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Abstract. Estimating reflectance and natural illumination from a single image
of an object of known shape is a challenging task due to the ambiguities between
reflectance and illumination. Although there is an inherent limitation in what can
be recovered as the reflectance band-limits the illumination, explicitly estimat-
ing both is desirable for many computer vision applications. Achieving this esti-
mation requires that we derive and impose strong constraints on both variables.
We introduce a probabilistic formulation that seamlessly incorporates such con-
straints as priors to arrive at the maximum a posteriori estimates of reflectance and
natural illumination. We begin by showing that reflectance modulates the natural
illumination in a way that increases its entropy. Based on this observation, we
impose a prior on the illumination that favors lower entropy while conforming to
natural image statistics. We also impose a prior on the reflectance based on the
directional statistics BRDF model that constrains the estimate to lie within the
bounds and variability of real-world materials. Experimental results on a number
of synthetic and real images show that the method is able to achieve accurate joint
estimation for different combinations of materials and lighting.

1 Introduction

The appearance of an object is determined by surface geometry, reflectance, and illu-
mination. Decomposing an image into these physical entities is a challenging task that
underlies many of the longstanding computer vision problems. Among the many in-
stances of this decomposition problem, estimating the reflectance of an object of known
shape but taken under unknown illumination is particularly important. Solving this key
problem can provide significant information that can aid in recognizing materials and
objects in a scene. In particular, achieving this dual estimation from images taken un-
der natural illumination is of paramount importance for scene understanding in the real
world. At first glance, stepping out from the conventional dark-room setup of a sin-
gle or multiple point light sources, however, seems to add overwhelming complexity to
the problem. Natural illumination, just like natural images, embodies structures in its
spatial layout and color distribution. In this paper, we are interested in whether such
inherent structures can play to our side. We show that when exploited together with the
intrinsic structures found in the reflectance of real-world materials, it enables robust
simultaneous estimation of reflectance and natural illumination from a single image.

The difficulty of estimating both the reflectance and illumination is exacerbated by
the inherent ambiguities between the two variables. An obvious ambiguity arises from
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the color constancy problem—an image of a red object can be explained with either a
white reflectance and red illumination or red reflectance and white illumination. A more
complex ambiguity lies in the frequency composition of reflectance and illumination.
The reflectance acts as a bandpass filter by attenuating arbitrary frequency components
of the illumination [1]. Real-world reflectance may take on various frequency spectra,
but in general they act as a lowpass filter. Because of this, one can only hope to recover
illumination up to a certain frequency. This problem applies in reverse as well—low
frequency illumination conceals higher frequency features of the reflectance.

Previous methods have typically made strong, limiting assumptions about either the
illumination (e.g., point light source(s)) [2–5] or the reflectance (e.g., Lambertian) [6–
9] that undermines their practicality. The recent work by Romeiro and Zickler [10],
named “blind reflectometry,” achieves reflectance estimation under natural illumina-
tion by marginalizing over a distribution of possible lighting environments to overcome
the inherent ambiguity between reflectance and illumination. Although this results in a
reasonably accurate estimation of reflectance, the method cannot explicitly recover the
illumination. Furthermore, to circumvent the color constancy problem, the method only
estimates a monochrome reflectance. This leads to serious limitations in predicting the
appearance of objects, such as incorrect colors in highlights.

Our goal is to jointly estimate both the reflectance and natural illumination in full
color. We believe it is essential to explicitly estimate both to enable a host of applica-
tions that would benefit from properly predicting object appearance. For instance, in
object recognition and tracking, the task would become easier if we were able to accu-
rately predict how the target object would look from a different viewpoint given a single
image of it. This can be achieved only when both the reflectance and the illumination
are explicitly recovered. This is true even though one of them, usually the illumination
estimate, is band-limited in frequency as those explicit estimates are sufficient to com-
pute the object appearance in any other pose under that illumination. Explicit estimates
would also enable accurate appearance prediction of objects with reflectance that have
lower frequencies or under lower frequency illumination, too. To this end, our goal is
not only to perform blind reflectometry but also blind light probe.

In this paper, we introduce a novel method for jointly estimating the illumination
of a natural scene and the reflectance of an object with homogeneous material from
a single image. Resolving the ambiguities and overcoming the loss of information re-
quires that we make strong and accurate assumptions about typical illumination envi-
ronments and reflectance properties. For this, we derive data-driven and information
theoretic constraints that faithfully encode the variability and interaction of real-world
reflectance and natural illumination. We then introduce a probabilistic formulation that
enables the seamless incorporation of these assumptions as prior distributions on the
latent variables to jointly estimate the most “realistic” reflectance and illumination.

