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Extrinsic Camera Calibration
from A Moving Person

Sang-Eun Lee, Keisuke Shibata, Soma Nonaka, Shohei Nobuhara, and Ko Nishino

Abstract—We propose a novel camera calibration method for a
room-scale multi-view imaging system. Our key idea is to leverage
our articulated body movements as a calibration target. We show
that a freely moving person provides trajectories of a set of
oriented points (e.g., neck joint with spine direction) from which
we can estimate the locations and poses of all cameras observing
them. The method only requires the cameras to be synced and
that 2D human poses are estimated in each view sequence. By
elevating these 2D poses to 3D which directly provides a set of
oriented 3D joints, we compute the extrinsic parameters of all
cameras with a linear algorithm. We also show that this enables
self-supervision of the 3D joint estimator for refinement, and the
iteration of the two leads to accurate camera extrinsics and 3D
pose estimates up to scale. Extensive experiments using synthetic
and real data demonstrate the effectiveness and flexibility of the
method. The method will serve as a useful tool to expand the
utility of multi-view vision systems as it eliminates the need for
cumbersome on-site calibration procedures.

Index Terms—Calibration and Identification, Computer Vision
for Automation, Camera Calibration, Self-supervised Learning

I. Introduction

MULTI-camera calibration is an essential requirement for
3D computer vision including geometry reconstruction,

scene understanding, and motion analysis. It usually consists
of two separate steps, namely estimation of the camera intrin-
sics consisting of the projection model parameters and camera
extrinsics that represent the location and pose in the world
coordinate frame. Although the intrinsic parameters can be
estimated prior to deployment, the extrinsic parameters are
only fixed after installation. As such, extrinsic camera calibra-
tion always needs to happen on-site. Multi-camera extrinsic
calibration fundamentally relies on point correspondences be-
tween different camera viewpoints. This inevitably necessitates
special calibration equipment and procedures on deployment,
such as walking around with a large calibration board. The
resulting calibration accuracy depends on the coverage and
precision of this non-trivial manual task. This cumbersome on-
site extrinsic camera calibration severely limits the adoption of
computer vision systems as it requires successful completion
of a meticulous process by an experienced person that cannot
be fulfilled in many cases. By way of example, imagine
installing a multi-view camera system at home for an elderly.
Even though computer vision can greatly help in realizing
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Fig. 1. We present a novel multi-camera extrinsic calibration by leveraging
the human body as a calibration target. Given a set of synchronized videos
capturing a moving human from different views as input (a), by using a
set of oriented 3D joints of the human body, our method estimates the
extrinsic parameters of each static camera (b) with a linear algorithm which
can optionally be followed with non-linear bundle adjustment. The gray dots
denoting the trajectory of a moving person in space and the 3D skeletons
in (b) are generated to quantitatively verify the accuracy of extrinsic camera
calibration.

ambient assisted living, they cannot be deployed because
elderlies cannot easily calibrate the cameras!

Can we get rid of this on-site extrinsic camera calibration
requirement altogether? Can we just ship cameras intrinsically
calibrated at the factory and let people install them on their
room ceiling and monitor their health, detect their falls, and
predict their behaviors? For this we need to answer the
following question. What can we use as a calibration target
for multi-view cameras that we can find in daily environments
and how can we use them for accurate extrinsic parameter
estimation?

In this paper, we show that we can calibrate multiple
cameras by just observing us, freely moving people. By simply
walking around without any special intent in front of the
cameras, we can collect sufficient information to accurately
calibrate the extrinsics of them. The key idea is to exploit the
fact that our body is articulated. Several past methods [1]–[4]
have indeed shown that human joints can provide automatic
correspondences between cameras, e.g., left shoulder is left
shoulder in all camera views, and have used them for extrinsic
camera calibration. In contrast, we leverage the fact that the
moving human body provides us with corresponding oriented
points in the free space captured by the cameras and show
that they lead to a much more accurate and flexible extrinsic
camera calibration.

Our method assumes that the cameras are stationary, tem-
porally in sync, and only requires 2D poses detected in each
frame in each view. Off-the-shelf deep 2D human pose esti-
mation methods suffice for obtaining these 2D poses. We first
elevate these individual 2D poses to 3D with an existing 3D
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pose estimator. This 3D pose needs not be accurate as we will
refine the 3D pose estimator itself later. From the 3D human
poses for each camera view, we can extract corresponding
3D oriented points. For instance, the neck joint with the
spine direction can be used as one oriented point. Using the
collection of 3D oriented points across all camera views across
time, we solve for the extrinsic camera parameters via ma-
trix factorization with RANSAC for robustness. The optimal
camera poses up to scale are obtained by minimizing the
reprojection errors in a bundle adjustment (BA) formulation.
In addition, we show that we can use the estimated camera
poses to fine-tune the 3D pose estimator in a self-supervised
manner. By iterating this linear extrinsic camera calibration
and fine-tuning, we arrive at accurate camera poses all just by
observing a freely moving person.

