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Fig. 1. Materials vs. Semantics. Top: One semantic object may consist of multiple
materials and different semantic objects may contain the same material. Middle: The
same “Road” can be made of “asphalt,” “concrete,” or “brick.” Bottom: A metal obstacle
which is unclear in the semantic annotations, can cause hazard for driving.

Abstract. We address RGB road scene material segmentation, i.e., per-
pixel segmentation of materials in real-world driving views with pure
RGB images, by building a new tailored benchmark dataset and model
for it. Our new dataset, KITTI-Materials, based on the well-established
KITTI dataset, consists of 1000 frames covering 24 different road scenes
of urban/suburban landscapes, annotated with one of 20 material cat-
egories for every pixel in high quality. It is the first dataset tailored
to RGB material segmentation in realistic driving scenes which allows
us to train and test any RGB material segmentation model. Based on
an analysis on KITTI-Materials, we identify the extraction and fusion of
texture and context as the key to robust road scene material appearance.
We introduce Road scene Material Segmentation Network (RMSNet),
a new Transformer-based framework which will serve as a baseline for
this challenging task. RMSNet encodes multi-scale hierarchical features
with self-attention. We construct the decoder of RMSNet based on a
novel lightweight self-attention model, which we refer to as SAMixer.
SAMixer achieves adaptive fusion of informative texture and context
cues across multiple feature levels. It also significantly accelerates self-
attention for feature fusion with a balanced query-key similarity measure.
We also introduce a built-in bottleneck of local statistics to achieve fur-
ther efficiency and accuracy. Extensive experiments on KITTI-Materials
validate the effectiveness of our RMSNet. We believe our work lays a solid
foundation for further studies on RGB road scene material segmentation.
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1 Introduction

Recognition of materials, what things are made of, in an image is critical for
many computer vision applications. Materials inform the physical properties of
the objects and regions in a scene which are otherwise inaccessible from just
knowing the object categories. The way an action is planned for a paper cup
as opposed to a ceramic cup would be different and gauging from sight would
be advantageous. The importance of material recognition becomes even more
significant for road scenes, particularly for self-driving vehicles to successfully
navigate in daily environments. Despite its potential contributions to safety, and
past work on object-level material recognition, little has been studied on regular
color-image-level visual material understanding in road scenes.

Per-pixel material recognition (i.e., material segmentation, in contrast to se-
mantic segmentation) in a regular color image would be particularly informative
for self-driving and driving assistance. Knowing that the asphalt-made road turns
into gravel or brick would help an autonomous system to plan its speed, discern-
ing a twig from a metal bar would help decide whether to avoid it, and telling a
bronze statue from a live pedestrian would help anticipate its movements. Ma-
terial segmentation, however, is not yet another semantic segmentation problem
with a different set of labels. The challenge lies in the fact that the same ob-
ject category can have different material categories, e.g., a road can be made of
asphalt, concrete, or even dirt and brick, yet they have the same shapes. The
difficulty is exacerbated by the fact a single object can have multiple regions of
different materials, e.g., a bicycle made of metal, rubber, plastic, and leather.
In contrast, objects can mostly be discerned with shape cues for category-level
recognition, i.e., semantic segmentation and object recognition.

In this paper, we address RGB road scene material segmentation by intro-
ducing a new benchmark dataset and a novel network that exploits the unique
properties of material appearance and serve as a baseline model for this challeng-
ing task. We build a new dataset tailored to RGB road scene material segmen-
tation by annotating images from the KITTI dataset [12]. We refer to this new
dataset as the KITTI-Materials dataset. By building on a widely adopted road
scene dataset, we are able to establish a dataset guaranteed to be relevant for
autonomous driving research. KITTI-Materials consists of 1000 frames densely
annotated with one of 20 material categories covering 24 different road scenes
of common urban/suburban landscapes. The KITTI-Materials is the first tai-
lored benchmark dataset for pure RGB road scene material segmentation which
enables us to train and evaluate our ideas for the task and others to follow.

