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Abstract

Estimating the reflectance and illumination from a sin-
gle image becomes particularly challenging when the object
surface consists of multiple materials. The key difficulty lies
in recovering the reflectance from sparse angular samples
while correctly assigning them to different materials. We
tackle this problem by extracting and fully leveraging re-
flectance priors. The idea is to strongly constrain the possi-
ble solutions so that the recovered reflectance conform with
those of real-world materials. We achieve this by modeling
the parameter space of a directional statistics BRDF model
and by extracting an analytical distribution of the subspace
that real-world materials span. This is used, with other pri-
ors, in a layered MRF-based formulation that models ma-
terial regions and their spatially varying reflectance with
continuous latent layers. The material regions and their re-
flectance, and the direction and strength of a single point
source are jointly estimated. We demonstrate the effective-
ness of the method on real and synthetic images.

1. Introduction
Identifying materials from their images is a long quested

ability of computer vision systems to better interact with the
real world. Estimating the radiometric properties of materi-
als from their images (i.e., recovering the reflectance of ob-
ject surfaces) is a fundamental step towards achieving this
goal. If successful, the estimated reflectance can give robust
cues to other descriptive attributes, such as its tactile and
geometric properties (e.g., surface roughness and rigidity),
and also greatly narrow down the search space for recogniz-
ing materials from their raw image cues.

In this paper, we will focus on the challenging but prac-
tical task of estimating the reflectance of object surfaces
made of multiple materials from as few as a single image.
We assume that the reflectance of the surface can be approx-
imated well with pointwise reflectance, namely the Bidirec-
tional Reflectance Distribution Function (BRDF), and its
geometry can be estimated beforehand, in our case with a

laser-stripe range sensor. We also assume that the illumina-
tion consists of an unknown single directional light source.

Multimaterial estimation under these assumptions is still
a very challenging task mainly for two reasons: material as-
signment and limited angular samples. Consider estimating
the reflectance of an object surface that occupies N pix-
els in its image. All N combinations between the two ex-
trema, the surface consisting of a single material and the im-
age providing N angular samples of its reflectance on one
hand and the surface consisting of N materials and the im-
age providing on average only one angular sample of each
material’s reflectance on another hand, are plausible solu-
tions. The main challenge, however, lies in the assignment
of the pixels to distinct materials as each k-th combination
can have kN valid solutions each of which corresponds to a
different spatial segmentation of the object surface with up
to k materials.

Most important, as the number of materials increases, the
angular sampling of each material’s reflectance decreases.
The fact we have only a single point source compounds
this problem as each angular sample would only capture a
single combination of incident and exiting directions. As
such, even if we could manually give a fairly reliable es-
timate of the number of materials (e.g., with the aid of
color segmentation) segmenting the surface into individual
materials while estimating the reflectance of each material
poses significant challenges that requires interpretation of
sparse and under-sampled angular observations of each re-
flectance. Surface normals of real object surfaces rarely
cover the full frontal half of a sphere as often assumed in
other works, which further exacerbates this problem.

We address these challenges by deriving reflectance pri-
ors that accurately encode the space of real-world materials
and construct a novel probabilistic formulation of multima-
terial estimation that fully leverages those reflectance priors.
The key idea is to constrain each material’s reflectance to lie
within the distribution of real-world materials so that the es-
timation can reliably find the most “realistic” combination
of material and surface segmentation.

We build upon the work of Nishino and Lombardi [8]
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to derive statistical priors on the parameter values of the
isotropic Directional Statistics BRDF (DSBRDF) model
that capture the gamut of real-world materials. This
isotropic DSBRDF prior provides concise yet accurate rep-
resentation of what a “realistic” material reflectance should
be by limiting the variation across color channels and re-
flectance lobes based on functional bases extracted from
measured data of real-world materials.