We validate our method with an extensive set of experiments
using synthetic and real data. We also compare with baseline
methods and show that our method outperforms them in a
wide variety of scenes. We also experimentally evaluate the
accuracy of refining the 3D pose estimator. These results
clearly demonstrate the effectiveness of our method and its
flexibility as a practical extrinsic camera calibration tool that
can be widely used in real-world situations. We plan to release
our code with the hope that it will serve as a fundamental tool
to catalyze expanded utility of multi-view vision systems.

II. Related works

a) Multi-View Camera Calibration: Multi-view camera
calibration [5] is a challenging problem in particular for “in-
the-wild” scenarios. Agrawal et al. [6] proposed a calibration
and a 3D shape reconstruction pipeline from a large scale
collection of uncalibrated images. To calibrate moving multi-
view cameras [7]–[9], Hasler et al. [7] proposed an SfM-based
approach. These methods, however, rely on feature points on
static objects (e.g., background), and do not make use of
dynamic foreground objects such as humans themselves as
calibration targets.

b) Human As A Calibration Target: The idea of using
foreground objects for both 3D shape reconstruction and
calibration has been proposed by Furukawa and Ponce [10].
They assume that an initial guess of the camera parameters
is available, and optimize it via 3D shape reconstruction of
general objects, including human, as a collection of textured
patches.

When reconstructing the geometry of a human body, the
target human body itself can serve as a calibration target.
Detecting persons [11] or joints in images can provide seman-
tic correspondences between different views regardless of the
baseline length, and the joints move as an articulated object
due to the kinematic structure [1]–[4], [11]–[16]. Elhayek et
al. [12] proposed simultaneous reconstruction of the human
skeleton and camera poses as an energy minimization problem.
Puwein et al. [2] obtained 2D joint correspondences to cali-
brate the cameras with SfM, and Takahashi et al. [1] combined
SfM and PnP. Garau et al. [16] obtained 3D human poses
directly from images to estimate the relative camera poses.
Lv et al. [13] used silhouettes of a walking person to detect

vanishing points for calibration. Nakano [4] proposed a closed-
form solution using parallel line segments. By assuming that
people in the scene always appear in upright posture, they used
the line connecting the neck and the mid-hip as vertical and
hence parallel segments. In contrast, we propose a new linear
algorithm that uses both 2D joint detection and single-image
3D pose estimation without making any assumptions on the
human pose.

c) Human Pose Estimation: Human pose estimation from
a single image has been an emerging research topic in recent
years. For 2D joint estimation [17]–[22], Wei et al. [18]
proposed confidence map estimation of each joint, and Cao
et al. [19] proposed part affinity field estimation. For 3D joint
estimation [23]–[30], Mehta et al. [23] estimated 3D skeleton
pose directly from an image, and Bogo et al. [24] fit a 3D
template to images. Pavllo et al. [27] estimated 3D poses
from a time series of 2D joint positions. While these 3D
pose estimators work successfully on large-scale datasets, they
become inaccurate on unseen views [31]. We use an existing
3D pose estimator pretrained on large-scale public datasets,
and demonstrate that our method enables fine-tuning for a new
scene with self-supervision.

d) Self-supervision for 3D pose estimation: Multi-view
observations can provide 3D annotation of human joints
automatically [32]–[34]. Simon et al. [33] triangulated hand
keypoints from reliable 2D detections in multi-view images
and reprojected them to other views to train the detector.
Rhodin et al. [34] used estimated 3D human body for rotation
estimation, and trained their 3D pose estimator to return
3D poses consistent with the rotation. We also train a pose
estimator by reprojecting estimated 3D joints to the images
as additional annotations by estimating both the rotation and
translation of each camera.

III. Calibration from Oriented Joints ofMoving Person

We fully leverage the moving human body to calibrate
extrinsic camera parameters. The key idea is to use human
pose as a collection of oriented points, instead of using it as
mere 2D or 3D corresponding points.

Consider a camera c of pose Rc and tc. An oriented point
⟨xi, vi⟩ (i = 1, . . . ,N) at position xi ∈ R

3 and oriented to vi ∈

R3 in the world coordinate system appears as ⟨xc
i , v

c
i ⟩ (i =

1, . . . ,N) in camera c coordinate system as

xc
i = Rcxi + tc , (1)

vc
i = Rcvi , (2)

and the point is projected to yc
i ∈ R

2 in the camera c image as

λc
i

[
yc

i
1

]
= Kcxc

i = Kc (Rcxi + tc) , (3)

where Kc is the pre-calibrated intrinsic camera parameter and
λc

i is a scaling factor corresponding to the distance between
the camera and the point.