Figure 1 illustrates the key differences of RGB road scene material and seman-
tic segmentation. A careful examination of the new dataset reveals that effective
texture and context information extraction and fusion is essential for robust RGB
road scene material recognition. The characteristic textures of materials provide
vital visual cues for their identification. The appearance of material texture,
however, changes dramatically with scale (i.e., distance from viewpoint) and oc-
clusion. We may incorporate structural dependencies of local texture features
to arrive at representations robust to these scale and occlusion variations. Such
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structural context, however, is unreliable for material appearance in contrast to
global shape cues often exploited for object recognition. For this, effective fu-
sion of texture and context cues to produce discriminative joint representations
becomes vital for discerning road scene materials.

We introduce Road scene Material Segmentation Network (RMSNet), a new
Transformer-based material segmentation network which generates discrimina-
tive material appearance representations through joint texture-context learning
with low computational cost. RMSNet adopts the efficient hierarchical encoder
introduced by SegFormer [40] to extract features of local textures and long-
range context from multi-level hierarchies. It then merges multi-level multi-scale
features with a novel self-attention-based feature fusion model which we re-
fer to as SAMixer. SAMixer introduces a new balanced query-key similarity
(Q-K-Sim) measure with a container feature generated by aggregating all in-
put feature maps. This results in a highly efficient self-attention mechanism
with only O(N + 1) complexity, where N denotes the number of input fea-
ture maps. SAMixer also uses a bottleneck local statistics encoding-decoding
(BLSED) strategy for additional efficiency and accuracy.

We evaluate the effectiveness of RMSNet through extensive quantitative anal-
ysis and ablation studies on KITTI-Materials RGB RMS, and compare its accu-
racy with existing RGB material segmentation and road scene semantic segmen-
tation methods. The results clearly demonstrate the effectiveness of RMSNet.
We believe our work can contribute to richer visual understanding, particularly
of road scenes, for safer driving. RMSNet will serve as a sound baseline model
for this important task. We disseminate our project1 to catapult this emerging
avenue of research.

2 Related Work

Bell et al. [1] demonstrated material segmentation with a fully convolutional
network cascaded with a fully-connected CRF [20, 34, 19], which is essentially
semantic segmentation with material categories applied to mainly architectural
photographs. Schwartz and Nishino introduced the use of material attributes as
an intermediate representation for per-pixel material recognition without regard
to shape features [29, 30, 32]. Later they introduced the integration of global con-
textual information in the form of semantic segmentation and place recognition
and demonstrated its application to material segmentation on a material dataset
consisting of local image patches sourced from COCO dataset and ImageNet [33].

Xue et al. [42] introduced the GTOS dataset, consisting of over 30k images
of 40 ground surface material taken as top-down fronto-parallel images. They
investigated the advantage of differential angular imaging for material recogni-
tion. Zhang et al. [48] proposed the Deep-TEN model by using “orderless” texture
encoding [25]. More recently, Xue et al. [43] incorporated texture encoding show-
ing superior results to DAIN [42]. These methods, however, focus on image-wise
material recognition.
1 https://github.com/kyotovision-public/RGB-Road-Scene-Material-Segmentation
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Recently, Demir et al. [9] introduced the DeepGlobe dataset which consists
of satellite images mainly for road and building extraction. Purri et al. [26] also
proposed building material segmentation datasets from satellite images [2] and
proposed reflectance residual encoding. Xue et al. [41] derived AngLNet which
uses per-pixel angular luminance from multiple views. Material segmentation on
road scenes is distinct from these bird-eye-view material segmentation as scale
variation due to a dynamic perspective is inevitable.

Road scene semantic segmentation is a popular research field which provides
us with inspirations for model design. Cordts et al. [8] introduced the Cityscapes
dataset for scene understanding of urban driving environments. Many works have
tackled road scene semantic segmentation using this dataset [50, 24, 4, 6, 44, 7, 52,
28, 27, 36, 40]. In contrast, road scene material segmentation with regular RGB
images has not been intensively explored.

