDF.

Many authors have adopted sophisticated reflectance
models to recover object reflectance outside the labo-
ratory. Zickler et al. [19] develop a method to mea-
sure spatially-varying reflectance from a small set of
images. This work uses a non-parametric BRDF model
but overcomes the need for many reflectance samples by
“sharing” observations between the spatial and angular
domain. Lombardi and Nishino [9] estimate spatially-
varying reflectance using a parametric but flexible re-
flectance model. The reflectance model used is a key
contribution, as it provides a low-dimensional repre-
sentation that is still able to capture real-world BRDF
behavior, but the illumination is assumed to be a point
light. Although these methods use more complex models
for reflectance, expressive illumination models are also
necessary for the real world.

Some past works have explored sophisticated illumi-
nation models for real-world radiometric scene prop-
erty recovery. Marschner and Greenberg [20] estimate
a lighting distribution using a sum of basis functions
from a single image, but assume Lambertian reflectance.
Nishino et al. [21] recover a Lambertian plus Torrance-
Sparrow reflectance model under an unknown lighting
distribution from a small set of images. Hara et al. derive
a spherical Torrance-Sparrow reflection model to jointly
estimate multiple point sources and the reflectance pa-
rameters through mixture modeling on a unit sphere
[22]. The main limitation of this work is the use of polar-
ization filters to manually separate specular highlights.
Barron and Malik [23] construct a complete framework
for joint spatially-varying reflectance, spatially-varying
illumination, and geometry estimation. In this work,
the illumination is modeled using spherical harmonics,
but the reflectance model is simply Lambertian. For
recovering reflectance and illumination in the wild, we
need to represent both reflectance and illumination in a
general way.

Ramamoorthi and Hanrahan [5] introduced a signal-
processing framework for unconstrained reflectance and
illumination environments. This work analyzed the the-
oretical ambiguities that exist between the reflectance
and illumination by representing both with spherical
harmonics and enumerated the situations under which
they cannot be separated. A major practical concern of
this work, however, is the large number of input images

required and the limited expressiveness of generic bases
like spherical harmonics that require excessively many
coefficients to express high-frequency illumination and
reflectance (e.g., strong directional light in a scene and
specularities, respectively).

Romeiro and Zickler [24] introduced a practical
method to estimate real-world reflectance functions un-
der known natural illumination from a single image.
This method is able to effectively tackle real-world
scenes by using a non-parametric data-driven BRDF
model. Later, Romeiro and Zickler extended this work to
unknown natural illumination [25]. The main drawbacks
of their method are that the illumination environment is
not inferred but instead marginalized out and that the
reflectance and illumination are actually monochrome
(color is added later as a post-processing step). The
illumination environment itself conveys a wealth of in-
formation as it is the scene itself surrounding the object;
inferring it jointly with reflectance is therefore useful.

Preliminary work of our method appeared in [10]
which introduced a method for solving this problem
fully (i.e., a method for recovering real-world reflectance
functions and natural illumination from a single image
with known geometry). The development underpinning
this method is the DSBRDF [7], a low-order parametric
BRDF model capable of representing a great deal of
real-world reflectance functions. The DSBRDF is highly
expressive because it represents the BRDF as a sum
of reflectance “lobes” that are written as a probability
distribution using the half vector parameterization of
the BRDF [8]. It achieves compactness due to a set
of data-driven basis functions that capture common
modes of variation among real-world BRDFs. Combined
with a novel entropy prior on the natural illumination,
this method can enable the estimation of real-world
reflectance and illumination. In this paper, we expand
this work by enhancing the reflectance model and priors
and by more deeply analyzing the model.

3 MODELING MATERIAL REFLECTANCE

There is often a trade off between the number of param-
eters of a reflectance model and its expressiveness (i.e.,
the variety of reflectance it can model). We want a model
that is both extremely expressive (i.e., one that can model
most real-world objects) and low-dimensional (so that
it can be reliably estimated). We also want the model
to be amenable to constraints that help to encourage
reflectance estimation to take on only plausible values.