The goal of the proposed method is to estimate the extrinsic
parameters ⟨Rc, tc⟩ ∈ SE(3) of each camera c linearly from
the oriented points. We assume that all the cameras are
synchronized beforehand, and that the index i encodes both the
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Fig. 2. Calibration pipeline. We use a single-image 3D pose estimator to obtain 3D poses at each viewpoint, and use both 2D and 3D poses for our extrinsic
calibration. The calibration provides a unified 3D pose which enables fine-tuning of the 3D pose estimator to recalibrate the cameras again.

body part and the capture frame: i = (k, f ), where k = 1, . . . ,K
denotes the index of body part and f = 1, . . . , F denotes the
frame.

A. Rotation Estimation

Given a set of vc
i of C cameras, i.e., the transformations

of unknown 3D orientations vi in the camera coordinate
system, we first estimate the rotation matrix Rc satisfying the
orthonormality using Eq. (2). For N 3D orientations estimated
for a camera c, we have, by transposing both sides of Eq. (2),[

vc
1 . . . vc

N

]⊤
=
[
v1 . . . vN

]⊤
Rc⊤ ,

⇔ Vc = VRc⊤ ,
(4)

where VC is an N × 3 observation matrix and V is an N × 3
matrix of 3D unknown orientations in the world coordinate
system. Observing the same set of unknown 3D orientations
V by another camera c′, we have[

Vc Vc′
]
= V
[
Rc⊤ Rc′⊤

]
, (5)

and for C cameras in general,[
V1 · · · VC

]
= V
[
R1⊤ · · · RC⊤

]
,

⇔ V1:C = VR1:C ,
(6)

where V1:C is an N×3C observation matrix and R1:C is a 3×3C
rotation matrix.

Eq. (6) indicates that the matrix V1:C is rank 3, and hence
its SVD V1:C = YDZ⊤ returns Y , D, and Z⊤ as N × 3, 3 × 3,
and 3×3C matrices, respectively. As a result, we can factorize
V1:C as

V = YDM−1, R1:C = MZ⊤ , (7)

where M is an arbitrary invertible 3 × 3 matrix. Here, we
choose M to make the recovered camera pose matrices become
orthonormal and also to make the recovered orientations
normalized by using the following proposition.

Proposition 3.1: Any rotation matrix scaled by
√

C can be
the matrix M in Eq. (7) that makes the recovered orientations
row-normalized and also makes the recovered camera poses
orthonormal.

Please refer to the appendix for a proof. In practice, we can
use M given as the inverse of the left-most 3× 3 submatrix in
Z⊤ to make the rotation matrix of the first camera R1⊤ become
an identity matrix.

B. Translation Estimation

Given the rotations of the cameras, we can estimate trans-
lations from collinearity and coplanarity constraints [5].

a) Collinearity Constraint: Eq. (1) suggests that xc
i and

its projection in the normalized camera coordinate system are
collinear, i.e., their cross product is zero:

nc
i × xc

i = [nc
i ]×(Rcxi + tc)

=
[
[nc

i ]×Rc [nc
i ]×
] [

xi tc
]
= 03×1 ,

(8)

where [nc
i ]× denotes the skew-symmetric matrix of nc

i =

[nc
i,x, nc

i,y, nc
i,z]
⊤ = (Kc)−1[yc

i , 1]⊤.
b) Coplanarity Constraint: The rays back-projected

through the corresponding points from two views form an
epipolar plane, and hence nc

i , nc′
i , and tc − tc′ are coplanar,

i.e., their scalar triple product is zero:

((Rc⊤nc
i ) × (Rc′⊤nc′

i ))⊤(Rc⊤ tc − Rc′⊤ tc′ )

= (mc,c′
i )⊤(Rc⊤ tc − Rc′⊤ tc′ ) = 0.

(9)

With N corresponding points, we have
(mc,c′

1 )⊤Rc⊤ −(mc,c′

1 )⊤Rc′⊤

...
...

(mc,c′
N )⊤Rc⊤ −(mc,c′

N )⊤Rc′⊤


[

tc

tc′

]
= 0N×1. (10)

With N points and C cameras, Eqs. (8) and (10)
form a set of linear equations with 3N + 3C unknowns[
x1 . . . xN t1 . . . tC

]⊤
of the form:

A
[
x1 . . . xN t1 . . . tC

]⊤
= 0 , (11)

where A is a sparse matrix with [nc
i ]×Rc, [nc

i ]×, mc,c′
i Rc⊤, and

−mc,c′
i Rc′⊤ from Eqs. (8) and (10).

This system has 4 degrees of freedom, i.e., 3 for global
X/Y/Z-translations and 1 for global scaling. That is, the system
has 4 right singular vectors corresponding to the 4 zero
singular values, and we can find a set of coefficients to make
the translation of the first camera be zero [35].

Both the rotation estimation and the translation estimation
require 3 or more joints to be observed in each view. For
noisy input with outliers, we can apply RANSAC to make the
calibration procedure robust.
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TABLE I
Quantitative evaluations with synthetic data from KIST SynADL [36]. Each
row shows the results of our linear calibration (“L”) and that followed by
the proposed bundle adjustment (“BA”) on different combinations of joints.