We derive a layered Markov random field formulation
of multimaterial estimation, inspired by the work of Sun et
al. [12], to fully leverage these reflectance priors. Each ma-
terial is represented with an MRF in this formulation. The
spatial extent of each material is modeled with a continuous
latent layer that encodes soft assignments of pixels to that
material. The reflectance of each material is then modeled
using a set of DSBRDF parameter values. This formulation
nicely captures the spatial segmentation of the multiple ma-
terials while allowing us to place constraints on the solution.
We jointly estimate the material segmentation and each ma-
terial reflectance, together with the strength and direction of
a single point source.

We experimentally evaluate the effectiveness of the
method on a number of synthetic and real object surfaces
that consists of different numbers of materials. The re-
sults clearly demonstrate that the method can achieve ac-
curate segmentation and recovery of the reflectance. They
also show that the method can handle real-world materials
that exhibit reflectance that cannot be modeled with conven-
tional parametric models. We believe the method yields an
important step towards realizing radiometric material esti-
mation in general images.

2. Related Work
Various methods have been proposed for single material

estimation from a single image. Ramamoorthi and Hanra-
han [9] used spherical harmonics to represent BRDFs so
that both the reflectance and illumination can be estimated
with frequency decomposition, but with manual specifica-
tion of the directional light source. Hara et al. [4] derived a
spherical Torrance-Sparrow reflection model to jointly esti-
mate multiple point sources and the reflectance parameters
through mixture modeling on a unit sphere. Chandraker
and Ramamoorthi [2] study the conditions under which a
1D slice of a BRDF is uniquely estimable. By contrast, we
estimate full BRDFs by utilizing strong priors to constrain
the solution space. These past methods also fundamentally
rely on the assumption that the object surface consists of
a single material whose reflectance can be modeled with a
diffuse plus specular reflection. Our method is not limited
to this assumption.

Lensch et al. [5] estimate reflectance and refine shape
of multi-material objects from multiple views by clustering
pixels into a set of BRDFs using a coarse-to-fine approach.

We derive a novel layered MRF formulation to segment and
estimate the reflectance of multi-material objects from a sin-
gle image. Romeiro and Zickler [11] achieve material esti-
mation under natural lighting but of single material surfaces
by representing the reflectance with data-driven bases com-
puted from measured data using a bivariate nonparametric
reflectance model [10]. The reflectance prior we introduce
is built upon a parametric reflectance model that has compa-
rable accuracy to the bivariate nonparametric model [7] and
let’s us obtain tight encoding of the space of real-world ma-
terials by modeling its parameter values for measured data.

Zickler et al. [13] “share” angular samples of reflectance
across different spatial locations to estimate a nonparamet-
ric representation of each material. Hara and Nishino [3]
model the spatial variation of just the specular reflection
by superimposing a radial basis function network and by
estimating the parameters of a spherical Torrance-Sparrow
model at each node using variational inference. These
methods essentially estimate the materials and their re-
flectances through interpolation either in the angular do-
main or spatial domain by trading off each other. Such
approaches are suitable for object surfaces that are almost
homogeneous but has slight spatial variations like human
skin, or object surfaces with materials that smoothly blend
into one another. Object surfaces with distinct materials
would pose significant challenges as the effective angular
samples for each material is strictly bounded by the region
the material occupies and at the same time do not continu-
ously blend together. In such cases, the ability to reliably
extrapolate possible reflectance of real-world material from
possible material segments becomes crucial.

3. Characterizing Real-World BRDFs
We aim to extract strong but analytically tractable pri-

ors on the material reflectance. For this, we need a re-
flectance model that can accurately encode a wide-range of
real-world materials which would, at the same time, make
explicit the variability of them in the space it spans. For
this, we build upon the directional statistics BRDF model
first introduced by Nishino [7].