3.1 Directional Statistics BRDF

We adopt the Directional Statistics Bidirectional Re-
flectance Distribution Function (DSBRDF) model [6], [7]
that has these desirable properties. The DSBRDF model
is able to express an extremely wide variety of measured
material reflectance functions while being compact due
to a set of data-driven reflectance bases.
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The DSBRDF model uses the halfway vector parame-
terization introduced by Rusinkiewicz [8]. This param-
eterization is centered around the half vector (i.e., the
vector between the viewing direction and the lighting
direction) where θd is the angle between the viewing
direction and the half vector and θh is the angle between
the half vector and the surface normal. We write the
DSBRDF as a sum of reflectance “lobes,” each a statistical
distribution over the hemispherical domain of θh,

%λ(θd, θh;κ, γ) =
∑
r

exp
[
κλ,r(θd) cosγλ,r(θd) θh

]
− 1. (1)

Here κ controls the overall brightness of the lobes and γ
controls the specularity. In practice, we represent κ and
γ with degree two B-splines with nine knots [7]. Note
that there is a unique κ and γ for each color channel
λ and lobe r. Most important, κ and γ are functions of
θd—this gives the model its expressiveness [6] [7].

A BRDF represented with the DSBRDF model can now
be thought of as a set of (κ, γ)-curves, one for each lobe.
The (κ, γ)-curves control the behavior of the reflectance
function across different slices of the BRDF. Capturing
the variation of these curves is the key to achieving a
compact but expressive model.

Because (κ, γ)-curves give a complete description of
the BRDF, we can fit them to a set of measured re-
flectance data (such as the MERL BRDF database [11]).
After acquiring fits for a set of measured BRDFs, we use
functional principal component analysis (FPCA) on the
(κ, γ)-curves to compute a set of reflectance bases bi [7].
We then represent the (κ, γ)-curves using a log-linear
combination of the bases:

κλ,r(θd) = exp

[
bµ(θd;κ, λ, r) +

∑
i

ψibi(θd;κ, λ, r)

]
, (2)

γλ,r(θd) = exp

[
bµ(θd; γ, λ, r) +

∑
i

ψibi(θd; γ, λ, r)

]
, (3)

where bµ is the mean function, bi are the learned basis
functions, and ψi are the DSBRDF coefficients. By using
a subset of the basis functions, we can trade off accuracy
and compactness.

3.2 Modeling Color Explicitly
The reflectance parameter Ψ controls the intensity of
each reflectance lobe and color channel jointly. While
a single set of parameters is an elegant solution for
modeling reflectance, we can improve the representation
by modeling the color of each lobe explicitly. Doing this
allows us to place separate, specialized priors on the
color and luminance of the BRDF.

We represent the BRDF color by introducing a chro-
maticity vector for each lobe. The chromaticity, c, mod-
ulates the color of each lobe,

%λ(θd, θh;κ, γ, c) = (4)∑
r

cr,λ

(
exp

[
κr(θd) cosγr(θd) θh

]
− 1
)
,

where λ is the color channel, and with the constraint
that

∑
λ c = 1, which ensures that the chromaticity vector

does not influence the overall luminance of the lobe. This
removes the dependency of κ and γ on the color channel
λ. The separation is key to more tightly modeling real-
world reflectance.

Figure 1 compares the fits of several variants of the
DSBRDF model with measured reflectance functions.
The variants of the DSBRDF shown are the (κ, γ)-curves
modeled as B-splines, (κ, γ)-curves modeled as a com-
bination of the learned bases, and the color-separated
model presented in this work. The figure illustrates
how the color-separated model maintains expressiveness
while drastically increasing compactness. These careful
steps to lower the dimensionality of the model but
preserve the quality are essential to the framework.