To constrain the reflectance estimate to lie within the space spanned by those of
real-world materials, we build a statistical prior using the directional statistics bidirec-
tional reflectance distribution function (DSBRDF) model [11]. Based on the functional
principal component analysis that extracts a linear subspace of real-world reflectance
[12], we impose a tight yet analytically simple statistical prior that faithfully encodes
the variability of real-world reflectance. To tame the natural illumination estimate, we
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consider two constraints. We model the illumination as a discrete image whose axes are
inclination and azimuth angles in the spherical coordinate system (i.e., latitude and lon-
gitude). This allows us to view natural illumination as a wide-angle view natural image
and directly leverage natural image statistics—a heavy-tail gradient distribution—to
constrain the estimate. We also observe and empirically confirm that the reflectance
modulates the natural illumination in a way that increases its entropy. The intuition is
that the reflectance acts as a blur kernel on the natural illumination and thus smooths out
the histogram of its color values leading to increased entropy. To this end, we constrain
the estimation to favor lower entropy illumination estimates through a prior on the illu-
mination. These priors are incorporated into our Bayesian formulation that we solve for
the maximum a posteriori (MAP) estimate. Joint estimation of reflectance and illumina-
tion is achieved through expectation maximization (EM) iteration whose maximization
step involves alternating between the estimations of reflectance and illumination sepa-
rately.

We demonstrate the effectiveness of our method on a number of synthetic and real
images. The experimental evaluation on synthetic images include a large number of
combinations of different reflectance and natural illuminations to empirically study the
stability of the estimation on different types (frequency characteristics) of those two
variables. The results clearly demonstrate that our method can explicitly recover both
the reflectance and illumination, up to the inherent limitation, in full color. As far as we
know, our work is the first to demonstrate such capability.

2 Representing and Constraining Natural Illumination

To achieve accurate joint estimation of reflectance and natural illumination, we should
fully leverage the rich information imparted by natural illumination onto the single im-
age at hand. We can think of arbitrary natural illumination as an infinite set of point
lights. This interpretation suggests that we are getting in a single image the information
typically only available in multiple images. We are capturing richer information regard-
ing the reflectance (i.e., more angular samples), but it is multiplexed into a single color
vector at each surface point. The challenge then lies in demultiplexing these observa-
tions into the true natural illumination and reflectance. This can be done robustly, if we
could guide the estimation to identify the most likely illumination out of many potential
combinations of illumination and reflectance.

We first need to devise an appropriate representation of illumination that allows us to
recover as much detail as is theoretically possible. To facilitate this, we use a spherical
panorama by discretizing the incident illumination sphere. This representation, which
we refer to as the illumination map L, is a 2D image whose vertical and horizontal
axes are respectively the inclination θ and azimuth angles φ in the spherical coordinate
system. This representation allows us to control the level of detail we wish to model
by modifying the granularity of the discretization. More important, we may treat the
illumination as a wide-angle view image on which we may place image-based priors.
We describe two such priors: a natural image statistics prior and our novel entropy-
based prior.
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2.1 Illumination as a Natural Image

As the natural illumination that we want to recover is essentially an image of the world
surrounding an object captured as a directional environment map at where the object
sits and represented with a spherical panorama, we can interpret it as a wide-angle view
natural image. This also means that we can leverage well-studied statistics of natural
images to properly constrain our natural illumination estimate. Previous works [13] on
natural image statistics has found that the gradients of natural images form a distribution
with a heavy tail. In particular, we model the heavy-tailed distribution of the gradients
in the illumination map with a hyper-Laplacian,

ps(L) =
1

Z
exp

[
−
∑
θ,φ

∑
(θ′,φ′)∈N(θ,φ)

|Lθ,φ − Lθ′,φ′ |α
]
, (1)

where Z is the partition function that normalizes the distribution, N(θ, φ) is the set
of neighboring pixels of θ and φ in the illumination map, and α is the exponent of
the hyper-Laplacian. This distribution encourages the illumination estimate to lie in the
space of real-world natural illumination.