In this paper, we specifically focus on real-world ma-
terials each of whose reflectance can be expressed with
an isotropic Bidirectional Reflectance Distribution Func-
tion (BRDF). We employ the isotropic Directional Statis-
tics BRDF (DSBRDF) model [7] that encodes each slice
of a BRDF for a fixed θd with a mixture of unnormalized
hemispherical exponential power distributions

%(λ)(θd, θh;κ(λ), γ(λ)) =∑
r

exp
[
κ(r,λ)(θd) cosγ

(r,λ)(θd)(θh)
]
− 1 , (1)

where (θh, φh) and (θd, φd) are the halfway direction and
the light source direction expressed with the “difference” to
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the halfway vector, respectively. Each mixture component
encodes a single reflectance “lobe” indexed by r, λ denotes
the color channel, and κ and γ are functions on the domain[
0, π2

]
. In general, κ controls the brightness of the BRDF

while γ controls the sharpness of the specular highlights.
These two parameters are different for each θd slice and
thus are functions of θd.

With the DSBRDF model, each isotropic BRDF can be
encoded with a set of the two parameters for discretely
sampled θd values {(κ(r,λ)(θd), γ

(r,λ)(θd)) | θd = sπ
2S , s =

0, . . . , S, r = 0, . . . , R, λ = R,G,B}, where S is the num-
ber of BRDF slices and R is the number of lobes used.
Nishino and Lombardi [8] showed that these parameter se-
ries can be expressed as continuous functions of θd us-
ing functional bases computed from real-world isotropic
BRDFs. This in turn means that we may succinctly char-
acterize the space of real-world reflectance by modeling the
distribution of isotropic BRDFs in the space spanned by
those functional bases.

Following the analysis by Nishino and Lom-
bardi [8], we first estimate the DSBRDF parameters
{(κ(r,λ)(θd), γ

(r,λ)(θd)} of 100 isotropic real-world
BRDFs [6] using R = 3 lobes and S = 18 θd slices.
We then fit a second degree B-spline with nine knots to
the logarithm of the series of parameter values across θd
variation for each BRDF, which results in 6 variables per
curve. Through multivariate functional principal compo-
nent analysis on all the resulting continuous parameter
curves (3 colors per BRDF, 3 reflectance lobes per color, 2
functions–κ(θd) and γ(θd)–per lobe, and 6 parameters per
function for a total of 108 parameters), we obtain a set of
basis functions (eigenfunctions) bi(θd) for i = 1, . . . , 108,
and mean basis functions bµ(θd). Note that the mean func-
tion and each basis function are 108-dimensional vectors
that contain the B-spline values for all color channels,
reflectance lobes, and κ and γ. If we denote the operation
of extracting the B-spline coefficients for color channel
λ, reflectance lobe r, and function κ with b(θd;κ, r, λ)
(similarly for γ), we can express the DSBRDF parameters
κ and γ as a linear combination of these functions

κ(r,λ)(θd) = exp
[
bµ(θd;κ, r, λ)+

∑
i ψibi(θd;κ, r, λ)

]
, (2)

γ(r,λ)(θd) = exp
[
bµ(θd; γ, r, λ)+

∑
i ψibi(θd; γ, r, λ)

]
. (3)

Each coefficient ψi for the i-th basis function is a scalar
that controls the influence of the m-th eigenfunction to the
DSBRDF parameters across all colors and reflectance lobes.

The basis functions span the subspace in which BRDFs
of real-world materials lie. As in principal component anal-
ysis, the basis functions are ordered by importance (the
functional variance of the data) and we may use far fewer
basis function than the full dimension and still retain accu-
racy. As shown by Nishino and Lombardi [8] we found that

Figure 1: The distribution of 100 real-world isotropic BRDFs [6]
in the subspace spanned by the first three basis functions of DS-
BRDF parameters (Eq. 2 and 3). The distribution is roughly ellip-
tical and can be modeled with a multivariate Gaussian distribution.

about 15 basis functions give an accurate low-dimensional
representation. This in turn means that we may now charac-
terize the variability of isotropic real-world BRDFs in this
low-dimensional space by modeling their projections, i.e.,
the coefficients. Each BRDF can now be written with a 15-
dimensional vector Ψ = [ψ1, . . . , ψ15] which we refer to as
the DSBRDF coefficients.