More related to our work, Liang et al. [22] introduced the MCubeS dataset,
a multimodal material segmentation dataset consisting of RGB, NIR, and polar-
ization images of city scenes, where the material categories are identical to our
KITTI-Materials. Based on the dataset, they proposed the MCubeSNet modified
on DeepLabv3+ [6] equipped with the RGFS layer to jointly apply various imag-
ing modalities for improving material segmentation with the help of semantic
segmentation annotations. In contrast, our KITTI-Materials dataset is tailored
to pure RGB road scene material segmentation and comprises more images and
scenes covering both city and suburban landscapes.

Vision transformers leverage multi-head self-attention (MSA) [35] to model
long-range visual cues [38, 45, 18]. Full MSA to 2D spatial features, however,
incurs excessive computational cost. Ramachandran et al. [27] modified the
transformer to work on a fixed region and added positional biases. Wang et
al. [36] introduced Stand-Alone Axial-MSA which processes feature maps along
the height- and the width-axis separately to balance computational cost and ac-
curacy for semantic segmentation. Zhang et al. [49] showed that co-occurrence
of semantics including object categories exhibit long-range dependencies.

ViT [11] computes MSA within each non-overlapping image patch (i.e., win-
dow) to achieve a speed-accuracy tradeoff for object recognition. PVT [37] intro-
duced the first pyramid transformer architecture and demonstrated its potential
for dense prediction tasks. Liu et al. [23] suggested applying MSA within fine-
grained shifted windows and model cross-window connections to enhance local
cues. Related models LeViT [13] and TNT [14] also improved window-MSA by
infusing extra local details. Pure window-MSA, however, is computationally ex-
pensive for high-resolution features.

SegFormer [40] built a hierarchical transformer encoder with an efficient MSA
in which the keys and values with reduced resolution were computed from con-
densed features with convolutions. It also introduced a lightweight All-MLP
decoder and demonstrated its advantage over existing heavy decoders. Relevant
idea was suggested in CvT [39], where Q-K-V projections were realized by con-
volutions. In contrast, RMSNet introduces a novel SAMixer model that fuses
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Fig. 2. Per-class pixel statistics (in “millions”) of KITTI-Materials. Pixel labels show
a clear long-tail distribution of material categories.

multi-level features of local textures and long-range contextual cues to generate
robust representations for road scene material segmentation.

Past works have explored multi-scale feature learning in object recognition
and semantic segmentation. Chen et al. [5] plugged a spatial attention layer
into the bottom of a two-branch network to learn weights for features at differ-
ent scales. SKNet [21] expanded SE-Net [17] to aggregate multi-scale features.
The Deeplab family [3, 6, 44, 4] used atrous spatial pyramid pooling to learn
scale-invariance through global statistics and a set of convolutions with different
dilations. To enhance multi-level scale-aware feature learning, our RMSNet se-
lectively activates meaningful features of local textures and non-local contextual
interactions to form discriminative representations with SAMixer.

3 KITTI-Materials Dataset

We introduce the KITTI-Materials dataset, the first comprehensive RGB road
scene material segmentation dataset. The images used in KITTI-Materials are
sourced from the KITTI raw data [12]. It consists of 1000 images covering 24
different driving scenes including downtown, campus, residential area, highway,
and other city/suburban landscapes captured from a car. In the 24 road scenes,
there are 19 scenes consisting of 50 images sampled for every 5 consecutive
frames, and other 5 scenes that contain 1, 5, 20, 15, and 9 images.

We annotated per-pixel material labels of 20 categories by professional paid
annotators. All annotations are 1216 � 320 in resolution, and the raw images
are center-cropped to this size beforehand. Figure 1 includes an example of road
scene color images with their corresponding material annotations. Note that
more visual examples can be found in the supplementary material.