2.2 The Entropy Increase by Reflection

Our goal is to properly constrain the space of possible illumination estimates that is
made ambiguous during image formation. Recall that part of the reason why this ambi-
guity exists is that the material reflectance acts on the illumination as a bandpass filter.
We empirically show that, due to the band-limited transmittance of incident irradiance,
the entropy of the distribution of reflected radiance becomes higher than when there was
no bandpass filtering (i.e., the reflectance has all frequencies–perfect mirror reflection).

Entropy has been studied in many areas of computer vision as a useful informa-
tion theoretic metric to constrain estimation. Alldrin et al. [14] use the entropy of the
distribution of albedo values of a textured surface to resolve the generalized bas-relief
ambiguity in photometric stereo. They assume that the true distribution of albedo values
is sparsely peaked and use entropy to guide the estimation to find the albedo values that
conform to this property. We make similar assumptions but on the natural illumination
we aim to recover. Finlayson et al. [15] propose an approach to remove shadows by
finding a direction in a 2D chromaticity feature space under which illumination is in-
variant. The correct invariant direction minimizes the entropy of the image formed by
projecting the 2D feature points along it. As it so happens, entropy can also be used to
order the set of potential illumination maps that we face during joint estimation.

Figure 1 demonstrates the effect of the reflectance on the entropy of the reflected
radiance for a variety of materials. As our intuition suggests, the action of the BRDF
as a bandpass filter causes a blurring of the illumination and thus a spreading of the
histogram. This, in turn, increases the entropy of the reflected radiance. We’d like to
recover the true illumination environment and to do this we assume that the entropy
increase in the observed image is due entirely to the BRDF. To this end, we constrain
the illumination to have minimum entropy, so that the BRDF will be responsible for
causing the increase in entropy of the outgoing radiance.
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Fig. 1: The BRDF always causes an increase in entropy of the reflected radiance. The most specu-
lar materials (e.g., nickel) cause the least increase while the most diffuse (e.g., green-latex) cause
the greatest increase. Only a perfect mirror (e.g., chrome), will not increase entropy.

It is with this intuition that we formally derive our entropy prior. Entropy is defined
as the expected value of the information context of a random variable. While typically
defined for discrete random variables, we use a continuous definition which will allow
us to take the derivative with respect to the illumination map later. The entropy of an
image is an integral over the distribution of intensity values,

H = −
∫
p(x) log p(x)dx , (2)

where in our case p(x) is the histogram of L. To ensure that entropy is differentiable
with respect to the illumination map, we write the histogram using kernel density esti-
mation with a Gaussian kernel

p(x) =
1

N

N∑
i=1

1√
2πσ2

exp

[
− (x− Li)

2

2σ2

]
, (3)

where N is the number of pixels in the illumination map, Li chooses the ith point, and
σ2 is the variance of the Gaussian kernel. Using this expression of entropy, we place a
exponential prior on the illumination map with an exponent proportional to the entropy

pe(L) ∝ exp [−H(L)] . (4)

3 Modeling the Space of Reflectance

The next problem we face is to properly constrain reflectance. We must take care to
choose a model that is flexible enough to represent a large class of reflectance functions
but is also amenable to a strong prior. In this paper, we assume that reflectance is well
represented by an isotropic Bidirectional Reflectance Distribution Function (BRDF)
and so we use the Directional Statistics BRDF (DSBRDF) [11] for the flexibility it
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provides. Using the DSBRDF model we can write the BRDF as a sum of reflectance
lobes

%(λ)(θd, θh;κ
(λ), γ(λ)) =

∑
r

exp
[
κ(r,λ)(θd) cos

γ(r,λ)(θd)(θh)
]
− 1 , (5)

where the halfway vector parameterization (i.e., (θh, φh) for the halfway vector and
(θd, φd) for the difference vector) [16] is used, κ(λ) and γ(λ) are functions that encode
the magnitude and acuteness of the reflectance, respectively, of lobe r along the span of
θd for a particular color channel λ. This allows us to express reflectance functions as a
collection of κ and γ curves.

As shown by Nishino and Lombardi [12], these curves can be modeled as a log-
linear combination of data-driven basis functions,

κ(r,λ)(θd) = exp
[
bµ(θd;κ, r, λ) +

∑
i

ψibi(θd;κ, r, λ)
]
, (6)

γ(r,λ)(θd) = exp
[
bµ(θd; γ, r, λ) +

∑
i

ψibi(θd; γ, r, λ)
]
, (7)

where bµ is the mean basis function, bi is the ith basis function, and ψi are the DSBRDF
coefficients. We may compute these basis functions from a set of measured reflectance
functions using functional principal component analysis (FPCA). This provides the ad-
ditional benefit of ordering the basis functions by importance so that we can truncate
the number of parameters used to achieve a compact representation. Our next step, then,
is to model the distribution of the coefficient vector Ψ.