Figure 1 shows the distribution of the first three DS-
BRDF coefficients of the 100 BRDFs from the MERL
database [6]. We model this subspace distribution with a
multivariate GaussianN (Ψ | 0,ΣΨ). It is important to note
that the basis functions not only encode the principal modes
of variation of the DSBRDF parameters κ and γ indepen-
dently but also their joint variation for each BRDF, each
color channel, and each reflectance lobe. This means that
the coefficients also naturally capture these covariances in
their values and distribution. As a result, despite its mathe-
matical simplicity, the Gaussian coefficient distribution en-
codes the variability of real-world reflectance across dif-
ferent color channels and reflectance lobes in its covari-
ance matrix. The model and the priors can accurately en-
code the characteristics and distribution of a wide range
of isotropic BRDFs–well beyond conventional diffuse plus
specular models.

4. Estimating A Single Material

The analytical distribution of the DSBRDF parameters
expressed in the subspace spanned by FPCA basis functions
(i.e., DSBRDF coefficients) provides a faithful representa-
tion of the possible reflectance of real-world materials. This
lends powerful means to constrain the solution space when
estimating the materials in an image. In this section, we
demonstrate this by considering the simpler problem of sin-
gle material estimation.
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4.1. Inferring Material Reflectance

We may now formulate single material estimation as es-
timating the DSBRDF coefficients Ψ from the image. Note
that, for single material estimation, the entire object surface
shares the same coefficient set Ψ. We achieve this with a
Bayesian formulation that lets us fully leverage the distri-
bution of real-world materials derived in Section 3. Given
an image I = {Ix = (IRx , I

G
x , I

B
x ) |x = (x, y) ∈ Ω},

our goal is to find the maximum a posteriori estimate of
the DSBRDF coefficients Ψ and the point source L =
(Lx, Ly, Lz) including its direction and intensity

p(Ψ,L | I) ∝
∏
x

p(Ix |Ψ,L)p(Ψ) .

We assume a uniform distribution for the normalization and
also for the prior on the light source.

We model the image formation noise with a Gaussian
distribution and thus the likelihood as a Gaussian centered
on the predicted irradiance (in RGB) Ex(Ψ) at pixel x with
variance σ2:

p(Ix |Ψ,L) ∼ N
(
Ix |Ex(Ψ,L), σ2

)
. (4)

The image irradiance at each pixel Ex can be computed us-
ing the DSBRDF model (Eq. 1, 2 and 3) using its coefficient
estimates Ψ and the light source estimate L

Ex(Ψ,L) = %
(
θd(x,L), θh(x,L); Ψ

)
|L| cos θi(x,L) ,

(5)
where the polar angles θh and θd, and the incident angle
θi are computed using the known surface normal at point x
and the light source direction L

|L| . Note that we are dropping
the color channel index for brevity.

As we discussed in Section 3, the prior distribution of
the DSBRDF coefficients Ψ is modeled with a Gaussian
distribution

p(Ψ) ∼ N (Ψ | 0,ΣΨ) .

We compute the MAP estimate by minimizing the negative
log posterior

arg min
Ψ,L

∑
x

1

σ2

(
Ix − Ex(Ψ,L)

)2

+ ΨTΣ−1Ψ Ψ . (6)

We alternate between minimizing Eq. 6 with respect to
each latent variable, Ψ and L, separately. When minimiz-
ing with respect to Ψ using the current light source esti-
mate L, our method successively increases the number of
coefficients being estimated after each iteration. That is, we
begin by estimating only ψ1, followed by {ψ1, ψ2}, and so
on, up to the complete set Ψ. This allows the estimation
to build a solution from the more important basis functions
first, which can be considered as a coarse-to-fine estimation

in the reflectance space. This contributes considerably to
the reliable estimation of reflectance, and is a strong advan-
tage of the reflectance representation and prior we use.