Figure 2 shows a comparison of the modeling error
of BRDFs fit to measured data from the MERL database
[11]. We compare the DSBRDF model (with color sepa-
ration) to the bivariate model proposed by Romeiro and
Zickler [24] and a simple Lambertian plus Cook-Torrance
BRDF [26]. Here we measure accuracy using root-mean-
square error in log-space,

E`-RMS =

√√√√ ∑
θh,θd,φd

(
log f(θh, θd, φd)− log %(θh, θd)

)2
N

,

(5)
between the measured BRDF f(θh, θd, φd) and the fit
BRDF %(θh, θd). As noted by [11], when comparing two
BRDFs it is critical to take the log because the specular
peaks of the BRDFs typically have values orders of
magnitude greater than the diffuse portions. The bi-
variate BRDF model is a non-parametric representation
that depends only on θd and θh and is computed by
averaging over φd. The figure shows that the DSBRDF
model can accurately model real-world BRDFs with less
free parameters than a combination of Lambert’s Law
and Cook-Torrance.

3.3 Reflectance Priors
With color separated from the rest of the model, we can
develop more specialized priors. We first place a prior on
the (κ, γ)-curves. In the earlier DSBRDF work [9], [10],
a single Gaussian distribution was used to model the
distribution of basis coefficients. We extend this prior by
utilizing a mixture of Gaussians,

p(Ψ) =
∑
i

πiN(Ψ|µi,Σi). (6)

This extension provides a tighter fit to the data without
sacrificing generality.

Figure 3 shows a visualization of the prior overlaid
onto the DSBRDF space. The DSBRDF space is visualized
by plotting the projections of each BRDF onto the first
two basis functions b0, b1. We overlay the ellipses of the
Gaussian mixture to observe how it models the space
of BRDFs. We can see that the mixture of Gaussians is
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(a) (b) (c) (d)

Fig. 1. Fitting variants of the DSBRDF model to mea-
sured BRDF data. This figure illustrates how we arrive
at a compact analytical reflectance model while retaining
expressiveness. Column (a) is a ground-truth rendering
of the MERL BRDF in three different illumination envi-
ronments. Column (b) shows renderings of the DSBRDF
model with (κ, γ)-curves represented as B-splines with
color integrated into each lobe representation [7]. This
model has three colors, three lobes, and six parameters
per B-spline for a total of 108 free variables. Column
(c) shows renderings of the DSBRDF model with (κ, γ)-
curves represented with the learned bases bi truncated
at 16 parameters with color integrated into each lobe
representation. This model has 16 free variables. Column
(d) shows renderings of the DSBRDF model with color
represented explicitly for each lobe (see main text). This
model uses 10 basis coefficients and 2 variables per lobe
for chromaticity for a total of 16 free variables. From the
figure we can see qualitatively that the DSBRDF model
with color represented separately has expressiveness
comparable to the “full” DSBRDF model (Column (b)) but
with only 16 parameters.

able to naturally identify different types of reflectance
functions. For example, it captures primarily diffuse
reflectance functions in one cluster, many shiny metals
and plastics in another cluster, and those in-between in
the third cluster. This observation supports the use of
a mixture model as a distribution on likely reflectance
parameters.

We can now place a novel prior on the chromaticity
vectors. The most important variation we should capture
is the variation in color among the lobes—that is, the
joint variation of lobe chromaticity. We observe that the
chromaticity vectors in a BRDF will often have similar
hue but will not necessarily have similar saturation. We
use this observation to construct a simple prior distribu-
tion that quantifies the relationship of lobe chromaticity.
This is difficult to do, however, as there is no obvious
reparameterization of chromaticity into “hue” and “sat-
uration”. We must therefore derive a hue representation.

Hue is typically encoded as a rotation around the cen-
ter of a color triangle. Chromaticity is represented with
Barycentric coordinates so it would be unnatural to try
to compute this rotation as if it were a Euclidean space.
Instead, we will use a function that gives a vector that
is invariant to saturation. First, consider the function,

gi(x, α) =
xαi∑
i′ x

α
i′
, (7)

where x is a Barycentric coordinate. As alpha grows,
the point x will move from the center of the color
triangle toward the nearest corner. The derivative of g
with respect to α at α = 0,

g′(x, 0) ∝ L log x, (8)

where

L =

 2 −1 −1
−1 2 −1
−1 −1 2

 , (9)

will give a vector whose direction can be interpreted
as “hue” and whose magnitude can be interpreted as
“saturation”. Normalizing it will then give us “hue”:

h(x) =
L log x

‖L log x‖
. (10)