Based on the recent work by Lombardi and Nishino [17], we impose a prior that
models the space of real-world isotropic BRDFs using an analytical distribution on Ψ,
the projection of measured BRDFs on the DSBRDF basis functions. We adopt a zero-
mean multivariate Gaussian prior to model the space of reflectance

p(Ψ) ∼ N (0, ΣΨ ), (8)

where ΣΨ is computed from the MERL/MIT BRDF database [18]. Note that we ex-
clude the BRDF we try to estimate when conducting the experimental validation using
synthetic images.

4 Bayesian Joint Estimation

Our main contribution is the Bayesian formulation that enables the integration of the
constraints on the reflectance and illumination as statistical priors based on which we
can perform joint estimation. Given an image I, our goal is to find the maximum a
posteriori (MAP) estimate of the posterior distribution

p(L,Ψ | I) ∝ p(I |Ψ,L)p(Ψ)p(L) . (9)

We model image formation as a stochastic process that incurs Gaussian noise. This
gives us a likelihood function that is centered on the predicted irradiance E at pixel x

p(I |Ψ,L) =
∏
x

N (Ix |E(Ψ,L,Nx), σ
2
i ) , (10)
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(2)

(3)

(a) (b) (c) (d) (e)

Fig. 2: Results of the alum-bronze material under three lighting environments. The top right shows
the ground truth cascaded rendering (a sphere rendered with different point source directions) of
the alum-bronze material. Column (a) shows the ground truth alum-bronze material rendered with
one of the three lighting environments, column (b) shows a rendering of the estimated BRDF with
the next ground truth lighting environment, column (c) shows the estimated illumination map,
column (d) shows the ground truth illumination map, and column (e) shows a cascaded rendering
of the recovered reflectance. The lighting environments used were Kitchen (1), Eucalyptus Grove
(2), and the Uffizi Gallery (3). We achieve good estimates of reflectance and illumination, al-
though the recovered illumination is missing high frequency details lost during image formation.

where N are the surface normals and σ2
i is the variance of the noise.

Assuming a linear camera, the irradiance E is computed as the reflectance radiance
by integrating the incident irradiance modulated by the reflectance over the illumination
map

E(Ψ,L,Nx) =

∫
%(t(ωi, ωo);Ψ)L(ωi)max (0,Nx · ωi) dωi , (11)

where t is a function which transforms ωi and ωo into the alternate BRDF parameteri-
zation variables θd and θh.

4.1 MAP Estimation

With the complete description of the posterior distribution, we are now ready to jointly
estimate reflectance and illumination by computing the MAP estimate. In practice, we
do this in an EM iteration by estimating the variance of the Gaussian likelihood in the
expectation step and then in the maximization step jointly estimating the reflectance
and illumination. The maximization step consists of alternatively minimizing the neg-
ative log posterior with respect to illumination and reflectance, i.e., fixing one to the
current estimate while updating the other. When minimizing the negative log posterior
with respect to the DSBRDF coefficients Ψ we use the Levenberg-Marquardt algo-
rithm [19]. For our experiments we chose an illumination map of size 128 × 64 which
we believe provides a good balance between computational speed and recovery detail.
The large number of parameters, however, precludes the use of the standard Levenberg-
Marquardt algorithm because of its high memory requirement. Instead, we minimize
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Fig. 3: Results for the cherry-235 material under three lighting environments. Results are pre-
sented as in Figure 2. As shown, we achieve accurate recovery of reflectance and illumination.
Again, because of the low frequency reflectance of the cherry-235 material, there are even less
high frequency details in the recovered illumination maps.

the error function with respect to the illumination map L using the limited-memory
BFGS algorithm [20] which also allows us to apply a non-negativity constraint.

To initialize our algorithm, we set the entire illumination map L and the DSBRDF
coefficients Ψ to zero. For the lighting environment this corresponds to pitch-black
room, but for the reflectance it corresponds to the mean BRDF of the database used to
compute the basis functions. This gives us a useful starting point for the BRDF, and we
estimate lighting first.