The columns show different scenes from A1 (smallest motion) to A4
(largest motion). The results show that our method can handle scenarios
ranging from small human movements to large human activities. Please see

Fig. 4 for visualizations.

A1 A4
ER E t E3D E2D ER E t E3D E2D

BBOX [11] 1.544 3.211 2.719 55.105 1.526 3.577 13.443 41.775
AO+MA [16], [34] 2.170 4.974 3.502 350.621 2.082 4.740 10.918 214.040
AO+MA+BA (λ1=λ2=0) 1.159 1.765 0.729 0.989 1.337 3.419 2.325 8.003
AO+MA+BA 1.243 2.000 0.803 2.172 1.766 4.704 3.904 42.299
SfM+PnP [1] 1.389 2.725 9.244 43.777 0.141 0.354 0.856 2.591
SfM+PnP+BA (λ1=λ2=0) 1.338 2.360 1.926 9.186 0.130 0.330 0.543 2.177
SfM+PnP+BA 1.312 3.050 2.244 17.613 0.116 0.251 0.159 6.541
J1 Ours (L) 0.519 0.924 1.800 61.190 0.156 0.380 0.903 13.765
J1 Ours (L+BA) 0.160 0.307 0.370 3.752 0.017 0.048 0.050 0.825
J2 Ours (L) 0.037 0.491 2.451 24.152 0.154 0.691 0.838 32.247
J2 Ours (L+BA) 0.023 0.052 0.054 0.559 0.007 0.020 0.021 0.339
J2 Ours (L+BA) (λ1=λ2=0) 0.023 0.051 0.057 0.535 0.007 0.020 0.021 0.338
J1 Ours (L) +J2 (BA) 0.024 0.055 0.063 0.550 0.007 0.020 0.021 0.339

C. Bundle Adjustment

We formulate reprojection error minimization as a maxi-
mum likelihood estimation problem. Assuming that 2D human
joint detectors produce a probability distribution of each joint
position that can be approximated by a normal distribution,
we measure the goodness of the camera poses by evaluating
it with the reprojected joints. That is, for each joint detected
at y, we minimize the negative log likelihood − logN(ŷ; y, σ),
where ŷ is the reprojected joint position and σ is the standard
deviation of the distribution returned by the joint detector.

In addition to this reprojection error, we also minimize
the alignment error of the oriented points modeled with their
spherical variance and the variance of the bone length over the
frames. In summary, our objective function to be minimized
is

E(θ) = −
C∑

c=1

N∑
i=1

logN(ŷc
i (θ); yc

i , σ)

+ λ1

N∑
i=1

ς1(θ; {v1
i , . . . , v

C
i }) + λ2

∑
b∈B

ς2(θ;Bb) ,

(12)

where θ denotes the parameters to be optimized, i.e., K, R, t,
and x. ς1(·) returns the spherical variance defined by

ς1(θ; {v1
i , . . . , v

C
i }) = 1 −

1
C

∥∥∥∥∥∥∥
C∑

c=1

Rc−1
vc

i

∥∥∥∥∥∥∥ . (13)

B denotes the set of bones, and Bb denotes the set of 3D joint
pairs corresponding to the endpoints of a bone b in different
frames. ς2(·) returns the variance of the bone b length, i.e.,
the variance of the distances between the 3D point pairs in
Bb. λ1 and λ2 control the weights of the three components
and are determined experimentally. In general, if the 2D joint
estimates are more reliable than the 3D pose estimates, we
can make its weight smaller, and vice versa.

IV. Self-Supervised Fine-Tuning of 3D Pose Estimator

As shown in Fig. 2, we can triangulate the 3D human
pose for every frame once the cameras are calibrated with
our method, and then use them as pseudo ground-truth to
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Fig. 3. Calibration errors for the various activities in KIST SynADL [36]. M1,
M2, M3, O1, and O2 denote BBOX, AO+MA+BA, SfM+PnP+BA, J1 Ours
(L+BA), and J2 Ours (L+BA), respectively. Each error bar represents the total
mean and standard deviation of all A1 to A4 scenes. Our algorithm achieves
high accuracy for a variety of scenes even when using a small number of
joints.

fine-tune the single-view 3D human pose estimator fθ :
RN×J×2 7→ RN×J×3 , where J is the number of joints. By
alternating between calibrating the camera poses and fine-
tuning the 3D human pose estimator with the updated 3D
poses, we can simultaneously improve the camera calibration
and the 3D pose estimation accuracy. Note that the proposed
linear calibration only depends on the 3D rotations of the
joints, not their 3D positions. As a result, fθ needs to only
estimate normalized 3D poses and does not need to estimate
the absolute scale.

V. Experiments
We conducted extensive experiments on synthetic and real-

world scenes. The former enables us to quantitatively validate
the performance of extrinsic calibration. The latter demon-
strates successful use of our method in various daily scenarios.
We also show that our method can be used for self-supervised
learning of 3D pose estimation. The experiments were ap-
proved by the Research Ethics Committee of the Graduate
School of Informatics, Kyoto University (KUIS-EAR-2020-
002).