Given that the hue vector lies on the unit circle, it
is a natural choice to place a von Mises distribution
[27] on it. In order to address the relationship of lobe
chromaticity vectors in a BRDF, we will construct a prior
distribution for pairs of lobe chromaticity vectors. The
prior distribution for the chromaticity of lobe r given
the chromaticity of lobe r′ is,

p
(
h(cr) | h(cr′)

)
∝ exp

[
κhh

T(cr′)h(cr)
]
, (11)

where κh is the concentration parameter. Assuming there
are three conditionally independent lobes and assuming
a uniform marginal distribution, we can write the joint
distribution for c,

p(c) = p
(
h(c2) | h(c1)

)
p
(
h(c3) | h(c1)

)
. (12)

Intuitively, this prior encourages lobes to have similar
hues regardless of saturation.

Figure 4 visualizes the distribution of chromaticities
among the lobes in several BRDFs and gives empirical
evidence for our prior. For these example BRDFs, we also
illustrate the path of the Eq. 7 as α is varied from zero
to infinity. Any two lobes having the same dashed path
will have the same chromaticity hue vector. Also shown
is the distribution of the angles between chromaticity
hue vectors for each unique pair of lobes for all MERL
BRDFs. This data is used to fit the parameter κh for
the von Mises prior distribution. We can see that the
distribution is peaked where the hue vectors are pointing
in the same direction, indicating a strong correlation of
hue among lobes.
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Fig. 2. Comparison of the DSBRDF model to the non-parametric bivariate model [24] and Cook-Torrance [26]. This
figure shows the log-space RMSE of fitting Lambertian and 1 lobe of Cook-Torrance (10 free parameters), Lambertian
and 3 lobes of Cook-Torrance (24 free parameters), the DSBRDF with color separation modeled with a small number of
learned bases (13 free parameters), the full DSBRDF model with color separation (42 free parameters), and the non-
parametric bivariate BRDF (24,300 parameters). The vertical grey bars highlight the BRDFs used in Figure 1. The
figure demonstrates that the DSBRDF model accurately captures real-world reflectance functions with a low-order
parameterization.

Fig. 3. Reflectance prior overlaid onto a 2D slice of the
DSBRDF space. The BRDFs of the MERL database are
visualized by the first two eigenfunction coefficients in the
DSBRDF model. The ellipses of the Gaussian mixture are
shown. We can see that the mixture of Gaussians is a
good model for this distribution.

4 MODELING NATURAL ILLUMINATION

Handling natural illumination is essential to enable
radiometric scene property inference from real-world
images. Real-world scenes cannot be adequately repre-
sented by simple models like a small set of point lights
or spherical harmonics. We must consider that a scene
is illuminated by every visible direction in full color.
Although this ostensibly burdens the inference problem,
there is a great deal of latent structure in the natural
illumination environment that we can exploit.

4.1 A Non-parametric Illumination Model
In the past there have been numerous approaches for
modeling natural illumination environments. Barron and
Malik use spherical harmonics as a linear basis [23].
Romeiro and Zickler model natural illumination as a
linear combination of data-derived basis functions [25].
Rather than attempt to reduce the variability of the
representation, we use a very expressive representation
but control variability with carefully constructed priors.
The priors will help overcome the ambiguities of the
problem and encourage the recovery of accurate illu-
mination maps. We represent natural illumination non-
parametrically as a dense grid on the sphere param-
eterized by latitude and longitude which we call the
illumination map L = {Lθ,φ,λ} for incident angle {θ, φ}
and color channel λ. We can think of this representation
as a wide-angle image of the surrounding environment.
Because of the great expressiveness afforded by this
model, we must apply intelligent priors to constrain the
solution space and recover sensible estimates.