4.2 Resolving the Color Ambiguity

One problem we have not addressed thus far is the color constancy problem between
the reflectance and the illumination. As previously mentioned, if we are given an image
of an object that appears red, we cannot know whether the red appearance is due to the
reflectance or the illumination. This is made even more difficult by the fact that we are
only dealing with a single object: if we observed that all the objects in a scene were red,
we might assume that the redness is due to illumination. To handle the color ambiguity,
we adopt the grey-world hypothesis [21] and assume that the lighting environment is,
on average, uncolored. Consequently, we assume that the dominant coloration of the
observed image is caused by reflectance.

We propose a simple way of exploiting this assumption. When performing joint
estimation, we run our estimation algorithm twice: once constraining the illumination
map to be greyscale, and again using the previous result as the initial input. During the
first run this has the effect of forcing the BRDF to explain all the color variation in the
input image. The colored BRDF is then used as an initial estimate for the second run of
the algorithm. In all the lighting environments and materials we tried this approach and
it successfully deduced the material color from the scene color.
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Fig. 4: Quality of reflectance estimates. Each subfigure demonstrates the reflectance estimates
for the blue-acrylic (1), nickel (2), and gold-metallic-paint (3) materials. The top row of each
subfigure shows the ground truth and the bottom row shows our estimates. Columns (a), (b), and
(c) show renderings using the Uffizi Gallery, St. Peter’s Basilica, and Grace Cathedral lighting
environments, respectively. Column (d) is a cascaded rendering of the material with a series of
point lights. The top left image of each subfigure was used as the input image. These results
demonstrate the accuracy of our reflectance estimation.

5 Experimental Results

We apply our joint estimation approach to a number of synthetic and real scenes to
evaluate its effectiveness. For the synthetic inputs, we render a representative selection
of BRDFs from the MERL database [18] under a range of natural illuminations [22] to
understand how performance varies. For real scenes, we compare directly to the work
by Romeiro and Zickler [10] and show that we can explicitly estimate the illumination
and both the reflectance and illumination in full color. In addition, we show results on
our own data set.

5.1 Synthetic Results

Figures 2 and 3 show the results of our method for three different BRDFs from the
MERL/MIT database [18] using three different lighting environments [22]. The results
demonstrate that we achieve an accurate decomposition of lighting and reflectance when
compared with ground truth. We note that, as we discussed, we are unable to recover
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Input

GT

(a) Alum-bronze under Eucalyptus Grove

Input

GT

(b) Violet-acrylic under Uffizi Gallery

Fig. 5: Predicting the appearance of materials with recovered illumination. We use the recovered
illumination map to predict the appearance of materials with lower frequency reflectance. The
top row shows the ground truth and the bottom row shows the predicted appearances. The input
image for each subfigure is the top-left image. These results demonstrate the ability to accurately
predict object appearance with the recovered illumination map.

a perfect lighting environment because of the bandpass effects of the BRDF. We still,
however, achieve a good and usable estimate that is only missing the high frequency
information lost during image formation.

Figure 4 shows the results of three additional BRDFs under the Uffizi Gallery light-
ing environment. We demonstrate the quality of the reflectance estimates by rendering
the estimated reflectance with the St. Peter Basilica and Grace Cathedral lighting en-
vironments, as well as a cascaded rendering of the BRDF under point lights. The re-
sults on blue-acrylic show that we correctly estimate the reflectance as a blue diffuse
lobe plus a white specular lobe. This ability gives us an advantage over the work by
Romeiro and Zickler [10] who only estimate a monochrome BRDF. This figure also
demonstrates the method’s ability to correctly estimate a diverse array of material re-
flectance (i.e., diffuse + specular, mirror-like, and metallic).

Figure 5 demonstrates how we may use the recovered illumination map to accu-
rately predict the appearance of other materials. The results show that, even for materi-
als that are not close to perfect mirror reflectance, we can use the recovered illumination
to accurately compute the appearance of other materials, showing the ability of using
an object of arbitrary material as a light probe.

Figure 6 shows one of our most important results: that we can accurately predict ob-
ject appearance in the same scene from different viewing directions. The figure shows
renderings of the ground truth BRDFs and illumination compared with our recovered
reflectance and illumination from different viewing directions. The results show the
ability to properly predict object appearance from any location in a scene. As men-
tioned, this ability could benefit object recognition and tracking algorithms.