We minimize with respect to L by evaluating the error
function with the lighting direction set as a node on a unit
radius geodesic dome (of 2562 nodes). For each potential
point source direction, we evaluate the intensity |L| as the
minimum of the least squares error between the input image
to that of the rendered image given the current reflectance
estimate Ψ, and find the direction that minimizes Eq. 6. For
speed, we only test potential light source directions within
a certain angle (e.g., 20◦) of the current estimate.

4.2. Surface Normal Refinement

We note that, in practice, “ground truth” surface geome-
try is often not accurate enough for reflectance estimation.
In particular, sharp specular highlight regions require very
accurate surface normals to properly predict the outgoing
radiance at a given pixel. To remedy this, we use an ad-
ditional model that makes small adjustments to the surface
normals when they make large improvements in the proba-
bility of a solution. We do this by modeling the true latent
surface normals as an MRF that is observed through both
the input image and the observed geometry.

Let N be a Markov random field that represents the true,
latent surface normals over the image pixel grid. We will
first make the assumption that the surface normals vary
smoothly across the surface by placing a prior distribution
on N. We use the von Mises-Fisher distribution for the prior
on N,

p(N) ∝
∏
x

∏
x′∈Ω(x)

exp
[
λsN

T
xNx′

]
,

where Ω(x) is the set of neighbors of pixel x and λs is the
concentration parameter of the distribution which enforces
a smoother surface as its value increases.

We assume Gaussian noise in S2 for the observed surface
normals and model the likelihood with a von Mises-Fisher
distribution centered on the latent surface normals

p(N̂x|Nx) ∝ exp
[
λoN

T
x N̂x

]
,

where λo is the concentration parameter for the distribution
and N̂ are the observed surface normals.

Finally, we modify the image formation likelihood (Eq.
4) to explicitly include the latent surface normals rather than
being implicitly computed with the observed surface nor-
mals. The entire posterior then becomes

p(Ψ,L,N|I, N̂) ∝
∏
x

p(Ix|Ψ,L,N)p(N̂x|Nx)p(Ψ)p(N) .

We estimate Ψ and L as before but now have added the
additional step of estimating N by optimizing the new pos-
terior while keeping the other variables fixed. By tuning

241



λo to a large value, we prevent the surface normals from
moving too much while the smoothness constraint resolves
ambiguity among good surface normal choices.

5. Estimating Multiple Materials
The reflectance representation and priors give us means

to reliably estimate “realistic” reflectance by extrapolating
the reflectance from observed angular samples in the sub-
space of real-world materials. When estimating the re-
flectance of multiple materials from a single image, we have
the added challenge of assigning each pixel to the appro-
priate material. We tackle this by deriving a novel layered
MRF-based formulation that fully leverages the reflectance
and other priors to reliably confine the solution space.

5.1. A Layered MRF Formulation

We solve single image multimaterial estimation by fully
leveraging additional characteristics of real-world surfaces.
We observe that adjacent pixels tend to belong to different
materials when their intensities differ greatly. Although ad-
jacent pixels in an image will hardly ever be the exact same
color, they will usually differ smoothly due to lighting if
they belong to the same material.

We derive a probabilistic formulation to exploit this ob-
servation together with the reflectance model and priors.
The formulation, inspired by the work of Sun et al. [12],
uses a layered graphical model where each k-th layer is
responsible for both the spatial extent and surface geome-
try of the k-th material out of K distinct materials. Each
layer models the spatial extent and surface geometry with
two Markov random fields (MRFs), mk and Nk, respec-
tively. The MRF mk specifies the spatial region of the k-th
material with continuous latent variables and the MRF Nk

specifies the surface normals at each surface point Nk,x.
We denote the collection of these MRFs for all K materials
with m and N.