4.2 Illumination Priors
As shown in previous work, reflectance acts as a band-
pass filter on the illumination environment causing an
ambiguity between reflectance and illumination. The
BRDF acting as a bandpass filter causes a blurring of the
illumination and thus a spreading of the histogram. As
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We then fit a von Mises distribution to this (cyan curve).
The strong correlation of lobe chromaticity hue vectors
shows that the novel BRDF chromaticity prior effectively
constrains the BRDF color to reflect that of real-world
BRDFs.

shown by Lombardi and Nishino [10], this increases the
entropy of the reflected radiance. We’d like to recover
the true illumination environment and to do this we
assume that the entropy increase in the observed image
is due entirely to the BRDF. To this end, we constrain the
illumination to have minimum entropy, so that the BRDF
will be responsible for causing the increase in entropy of
the outgoing radiance.

We minimize the entropy of the illumination map with
an exponential distribution,

p1(L) = λE exp
[
− λEE(L)

]
. (13)

We use the continuous form of entropy,

E(L) = −
∫
H(x) logH(x)dx, (14)

so that we can use gradient-based optimization methods.
We also use kernel density estimation to model the
histogram of illumination map pixel intensities H for
the same reason,

H(x) =
1√

2πσ2

∑
θ,φ,λ

exp

[
− (x− Lθ,φ,λ)2

2σ2

]
. (15)

We know that the natural illumination environment
can be interpreted as a wide-angle image of the scene
surrounding the object. It follows, then, that we can
place natural image statistics priors on the illumination
environment to properly constrain it (e.g., [28]). We
therefore place a simple heavy-tailed prior distribution
on the gradient magnitudes of the illumination map
using a hyper-Laplacian distribution,

p2(L) ∝
∏
θ,φ

exp

−b−1
√√√√∑

λ

∂Lθ,φ,λ
∂θ

2

+
∂Lθ,φ,λ
∂φ

2

α ,
(16)

with α < 1. Note this formulation of the image gradient
magnitude takes the color of the gradient into account.

This prior is important for two reasons. First, it helps
promote natural image statistics in recovered illumina-
tion maps. It will also help conquer the ambiguity be-
tween the specularity of the reflectance and sharpness of
the illumination map by deterring the optimization from
choosing the trivial solution—a mirror-like reflectance
function and a blurred illumination map. If the current
estimate is the trivial solution, the soft gradients of the
illumination map will cause the image-gradient prior to
have very low probability.

Multiplying the two illumination priors together, we
obtain the complete illumination prior,

p(L) ∝ p1(L)p2(L). (17)

Finally, we must address the color constancy problem.
As mentioned, there is a bilinear ambiguity between the
reflectance and illumination that exists independently
in each color channel. This gives rise to the color con-
stancy problem: we cannot know whether an observed
pixel color is due to the object reflectance or the color
of the illumination. To address this problem, we use
the same approach taken by Lombardi and Nishino
[10] by adopting the grey world assumption. In effect,
the reflectance function will explain most of the color
variation of the scene, leaving the illumination map to
fill the gaps. To implement this in our framework, we
will estimate reflectance and illumination in two passes.
In the first pass, we constrain the illumination to be
greyscale, forcing the reflectance function to explain the
colors observed of the image. In the second pass, we use
the previous results to initialize but allow illumination
to estimate in full color.
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Fig. 5. Quantitative evaluation of single point light experiments and select results. On the left, this figure shows the
log-space RMSE (Eq. 5) of recovered BRDFs from 500 single point light experiments. Each BRDF from the MERL
database was illuminated by a point light at 0, 30, 60, 90, and 120 degrees from the viewing direction. On the right, we
highlight several example results to illustrate how certain log-space RMSE values correspond to perceptual accuracy.
The BRDFs on the right are visualized by rendering a sphere under several point light directions.
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Fig. 6. Quantitative evaluation of point light direction
estimation. This figure shows the distribution of point
light direction error in degrees. As shown, all estimates
are within a single degree of the ground-truth lighting
direction.