5.2 Real Results

Figure 71 shows results on the data set captured by Romeiro and Zickler [10]. The re-
sults show that recovered BRDF estimates closely match their ground truth (see the

1 The ring on the right side of the recovered illumination is an artifact due to the matting at
the occluding boundary. The light from the background is partially mixed into the boundary
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GT

(a) Alum-bronze under Grace-new

GT

(b) Alum-bronze under Kitchen

GT

(c) Gold-paint under Eucalyptus Grove

GT

(d) Gold-paint under Uffizi Gallery

Fig. 6: Predicting object appearance from different views. By using the recovered illumination
map and reflectance estimate, we can show the object as it would appear from different viewing
directions. The first row of each subfigure contains ground truth renderings for various BRDFs,
using the measured BRDF values and true environment maps, and the second row contains the
predicted appearance using the recovered reflectance and illumination from our method.

spheres rendered with recovered BRDF but with ground truth illumination from a dif-
ferent view in column (e)). They also demonstrate that we can accurately predict how
the object would appear from a different viewpoint without any a priori knowledge of
the true BRDF and lighting (compare column (d) with column (f)). In some cases (e.g.,
the green-metallic-paint) the predicted appearance using both the recovered BRDF and
illumination looks closer to the ground truth than the one rendered with ground truth il-
lumination. This is due to the fact that any over-estimation in the BRDF is compensated
in the recovered illumination and thus when combined better match the true appear-
ance. In addition, by estimating a full-color BRDF and illumination, we can recover
and predict colors of the environment found in the highlights of the specular materials,
which was not possible in the past [10].

Figure 8 shows the results of our method on a new database of high dynamic-range
images of real objects with aligned ground-truth geometry taken under a variety of in-
door and outdoor illumination environments that we introduce2. The results indicate
that we are able to recover a good estimate of the BRDF of each example despite some
error in hue caused by the color balance of the original photograph (i.e., the blue ap-
pearance of the outdoor images). The estimated illumination maps accurately capture
the parts of the scene that contribute the most light, such as the sky and ceiling lights.
This is true for all the objects except the milk bottle, whose surface normals do not span

intensities resulting in a hallucinated illumination. This can be corrected with an alpha matte
if necessary.

2 Available online at http://www.cs.drexel.edu/˜kon/natgeom
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Fig. 7: Results on the data set from Romeiro and Zickler [10]. The top row is the ground truth
illumination; rows 1–4 show the results on each material. Column (a) shows the input image,
column (b) shows the recovered BRDF rendered with the ground truth illumination, column (c)
shows the recovered illumination map, column (d) shows the recovered BRDF rendered with the
recovered illumination map rotated to the alternate view, column (e) shows the recovered BRDF
rendered with the ground truth alternate view illumination, and column (f) shows the ground truth
alternate view. As we do not know the exact view point for the alternate view, there are slight
differences in the viewpoints. The results demonstrate our method’s ability to properly estimate a
BRDF in full color. The method by Romeiro and Zickler (see figure 6 of [10]) is unable to capture
the white highlights of the red sphere because they only estimate a monochrome BRDF.

the entire hemisphere. Because of this, our method can only estimate detail in certain
areas of the lighting map, leaving the rest relatively uniform in color.

These results demonstrate the method’s ability to achieve accurate performance un-
der a variety of lighting conditions and object types.

6 Conclusion

In this paper, we introduced a novel method to jointly estimate the reflectance and nat-
ural illumination from a single image of an object of known geometry. We showed how
the space of illumination and reflectance can be constrained and incorporated as sta-
tistical and information theoretic priors into a Bayesian formulation. In particular, we
introduced an entropy prior on the illumination to overcome the ambiguity between illu-
mination and reflectance introduced by the image formation process. Our experimental
results validate our choice of priors and formulation and demonstrate the effectiveness
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Fig. 8: Results on our new data set which includes four different objects under four different
illumination environments (1–4). Columns (a), (b), and (c) show results for the apple and horse
object in the four lighting environments. Column (a) shows the input image, column (b) shows the
recovered illumination map, and column (c) shows a cascaded rendering of the recovered BRDF.
Columns (d), (e), and (f) show the results for the milk bottle and bear object in the four lighting
environments. Column (d) shows the input image, column (e) shows the recovered BRDF relit
with the next ground truth illumination map, and column (f) shows the recovered illumination
map. Our method recovers a good estimate of the band-limited lighting environment and BRDF
despite some errors in the white balance of the camera which cause some small inaccuracies in
the color of the recovered BRDF.

of the method on estimating both the reflectance and natural illumination from a sin-
gle image in full color. In future work, we plan to extend the method to handle object
surfaces consisting of multiple materials.