A. Experimental Details

In order to measure the errors of the estimated poses from
the ground truth, we evaluate the rotation with Riemannian
distance [39] ER and the translation with RMSE (root mean
squared error) E t . We also evaluate the reprojection error E2D
in pixels and the RMSE of the reconstructed 3D joint positions
E3D. In what follows, the units for E t and E3D are meters. We
use median for E2D and mean for the rest.

We use VideoPose3D [27] as the 3D human pose estimator
fθ and fine-tune it in a self-supervised manner. It takes a 2D
keypoint sequence as input and outputs 3D human pose in the
camera coordinate system. We used Detectron2 [17] for 2D
keypoint detection.

We compare our method with three algorithms BBOX [11],
SfM+PnP [1] and AO+MA [16]. BBOX [11] uses the cen-
ter of human bounding boxes as 2D corresponding points
across views. It estimates pairwise poses with the 5-point
algorithm [40], and integrates them with motion averaging [41]
followed by non-linear optimization that minimizes the repro-
jection errors [5]. SfM+PnP uses 2D joints. It first recovers
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TABLE II
Quantitative evaluations with real images. The results clearly show that our method outperforms existing methods. Please see Fig. 4 for visualizations.

Our dataset Panoptic [37] Human 3.6M [38]
ER E t E3D E2D ER E t E3D E2D ER E t E3D E2D

BBOX [11] 2.050 7.609 21.952 141.454 1.690 4.592 11.212 406.614 1.717 6.502 14.959 96.319
AO+MA [16], [34] 1.877 7.337 16.265 747.461 1.443 5.418 2.803 388.665 1.481 5.428 16.643 455.138
AO+MA+BA 1.544 5.725 6.338 36.853 2.083 1.312 12.542 4.190 2.037 7.574 24.203 18.319
SfM+PnP [1] 0.364 1.424 1.578 194.997 1.168 4.677 3.161 96.818 0.007 0.035 0.024 2.455
SfM+PnP+BA 0.061 0.162 0.139 6.744 1.580 4.296 3.038 8.381 0.003 0.013 0.013 2.048
J1 Ours (L) 0.182 1.307 2.009 85.136 0.038 1.520 0.704 30.557 0.097 0.357 0.436 9.123
J1 Ours (L+BA) 0.016 0.073 0.058 3.631 0.033 0.073 0.126 2.088 0.006 0.032 0.024 2.796
J1 Ours (L w/ obs. mask) 0.181 1.318 2.010 85.210 0.038 1.520 0.704 30.557 0.144 0.591 0.655 7.410
J1 Ours (L+BA w/ obs. mask) 0.016 0.074 0.058 3.646 0.033 0.073 0.126 2.088 0.005 0.043 0.027 3.013
J1 Ours (RANSAC) 0.059 1.592 3.616 47.700 0.132 1.732 1.526 20.226 0.097 0.371 0.421 8.267
J1 Ours (RANSAC+BA) 0.015 0.066 0.057 3.653 0.033 0.074 0.132 2.017 0.006 0.032 0.024 2.796
J2 Ours (L) 0.052 2.154 3.108 101.275 0.535 1.539 1.770 101.690 0.057 0.146 0.302 4.850
J2 Ours (L+BA) 0.040 0.125 0.096 3.731 0.032 0.119 0.133 1.576 0.003 0.017 0.013 1.788
J2 Ours (L w/ obs. mask) 0.043 1.414 1.817 55.083 0.536 1.496 1.754 98.709 0.085 0.154 0.352 4.579
J2 Ours (L+BA w/ obs. mask) 0.020 0.053 0.041 3.014 0.032 0.118 0.133 1.569 0.003 0.016 0.013 1.777
J2 Ours (RANSAC) 0.243 1.426 1.731 51.672 0.212 1.004 2.008 12.316 0.057 0.184 0.232 4.599
J2 Ours (RANSAC+sBA) 0.040 0.125 0.096 3.728 0.019 0.083 0.092 0.724 0.003 0.017 0.013 1.788
J1+J2 Ours (L+BA) 0.040 0.124 0.096 3.731 0.030 0.107 0.115 1.612 0.003 0.017 0.013 1.788

TABLE III
Quantitative evaluations with our dataset after fine-tuning. EO, EH, and EP denote the 3D pose estimation errors w.r.t. the ground truth for our,

Human3.6M, and Panoptic dataset, respectively. The results show that the refined 3D poses lead to more accurate camera poses without overfitting to our
dataset. Note that the results of “initial calibration” are identical to those in Table II.