5 INFERRING REFLECTANCE AND ILLUMINA-
TION

At the heart of our framework is a Bayesian formulation
that combines the priors and a likelihood distribution
and provides an inference approach. In this work, we
will perform inference by finding the maximum a pos-
teriori (MAP) estimate of the posterior distribution,

p(Ψ, c,L|I) = p(I|Ψ, c,L)p(Ψ)p(c)p(L), (18)

where Ψ are the reflectance parameters, p(Ψ) is given
in Eq. 6, c are the reflectance lobe chromaticities, p(c) is
given in Eq. 12, L is the illumination map, p(L) is given
in Eq. 17, and I is the observed image.

We write the likelihood distribution using a Laplacian
distribution on the logarithm of the irradiance values,

p(I|Ψ, c,L) ∝
∏
x,λ

exp
[
− βI

∣∣ log Ix,λ − logEx,λ(Ψ, c,L)
∣∣],

(19)
where Ex,λ(Ψ, c,L) is the mean of the distribution and
represents a function that computes the irradiance at
pixel {x, λ} given parameters for reflectance {Ψ, c} and
illumination L and βI is a parameter controlling the scale
of the distribution. We use a Laplacian distribution to
model the image formation process because it allows for
robust estimation [29]. It’s important to place the distri-
bution in log-space so that the algorithm is invariant to
the scale of the input image.

With the complete posterior distribution specified, we
can now perform inference by computing a maximum
a posteriori estimate. In practice, we will minimize
the negative log of the posterior with an alternating
minimization approach. After initialization, we fix the
reflectance and chromaticity estimates and estimate the
illumination. Then, we fix the illumination estimate and
estimate the reflectance and chromaticity. We alternate
estimating reflectance and illumination in this fashion
until convergence (determined by the difference in the
negative log posterior between successive iterations),
which typically takes 5 to 10 alternations. Although our
priors help to keep the optimization on the right track,
there are cases where the optimization gets stuck in a
local minima.

We initialize our algorithm with a very straightfor-
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Fig. 7. Evaluation of synthetic experiments under natural illumination. The bottom plot shows the log-space RMSE for
100 MERL BRDFs under four natural illumination environments. Highlighted are eight results from that plot shown at
the top. This plot demonstrates the ability of the model to successfully infer reflectance and illumination in a variety of
illumination environments for many different materials.

ward approach. The reflectance, Ψ, is initialized to all
zeros. This can be interpreted as the “mean BRDF”
because of the data-driven bases derived from the MERL
database. The chromaticity, c, is initialized to random

values. The illumination map, L, is also initialized to all
zeros. We don’t rely on a complex initialization—instead,
the framework is able to find good solutions even with
this simple initialization.
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Relationship of natural illumination accuracy versus BRDF specularity

Fig. 8. Quantitative evaluation of natural illumination estimation versus BRDF specularity. This figure shows the RMS
error of the natural illumination estimates in blue for 100 MERL BRDFs in four illumination environments. In red is the
“specularity” of the BRDF, as measured by the γ value of the most specular lobe. This figure illustrates the general
trend that highly glossy BRDFs enable more accurate illumination estimation.

6 EXPERIMENTAL RESULTS

We thoroughly evaluate the effectiveness of our method
with a number of synthetic and real-world images. First,
we investigate inference under a simple point light illu-
mination model. This scenario will allow us to observe
how our reflectance model and priors are explaining
unseen slices of the reflectance function. Next, we ex-
plore full reflectance and natural illumination inference
in synthetic scenes. Dealing with synthetic scenes allows
us to ignore some confounding variables and gives us
the opportunity to better analyze the results. Finally, we
use our framework to estimate reflectance and natural
illumination in the real world.

6.1 Synthetic images; single point light source
A simple way to evaluate our reflectance model is to set
up a series of synthetic experiments under an unknown
point light source. Although an unrealistic assumption
in general, it will allow us to understand how well
the model is able to extrapolate unseen slices of the
reflectance function. This is because an object imaged
under a single point light will only express a small
portion of its reflectance function (i.e., θd is fixed). Any
inference procedure that attempts to recover a full BRDF
from an object illuminated by a single point light must
therefore make assumptions about the other parts of
the reflectance function that are not observed. In this
section, we show that our model is making intelligent
assumptions about the behavior of unseen BRDF slices.