We say that a pixel x belongs to the k-th material if and
only if mk,x(∈mk) is the maximum value among all other
layer values {mk,x | k = 1, . . . ,K}. For this, we define an
indicator random field s that, for each pixel x, encodes the
material of the surface in a 1-of-K coding

sk,x = 1{mk,x = max
k′

mk′,x} ,

where 1 is an indicator function returning one when the ex-
pression inside the braces are true, zero otherwise.

The assumptions that the illumination will cause a ma-
terial to vary smoothly across an image, whereas changes
in material are more likely to happen between pixels with
large intensity differences, can be modeled with a spatial
prior on each material MRF

p(m) =
∏
k

∏
x

∏
x′∈N(x)

exp
[
−w(x,x′)(mk,x−mk,x′)2

]
,

where N(x) denotes the 4-neighbors of pixel x and the
weights reflect the intensity differences

w(x,x′) = max

{
exp

[
− 1

2σ2
c

||Ix − Ix′ ||2
]
, δ

}
,

where the difference is the l2 norm of RGB vectors and the
parameters σc and δ control the sharpness and penalty of
material boundary edges.

Finally, we assume Gaussian noise, so that the likelihood
can be expressed with an exponential function

p(I |Ψ,m,L,N) =∏
k

∏
x exp

[
− sk,x

(
Ix −Ex(Ψk,x,L,Nk,x)

)2]
,

where the image irradiance is computed with Eq. 5.

5.2. Inferring Material Reflectance and Region

We estimate the reflectance of each surface point from a
single image by computing the maximum a posteriori esti-
mates of the reflectance Ψk, the spatial extent mk, and the
surface normals Nk of each of the k-th material

p(Ψ,m,L,N | I, N̂) ∝
p(I |Ψ,m,L,N)p(Ψ |m)p(m)p(N̂|N)p(N) . (7)

We assume a uniform distribution for the light source prior
p(L). In practice, we compute the MAP estimate via energy
minimization which corresponds to minimizing the negative
log posterior while weighting the prior terms.

We alternate between estimating the light source L and
the material Ψ, m and N. We employ the same method
described in Section 4 to estimate the light source using a
geodesic dome. In the material estimation step, we compute
the reflectance coefficients for each material Ψk given the
current material segmentation m to compute the unary prior
p(Ψ |m). For each k-th material, this is equivalent to the
single material estimation discussed in Section 4. The error
term in an energy potential form corresponding to the unary
prior p(Ψ |x) is also weighted proportionally to the number
of pixels assigned to material k

E(Ψ |m) =
∑
k

∑
x

−sk,x log p(Ψk)

to avoid penalizing small material regions more heavily.
Once we compute the reflectance for each material, given
the material segmentation from the last iteration, we can es-
timate the spatial extent mk of each material by minimizing
the negative log posterior using the L-BFGS algorithm [1].

We compute an initial estimate of the light source direc-
tion by thresholding the image to roughly obtain the spec-
ular highlights and then by averaging all the reflected di-
rections of the viewing direction mapped on the geodesic
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Figure 2: Single material estimation results for the colonial-maple-
223 material [6]. Top row: the input image (left) and ground truth
renderings of varying incident light source directions (right). Bot-
tom row: synthesized images using estimated reflectance (left) and
under varying incident light source directions (right). The results
show that the method successfully extrapolates the reflectance
from its limited angular samples with good accuracy.

dome using the known surface normals of these highlight
pixels. Although this only gives a rough estimate as high-
lights can never be exactly localized with simple threshold-
ing, we found it to be good enough to start the estimation.

We obtain an initial estimate of the material segmen-
tation m through k-means clustering on the chromatic-
ity of the single input image. The clustering gives us a
set of centroids {ck | k = 1, . . . ,K}, where each cen-
troid ck is a three-dimensional chromaticity vector Ĩ =

1
IR+IG+IB

(IR, IG, IB). We set the initial estimates m0

to be inversely proportional to the distance of each pixel in
the chromaticity image to the centroids

m0
k,x = exp

[
− (Ĩx − ck)2

]
.