Initial calibration 1st fine-turning 2nd fine-turning
EO = 0.052, EH = 0.025, EP = 0.104 EO = 0.036, EH = 0.062, EP = 0.096 EO = 0.036, EH = 0.063, EP = 0.078

ER E t E3D E2D ER E t E3D E2D ER E t E3D E2D
J1 Ours (L) 0.182 1.307 2.009 85.136 0.029 0.077 0.107 15.805 0.031 0.090 0.140 20.764
J1 Ours (L+BA) 0.016 0.073 0.058 3.631 0.016 0.069 0.056 3.845 0.016 0.069 0.056 3.846
J1 Ours (L w/ obs. mask) 0.181 1.318 2.010 85.210 0.041 0.161 0.375 30.774 0.052 0.209 0.599 42.927
J1 Ours (L+BA w/ obs. mask) 0.016 0.074 0.058 3.646 0.011 0.050 0.036 3.742 0.012 0.053 0.042 3.737
J2 Ours (L) 0.052 2.154 3.108 101.275 0.009 0.434 0.811 73.014 0.010 0.384 0.663 70.968
J2 Ours (L+BA) 0.040 0.125 0.096 3.731 0.041 0.131 0.102 3.788 0.041 0.131 0.102 3.782
J2 Ours (L w/ obs. mask) 0.043 1.414 1.817 55.083 0.079 0.196 0.419 43.329 0.033 0.261 0.671 54.112
J2 Ours (L+BA w/ obs. mask) 0.020 0.053 0.041 3.014 0.014 0.038 0.030 2.579 0.013 0.035 0.028 2.512

A3 A4A1 A2 Human 3.6MPanopticOur dataset

Fig. 4. Visualizations of calibration results for the real and synthetic datasets. Ground truth cameras and our estimated cameras are shown in red and black,
respectively. Gray dots depict footprints of each subject. We used J2 Ours (L+BA w/ obs. mask) and J2 Ours (L+BA) for our dataset and for the others,
respectively. The results show that our method successfully estimates camera poses in the scene with a wide range of activities of daily living, from small to
large movements. The ground truth cameras in red overlap the estimated ones in black as shown quantitatively in Tables I, II, and III.

the relative pose of a camera pair, triangulates the 3D point,
then solves PnP [42] for the rest of the cameras with non-
linear minimization of the reprojection error. AO+MA uses
3D joints. It estimates a sequence of 3D human poses for each
camera, recovers pairwise relative poses of all the camera pairs
with absolute orientation [43], and integrates them into a single
coordinate system with motion averaging. For SfM+PnP and
AO+MA, we also report the results with our bundle adjustment
using the 3D human structure (Eq. (12)) as SfM+PnP+BA
and AO+MA+BA. Note that we used the mid-hip instead
of the center of the bounding box for evaluating BBOX to
ensure better accuracy. BBOX reimplements the calibration
using person reidentification by Yan et al. [11], SfM+PnP
reimplements the linear calibration part of Takahashi et al. [1],

and AO+MA reimplements that of Rhodin et al. [34] and
Garau et al. [16], since their original implementations are not
publicly available.

B. Dataset

We quantitatively evaluate our method using a publicly
available synthetic dataset KIST SynADL which is based on
3D motions of elderlies [36]. The dataset provides rendered
image sequences with 3D and 2D joint annotations of a
single person1. The movements of people are based on motion

1Note that KIST SynADL dataset does not provide the camera parameters.
We calibrated the cameras by ourselves from the provided 2D and 3D joints,
and confirmed that the reprojection errors with the calibrated parameters are
about 1e-6 px, i.e., effectively zero, and can be used as the ground truth.
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Fig. 5. Calibration errors for different noise levels and human activities. σ
denotes the standard deviation of Gaussian noise injected to all available 2D
joint positions (J2) in pixels. Our method achieves robust accuracy for all
noise levels regardless of the person’s activities and whether they have small
(A1) or large motion (A3). Notice that the green and red dashed lines are
almost hidden behind the blue dashed line.
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Fig. 6. Calibration accuracy degradation due to the 3D pose estimator fθ. Each
plot shows the results of J2 Ours (L) and (L+BA) for the synthetic dataset
(A2) [36]. σ denotes the standard deviation of the joint position errors in
pixels. “w/o fθ” directly uses noise-injected 3D ground truth poses and “w/
fθ” estimates the 3D pose with fθ from noisy 2D joint positions. These plots
show that the use of fθ can degrade the accuracy in practice, but our method
is not affected by those errors as shown in Table I.

capture data, and we selected four activities of daily living for
evaluation.

For real-world data, we use S11 Walking 1 sequence
from Human3.6M [38] and flute sequence from Panoptic
datasets [37]. flute is a challenging sequence since the player
exhibits small motion and trajectory spanning a small area in
the scene. In addition, we recorded a daily scene of a single
person walking in a room for 13 seconds with five surveillance
cameras. We subsampled 20 frames out of the 13 seconds as
input images. This is a novel scene for the 3D pose estimator
fθ [27], so that we can evaluate our self-supervised refinement
of 3D pose estimation. The intrinsic parameters are calibrated
with Zhang’s method [44] and the extrinsic parameters are
calibrated using correspondences given by AR markers and
also manually-annotated feature points. The mean reprojection
error was 1.568 pixels and we used these parameters as the
pseudo ground truth in the evaluation.