To perform this evaluation, we set up 500 single point
light experiments. For each of the 100 BRDFs in the
MERL database [11], we render a sphere with that BRDF
under five point light directions: 0, 30, 60, 90, and 120
degrees from the viewer. We then run our inference
algorithm for each rendered sphere and quantitatively
evaluate the estimated BRDF. Note that we exclude the
BRDF being estimated in the data-driven basis and prior
computations.

We use a simple procedure for estimating the point
light parameters. We model the light as a point on a
sphere with a non-negative intensity value. During the

inference algorithm, when the reflectance estimate is
fixed, we simply use Powell’s method [30] to update the
lighting parameters.

To evaluate BRDF estimates, we again use the log-
space RMSE (Eq. 5). As previously discussed, there is
an ambiguity in scale between the light and reflectance
function that cannot be known without additional infor-
mation. Therefore, there is an unknown scale factor be-
tween the recovered BRDF and the ground-truth BRDF.
Because we know the ground-truth lighting intensity,
we can simply invert the estimated lighting intensity to
arrive at the correct scale factor. Note that this procedure
is not as simple for the case of natural illumination.

Figure 5 shows quantitative results for all 500 exper-
iments. To give these quantitative results meaning, we
compare several BRDFs to ground truth as a cascaded
rendering of spheres from different point light direc-
tions. This helps visualize how log-space RMSE values
correspond to perceptual BRDF accuracy. From the plot
we can see that specular BRDFs are more difficult to
estimate. This is likely because the specular BRDFs have
a greater degree of variation, especially as θd varies.

Figure 6 shows a quantitative evaluation of the point
light estimates. As the figure shows, all estimates of
the illumination direction are within one degree of the
ground truth lighting.

6.2 Synthetic images; unknown, unconstrained nat-
ural illumination

While point light experiments can tell us a great deal
about the models strengths, our ultimate goal is to
recover reflectance and natural illumination. To do this,
we will use our full framework, including the natural
illumination representation and priors. In this section,
we show experimental results from synthetic scenes.

To evaluate our algorithm synthetically, we created 400
experiments using 100 MERL BRDFs in four different
illumination environments. Each material comes from
the MERL BRDF database [11]. Illumination environ-
ments are from Paul Debevec’s Light Probe Gallery [31].
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Fig. 9. Relighting comparisons. The first column in each subfigure show a photograph of an object under several
different illumination environments. We recover the reflectance and illumination of the object and then use the
recovered reflectance to relight the object with each illumination environment which is shown in the subsequent
columns. The visual similarity of the relighting to the ground truth demonstrates the accuracy of our reflectance
estimates.

We compare each recovered material and illumination
estimate to the ground-truth values.

Like the single point light experiments, we use log-
space RMSE to quantitatively evaluate the results. How-
ever, determining the scale difference between the re-
covered and ground-truth BRDF is not straightforward
now that the illumination is no longer a single point.
Therefore, we will use the scale factor that minimizes
the log-space RMSE,

Ê`-RMS = min
α

√√√√ ∑
θh,θd,φd

(
log f(θh, θd, φd)− logα%(θh, θd)

)2
N

,

(20)

Figure 7 shows the accuracy of the reflectance esti-
mates compared to a baseline method. For the baseline
method we simply run our method without priors. In
general, the proposed priors provide a large qualita-
tive improvement over the baseline method, even when
the quantitative improvement is modest. For example,
“black-soft-plastic/rnl” “with priors” slightly outper-
forms “no priors” quantitatively yet the qualitative re-
sults are compelling: the specular lobes have the right
size and shape, whereas with “no priors” the reflectance
is overly-specular. The overly-specular results when pri-
ors are disabled can also be seen in the “blue-metallic-
paint/stpeters” and “light-red-paint/uffizi” examples,
which have a larger difference in quantitative error, and
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Fig. 10. Results on “lobby” and “spiralStairs” illumination environments. Each row shows the recovered reflectance
and illumination of a different object with the ground-truth illumination for comparison. Note how features of the
reflectance function are accurately captured: the “apple”, “bear”, “horse”, and “milk” objects are shiny and the
recovered reflectance function has sharp specular highlights; the “tree” object has a softer glossy reflection that is
captured in the reflectance estimate.

show that our priors are working as intended.
Figure 8 examines the relationship between the specu-

larity of BRDFs and the accuracy of the estimated illumi-
nation. We can see that, in general, more specular BRDFs
allow for more accurate natural illumination estimates.
This makes sense, because less information is destroyed
during the image formation process for specular BRDFs
than diffuse. This relationship is especially prevalent in
the “rnl” and “uffizi” lighting environments. Figure 7
also illustrates this effect.