Finally, we approximate the max operator to compute
the segmentation map s from the material MRFs m =
{mk | k = 1, . . . ,K} with a differentiable function so that
the gradient can be computed when optimizing for Ψ and
m

sk,x ≈
exp γmk,x∑
k′ exp γmk′,x

.

In this approximation, γ controls its accuracy: the approxi-
mation becomes exact as γ → ∞. We, however, keep γ to
a moderately large number to avoid arithmetic overflow. It
is worth pointing out that

∑
k sk,x = 1, indicating that our

selection of γ will never over- or under-penalize the pixel
x. A consequence of this is that we may set γ low to allow
materials to blend together, which is useful for objects that
do not have sharp material boundaries.

6. Experimental Results
We conducted a number of experiments on real and syn-

thetic data to evaluate the effectiveness of our method. For
the synthetic data, we rendered spheres with various materi-
als. Using the synthetic data we can evaluate the accuracy of
the light source and reflectance estimates. We also captured
high dynamic range images of several scenes with objects

Figure 3: Single material estimation results for the white-acrylic
material [6]. The input, ground truth, and results are shown in
the same layout as Figure 2. The method recovers the full BRDF
from a single input image with reasonable accuracy even for this
challenging material.

consisting of multiple materials. For all these real images,
we used a laser-stripe range finder (Minolta VIVID 910) to
acquire the scene geometry. We also took an image of a
small black sphere to accurately capture the ground truth
light source direction for each example.

6.1. Single Material Estimation

Figures 2 and 3 show the input image and the reflectance
estimates together with the ground truth of single image sin-
gle material estimation for two materials from rendered in-
put images. The materials used to test the estimation were
not used to compute the reflectance priors. The method suc-
cessfully extrapolates the reflectance from a limited set of
angular samples, even for fairly complex materials like the
white-acrylic shown in Figure 3. Notice that the behavior of
the reflectance as the light source approaches grazing angles
is not captured in the input image, but still successfully re-
covered with high accuracy for the colonial-maple-223 and
reasonable accuracy for the white-acrylic. The reflectance
behavior of the white-acrylic material is unique and may re-
quire a more complex distribution model for the reflectance
prior, whereas in this paper we adopt a Gaussian model for
computational simplicity. We continued the process of esti-
mating synthetic materials for all 100 BRDFs of the MERL
database. We found that the mean and standard deviation
of the relative RMS errors of the estimated BRDFs was
0.617 and 0.165, respectively. The error is obviously higher
than if the BRDFs were fit with measured data [7] but they
nonetheless give a good qualitative result. Our successful
recovery of full BRDFs is possible as the reflectance prior
strongly constrains the estimate to lie within the distribution
of real-world materials in the reflectance space represented
with DSBRDF coefficients.

6.2. Multimaterial Estimation

Figure 4 shows the results of multimaterial estimation for
several real-world scenes. The results show that the method
successfully segments the object surface into distinct mate-
rials and accurately estimates the reflectance at each surface
point. The painted mask object has a very smoothly varying
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Figure 4: Multimaterial estimation results for three real scenes. Each row, from left to right, shows the input image, a synthesized image
of the scene using estimated reflectance and light source, the material segmentation result, a relit image of the object, and a ground truth
image of the relighting result for each scene. The results demonstrate that the method successfully recovers the reflectance for complex
scenes, for instance the gold paint on the mask, except when interreflections and shadowing are prevalent in the scene.