C. Extrinsic Camera Calibration

a) Synthetic dataset: This section evaluates the robust-
ness of our method against noise and different combinations

of joints. Table I shows calibration errors of our method, Ours
(L) and Ours (L+BA), for different combinations of joints
(J1 and J2) and scenes (A1 to A4). AO+MA and SfM+PnP
use all available joints (J2) in the scenes. Ours (L+BA) is
the proposed calibration in Section III, and Ours (Linear)
is that without the bundle adjustment (Section III-C). We
added Gaussian noise of σ = 3 pixels to 2D joints defined
in 640 × 360 image resolution, and used them to estimate
3D joints from [27]. We ran 15 trials for each scene. J1
uses shoulders, thorax, and pelvis as oriented points with
bones joining them defining their unique orientations. J2 adds
elbows, hip, knees, wrists, and ankles to J1. The target person
moves in approximately 0.5m×0.5m, 1.0m×1.0m, 1.5m×1.5m,
and 2.0m×2.0m areas in A1 (cutting vegetable on the cutting
board), A2 (lying down), A3 (spreading bedding/folding bed-
ding), and A4 (vacuumming the floor) scenarios, respectively.
We uniformly subsampled the sequence into 25 frames for A4.
The processing time was approximately 0.5s and 20s for L and
BA, respectively, on a PC with Intel Core i7-9700X.

As shown in Fig. 3, our method using 2D and 3D joints
outperforms other methods even when using only a relatively
small number of joints. In addition, for activities with small
motions (A1 and A2), SfM+PnP suffers from larger errors of
rotation, but our method achieves consistent accuracy in all
scenarios. BA further improves the accuracy of our method.

Figs. 5 and 6 illustrate the calibration errors when using
the full body with different noise levels computed as the
average error of 15 trials for each noise level. Fig. 5 shows,
in comparison with other methods, that our method is robust
to different activities, including those consisting of small and
large motions, and also severe noise that can often occur in
the wild. Fig. 6 shows the performance drop caused by the 3D
pose estimator fθ for different scenes. These plots show that
the accuracy of fθ can decrease, but our method is robust to
such errors as quantitatively shown in Table I.

As shown in Fig. 4, our method can calibrate the cameras
reliably even from a small daily motion sequence, in contrast
to conventional calibration methods that rely on a calibration
target being moved across the scene, which is often challeng-
ing to realize. These results demonstrate the effectiveness of
our method, especially as a convenient calibration method for
elderly support applications.

b) Real-world dataset: We evaluate our method with the
walking 1 sequence of Human3.6M and the flute sequence
of Panoptic datasets. In the walking 1 sequence, a subject
walks around in a room, and his joints move around in the
image. In contrast, in the flute sequence, a subject playing
the flute stands in one position and her joints move in a
small area in the image; it is a challenging scene for our
method. We also evaluate our method in a daily environment
captured by five GoPro 7 which are not strictly synchronized
at the frame-level. That is, the cameras share a clock up
to a few frames ambiguity. Evaluations with our dataset
demonstrates robustness to the time difference in practice.
Notice that the 3D pose estimator is not pretrained for our
dataset. In these evaluations with real images, we also report
the performance of our method combined with RANSAC as
Ours (RANSAC) and Ours (RANSAC+BA). In addition to
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this, we employ observation masks for our linear calibration
to cope with the occlusion of body parts caused by the scene.
The observation masks are constructed after BA by filtering
joints with reprojection errors greater than a threshold.

Table II shows calibration errors, and Fig. 4 visualizes
calibrated camera poses. We can observe that our method
performs robustly even for sequences with smaller motions
in comparison with others. These results show that the use
of both 2D and 3D joints helps improve robustness to such
challenging cases. The results on our dataset demonstrate that
our method generalizes well to environments beyond those
used to train the 3D pose estimator.

c) Joint optimization of the intrinsic parameters: As a
standard practice in camera calibration, the intrinsic param-
eters and the extrinsic parameters can be jointly optimized.
For this, we conducted additional evaluations on our dataset
(J2 Ours) with two different intrinsic parameters: the pseudo
ground truth K p calibrated with a chessboard [44] and a
parameter calculated from the camera specifications K s. The
values of K s vary by 1.6 percent on average from those of K p.
Our linear calibration with K p and K s yields E2D = 101.27
and 102.74px, respectively, and bundle adjustment on both
the intrinsic and extrinsic parameters results in E2D = 6.84
and 7.32px, respectively. In contrast, bundle adjustment only
on the extrinsic parameters results in E2D = 3.73 and 4.66px,
respectively. These results show that our 3D pose estimator
fθ is not accurate enough for joint intrinsic and extrinsic
parameter estimation, and fixing the intrinsic parameters, even
if they are approximate, performs better.