6.3 Real scenes
The most challenging scenes–and the ultimate goal of
this paper–are ones in the real world. They may present
significant global illumination effects, camera noise, and
other unique problems. Despite these great difficulties,
we show that our model is able to accurately capture
reflectance and illumination from a single image.

We use the Drexel Objects under Natural Illumination
database [10] to evaluate our model. This database in-
cludes up to 6 objects in 5 environments, each captured
with high dynamic range, and includes ground-truth
geometry and illumination.

Figure 9 examines the accuracy of the reflectance
estimates through a series of relightings. For each image
in the data set, we use the reflectance recovered by
our method to relight the object using the ground truth
illumination of each environment. In this way, we can
visually compare reflectance results to the ground-truth

images. This figure shows many compelling results, in-
cluding those of the “bear” object and the “tree” object. It
can be seen that the method is able to recover reflectance
and illumination in a wide variety of scenes and it can
be effectively used to predict object appearance in novel
environments.

Figures 10 and 11 show real-world results for each
illumination environment. In each environment, we can
see that our algorithm recovers plausible reflectance
estimates through a cascaded rendering of spheres. For
example, in Figure 10, note the diffuse highlight of the
“tree” object. In addition, many important features of
the natural illumination environments are recovered. For
example, in Figure 11 (b), many illumination estimates
(especially from the horse object) capture the position
and detail of the skylight that is casting much of the
light in the scene. Also note the “milk” object in each
figure, which does not contain a full hemisphere of
surface normals. In these cases, unseen portions of the
lighting environment are assumed to be black. Overall,
the objects that allow the best recovery of the illumi-
nation environment seem to be the “apple”, “bear”,
and “horse”. This is likely because the surface normals
of these objects span the entire hemisphere facing the
camera, and the objects are mostly concave so they do
not cause significant inter-reflection.

Figure 12 shows a direct comparison to the method
of Romeiro and Zickler [25] on the real-world dataset
captured by the authors. As shown our method can more
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Fig. 11. Results on “garden”, “main”, and “picnic” illumination environments. Each row shows the recovered
illumination of a different object with the ground-truth illumination for comparison. This illustrates that our algorithm
is able to capture important features of the illumination environment. For example, in the “picnic” scene, the method
captures the sun behind a building from the “apple” object.

accurately capture the frequency characteristics of the
reflectance function. For instance, we correctly estimate
the soft specular highlight of the gray plastic sphere in
the fourth column whereas the method of [25] recovers
a more specular BRDF. We believe this is because the
joint inference of reflectance and illumination has a bet-
ter opportunity to reconstruct the true reflectance than
marginalization as the number of possible illumination
environments is vast. Representing the distribution and
marginalizing over all these possibilities accurately is
very difficult—directly representing and solving for the
illumination allows us to avoid this problem. Instead,
our method exploits specific illumination characteristics
that would lead to the most plausible illumination envi-
ronment.

7 CONCLUSION

Reflectance and natural illumination recovery in the real
world is an important yet challenging problem in com-
puter vision. In this paper, we presented a novel method
that uses flexible reflectance and illumination models in
order to handle real-world scenes. We introduced strong
priors that keep inference tractable and enable us to
overcome the ambiguities due to the image formation

process. We used synthetic examples to further analyze
the performance of our model under a variety of sce-
narios. Finally, we demonstrated the performance of our
algorithm on real-world scenes. We believe this work is
an important step towards making physics-based com-
puter vision methods fully appreciate the world.
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