Figure 5: Comparison between normals estimated using the nor-
mal refinement technique and the normals measured with a range
scanner. The leftmost image is the observed image, the middle
image is a synthesized image of the estimated reflectance and seg-
mentation with refined normals, and the right image is the same
estimated reflectance and segmentation rendered with the input
normals. The input normals are so erroneous that refining them
is necessary in this case.

surface; because of this, normal refinement was not neces-
sary. The cup scene, on the other hand, features particularly
sharp specular highlights. For this reason, normal refine-
ment was necessary to correctly estimate the reflectance of
each material. Figure 5 compares images of the cup scene
rendered with the observed normals and with the refined
normals.

Some of these materials have reflectance that cannot be
captured with conventional diffuse plus specular reflectance
models. For instance, the gold paint on the forehead of the
mask does not have any diffuse component and its color is
actually in its specular reflection. The method successfully
recovers the reflectance of such challenging real-world ma-
terials from the limited information that can be extracted
from a single image, which truly demonstrates the power of
the reflectance priors and the probabilistic formulation. For
the scenes in figure 4 the estimated light source direction
was within 13.5 degrees of the ground truth direction. We

Figure 6: The reflectance and spatial extents of the five materials
in the mask scene. Each column represents a different material;
the top row shows the geometry of the mask rendered with that
material and the bottom row shows the material assignment mk,x.

believe these errors were mainly caused by the imperfect
surface normal measurements.

Figure 6 gives some insight to how the method operates
by showing the geometry of the mask rendered with each
material, and the values of material assignment mk,x. The
method attempts to minimize the difference between adja-
cent values of mk,x while simultaneously minimizing the
difference between the predicted and the observed data. It
allows material regions to be discontinuous (jump in the val-
ues of mk,x) when the difference between adjacent pixel
intensities are high, and this effect is visible in the figure.

Our method does not model global illumination effects
like interreflection and cast shadows which can contribute
greatly to the scene irradiance of more complex objects.
This effect is noticeable in the cups scene: the center cup
is reflected in the green cup and a heavy shadow cast on the
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Figure 7: Comparison of using a single input image versus two
input images. The left column shows the input images, the middle
column shows the results when using a single input image, and the
right column shows the results when using the two input images.
We examine the results by comparing the predicted images in the
top row to the input image in the top-left. Our method can leverage
the additional observations to estimate reflectance and segmenta-
tion more accurately.

red cup causes that area to be erroneously assigned to a dark
material. In the future, we plan to explore methods to pre-
dict these global effects by modeling the complete geometry
of the scene rather than just the surface normals.

Our method is also capable of using multiple input im-
ages, taken from the same camera point of view, to improve
the result. We may simply treat the additional image as ad-
ditional observations of each material and allow the method
to make separate light estimates for each input image. Fig-
ure 7 compares the results of using multiple input images to
using a single image. As evidenced by the improved seg-
mentation of the mask, the additional observations increase
the accuracy of the results because of the added informa-
tion. One of the greatest strengths of our method is its abil-
ity to incorporate more information if it becomes available.

We note some limitations of our method as well. Our for-
mulation assumes that a scene is made up of only a handful
of materials. As a result, the method is not suited to scenes
that feature smoothly varying BRDFs along the scene sur-
face. As we mentioned, it is also unable to handle scenes
with significant global illumination effects. Finally, a scene
including materials with a limited number of angular sam-
ples (e.g., a scene composed of a set of planes) can cause
the method to fail to accurately capture the BRDFs. Using
multiple input images can alleviate this problem.

7. Conclusion
In this paper, we introduced a novel method for jointly

estimating the light source and reflectance of object surfaces

consisting of multiple materials from a single image. We
showed how the space of real-world materials can be char-
acterized as statistical priors, together with other priors on
the spatial extents of materials and their reflectances’ spatial
variations, in a probabilistic formulation. The experimental
results demonstrate that this successfully confines the solu-
tion space to reliably estimate the reflectance of real-world
materials. We believe capitalizing on what we can learn and
characterize about the reflectance space of real-world mate-
rials is crucial for estimating radiometric properties from
images, and plan to further investigate its applications.
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