D. Self-Supervised Training

Once we obtain the camera parameters and the 3D joints,
we can fine-tune the 3D pose estimator fθ by using the
triangulated 3D joint locations. In this fine-tuning, we jointly
used Human3.6M to prevent the 3D pose estimator from
overfitting to the target environment. Note that walking 1
sequence was not included in any set of the training and test
for fine-turning.

Table. III shows the calibration results using enhanced
3D joints obtained from the model after fine-turning. The
observation masks help prevent training on incorrect 3D joints.
As a result, the iterative fine-tuning can jointly improve the
calibration and the 3D pose estimation, while maintaining the
accuracy of the 3D pose estimator. These results demonstrate
that the fine-tuning can let us collect pseudo ground truth 3D
motion of people which are otherwise hard to directly measure,
e.g., elderlies.

VI. Conclusions

We showed that by treating a person as a moving 3D
oriented calibration target we can achieve robust and accurate
extrinsic camera calibration of a multi-view vision system. Our
method fully leverages the articulated human body as a set of
moving oriented points which can be robustly estimated from
a video with a deep 3D human pose estimator. We introduced
a factorization approach for estimating the camera poses from

corresponding oriented points and a linear system for the
camera positions. The linear solution is then non-linearly
optimized by leveraging the articulated human body as a
calibration target. Bundle adjustment minimizes the variances
of 3D joint orientations and 3D bone lengths in addition to
the standard 2D reprojection errors.

We also demonstrated that the deep 3D pose estimator can
be further fine-tuned to the installed environment in a self-
supervised manner to improve both the calibration accuracy
and the 3D pose estimation. Our initial calibration with a
pre-trained 3D pose estimator enables triangulation of the
calibration target’s 3D skeleton which in turn serves as a
pseudo ground truth for fine-tuning the 3D pose estimator.
The fine-tuned estimator provides improved 3D poses for our
calibration and improves the calibration accuracy.

A limitation of our method is the scale ambiguity as
described in Section III-B. This ambiguity, however, can be
resolved by simply observing a single object of known size,
e.g., the person in the scene. That is, given the height of the
person, we can determine the scaling factor as our method
obtains the 3D skeleton of the person as well as the camera
calibration parameters.

We believe that our camera calibration method can serve as
a practical tool that can be widely used in real-world situations
and will catalyze the deployment of multi-view vision systems
for societally critical applications including autonomous robots
and health care monitoring systems.
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APPENDIX

Proof of Proposition 3.1

The SVD of the observation V1 by a single camera c = 1
in Eq. (4) returns Y1, D1, and Z1⊤ as an N × 3, 3 × 3, and
3 × 3 matrices, respectively as V1 = Y1D1Z1⊤. Here Z1⊤

is an orthonormal matrix by definition, and hence assigning
V = Y1D1 and R1⊤ = Z1⊤ guarantees that R1 is a valid
rotation matrix, and also that V is row-normalized because
it corresponds to V1Z1, a rotation of the originally row-
normalized matrix V1.

Consider the SVD of the observation Vc by another camera
c(c , 1). By denoting the relative rotation between the camera
1 and c by Qc, we obtain Vc = V1Qc = Y1D1(Z1⊤Qc). That
is, because SVD is rotation invariant in the sense that right-
multiplying a rotation matrix only rotates the row space while
keeping the column space and the singular values unchanged,
the SVD of Vc returns the singular values and the left singular
vectors identical to those of V1, and only the right singular
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vectors are rotated by Qc. This suggests that we can rewrite
V1:C as

V1:C =
[
V1 · · ·Vc · · ·VC

]
=
[
Y1D1Z1⊤ · · ·YcDcZc⊤ · · ·YC DCZC⊤

]
=
[
Y1D1Z1⊤ · · ·Y1D1Z1⊤Qc · · ·Y1D1Z1⊤QC

]
= Y1D1Z1⊤

[
I · · ·Qc · · ·QC

]
= Y1D1Z1⊤Q ,

(14)

where I is an identity matrix and Q =
[
I · · · Qc · · · QC

]
.

Y1 is an n × 3 column-orthonormal matrix, and D1 is a 3 × 3
diagonal matrix. Z1⊤Q is a 3× 3C row-orthogonal matrix and

Z1⊤Q(Z1⊤Q)⊤ = Z1⊤QQ⊤Z1 = CZ1⊤Z1 = CI3×3 . (15)

As a result, scaling Z1⊤Q by C
1
2 makes it row-orthonormal,

and hence the following decomposition of V1:C becomes
identical to its SVD:

V1:C = Y1
(
C

1
2 D1
) (

C
−1
2 Z1⊤Q

)
, (16)

and factorizing the SVD of V1:C = YDZ⊤ as Eq. (7) yields

V = YDM−1 = C
1
2 Y1D1M−1,

R1:C = MZ⊤ = C
−1
2 MZ1⊤Q .

(17)

Therefore, letting M = C
1
2 I or its rotation, i.e., a rotation

scaled by C
1
2 , makes V become a row-normalized matrix, and

also makes R1:C become a horizontal stack of rotation matrices
each of which satisfies orthonormality.
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