Acknowledgments This work was supported in part by the Office of Naval Research
grant N00014-11-1-0099, and the National Science Foundation awards IIS-0746717
and IIS-0964420. The authors also thank Kenji Hara for early discussions.



14 Stephen Lombardi and Ko Nishino

References

1. Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In:
Proc. of ACM SIGGRAPH. (2001) 117–128

2. Chandraker, M., Ramamoorthi, R.: What an image reveals about material reflectance. In:
ICCV. (2011) 1–8

3. Lensch, H.P.A., Kautz, J., Goesele, M., Heidrich, W., Seidel, H.P.: Image-based Reconstruc-
tion of Spatial Appearance and Geometric Detail. ACM Trans. on Graphics 22(2) (April
2003) 234–257

4. Zheng, Q., Chellappa, R.: Estimation of illuminant direction, albedo, and shape from shad-
ing. IEEE Trans. on Pattern Analysis and Machine Intelligence 13 (July 1991) 680–702

5. Zickler, T., Ramamoorthi, R., Enrique, S., Belhumeur, P.N.: Reflectance Sharing: Predict-
ing Appearance from A Sparse Set of Images of a Known Shape. IEEE Trans. on Pattern
Analysis and Machine Intelligence 28(8) (August 2006) 1287–1302

6. Hara, K., Nishino, K., Ikeuchi, K.: Mixture of Spherical Distributions for Single-View Re-
lighting. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(1) (January 2008)
25–35

7. Hara, K., Nishino, K.: Variational Estimation of Inhomogeneous Specular Reflectance and
Illumination from a Single View. Journal of Optical Society America, A 28(2) (February
2011) 136–146

8. Marschner, S., Greenberg, D.: Inverse lighting for photography. In: IS&T/SID Fifth Color
Imaging Conference, The Society for Imaging Science and Technology (1997) 262–265

9. Nishino, K., Ikeuchi, K., Zhang, Z.: Re-rendering from a sparse set of images. Technical
Report DU-CS-05-12, Dept. of Computer Science, Drexel University (2005)

10. Romeiro, F., Zickler, T.: Blind Reflectometry. In: ECCV. (2010) 45–58
11. Nishino, K.: Directional Statistics BRDF Model. In: ICCV. (2009) 476–483
12. Nishino, K., Lombardi, S.: Directional Statistics-based Reflectance Model for Isotropic Bidi-

rectional Reflectance Distribution Functions. Journal of Optical Society America, A 28(1)
(January 2011) 8–18

13. Huang, J., Mumford, D.: Statistics of natural images and models. In: CVPR. (1999) 541–547
14. Alldrin, N.G., Mallick, S.P., Kriegman, D.J.: Resolving the generalized bas-relief ambiguity

by entropy minimization. CVPR (June 2007) 1–7
15. Finlayson, G.D., Drew, M.S., Lu, C.: Entropy minimization for shadow removal. Int’l Jour-

nal of Computer Vision 85 (2009) 35–57
16. Rusinkiewicz, S.: A New Change of Variables for Efficient BRDF Representation. In:

Eurographics Workshop on Rendering. (1998) 11–22
17. Lombardi, S., Nishino, K.: Single image multimaterial estimation. In: CVPR. (2012) 238–

245
18. Matusik, W., Pfister, H., Brand, M., McMillan, L.: A Data-Driven Reflectance Nodel. ACM

Trans. on Graphics 22(3) (July 2003) 759–769
19. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM

Journal on Applied Mathematics 11(2) (1963) 431–441
20. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A Limited Memory Algorithm for Bound Con-

strained Optimization. SIAM Journal on Scientific Computing 16 (Sept. 1995) 1190–1208
21. Buchsbaum, G.: A spatial processor model for object colour perception. Journal of the

Franklin Institute 310(1) (1980) 1–26
22. Debevec, P.: Rendering synthetic objects into real scenes: bridging traditional and image-

based graphics with global illumination and high dynamic range photography. In: Proc. of
ACM SIGGRAPH. (1998) 189–198