Naturally reflecting the real world, our dataset has a very strong imbalance
in the material categories, which is a significant challenge for accurate segmen-
tation. Note that there is no manual selection applied to adjust the class-wise
distribution of pixels in our dataset. Figure 2 shows pixel statistics with respect
to each of the material categories. It shows that 16 material categories span
0:9�106�1:4�108 pixels, i.e., 99.84% of the total number of pixels. In contrast,
4 categories including “sand,” “gravel,” “water,” and “human body,” accounts for
0.083%, 0.016%, 0.00026%, and 0.054% of the overall pixels, respectively.

For evaluation on KITTI-materials, we define two training-test data splits
(i.e., Split-1 and -2), where the test set of Split-1 contains more scenes with high-
ways and rural areas while Split-2 is biased to city scenes. Both splits contain 800
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Fig. 3. Overview of RMSNet. “LT” denotes “Linear Transformation” layer with cor-
responding input and output channel-sizes. “Q-Proj” and “K-V-Proj” are “Query-
Projection” and “Key- and Value-projection,” respectively. “UF” means “Unfold” op-
eration. After obtaining the output feature Xout of SAMixer, we employ a linear layer
to generate the segmentation mask from Xout to achieve per-pixel material recognition.

images for training and 200 images for testing, but with different combinations
of scenes. Both training and test sets of these two splits show very strong imbal-
ance in the material categories. Further discussions and details including specific
components of scenes, visual examples exhibiting their different characteristics
of test sets, and per-class statistics are shown in the supplementary material.

4 RMSNet

We introduce RMSNet as a new baseline model for road scene material seg-
mentation. RMSNet effectively fuses texture and contextual cues of material
appearance with SAMixer. To the best of our knowledge, it is the first model to
realize multi-level feature fusion with the MSA mechanism. Figure 3 depicts the
overall architecture of RMSNet.

4.1 Mix-Transformer as Encoder

Hierarchical Feature Encoding. Our RMSNet adopts the middle-size hierarchical
transformer encoder introduced by SegFormer [40], namely Mix-Transformer-
B2 (MiT-B2), to extract a set of multi-level multi-scale feature maps, from 4
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sequential learning stages (i.e., hierarchies). Feature maps extracted from low to
high hierarchy levels have high to low resolutions and contain gradually fewer
local details of texture and more non-local context cues. For each hierarchy level,
an overlapping patch merging layer with corresponding down-sampling ratio is
employed to reduce the resolution of the input feature map. Specifically, given an
input image with size Hin�Win� 3, the encoder generates a set of hierarchical
feature maps fXig with corresponding resolutions of fHi �Wi � Cig, where
i 2 f1; 2; 3; 4g and Ci denotes the channel-size of Xi. Note that we set Hi�Wi�
Ci = Hin

2i+1 � Win

2i+1 � Ci by default.

Efficient MSA. To process high-resolution features efficiently, MiT-B2 employs
efficient MSA which uses a 2D convolution ConvR×R with kernel-size of R�R
and stride of R to reduce the resolutions of key and value. Suppose that Q, K̂,
and V̂ denote the query, key, and value, efficient MSA can be calculated as

Attention
�

Q; K̂; V̂
�

= Softmax

 
QK̂T

p
d

!
V̂ ; (1)

where the query, the key, and value are transformed from a given feature map
XI 2 RHI×WI×CI and its condensed feature map ConvR×R (XI) 2 R

HI
R ×WI

R ×CI .
Note that feature maps XI and ConvR×R (XI) are reshaped to sizes MI � CI

and MI

R2 � CI (i.e., MI = HIWI), respectively. Here, d = CI

g , where g denotes
the number of heads for an MSA computation. In this way, the computational
complexity of an MSA can be controlled with the resolution reduction ratio R.
For hierarchy-1 to =4, MiT-B2 assigns R = 8; 4; 2; 1, respectively.

Position-aware FFN. MiT-B2 inserts a 3�3 depth-wise convolution DWConv3×3

in each feed-forward network (FFN), at the top of the first linear layer, to enforce
position awareness without additional positional encodings. With this modifi-
cation, local details can be preserved without the sacrificing accuracy due to
interpolation for matching resolutions. The position-aware FFN is defined as

X′′ = LT2 (� (DWConv3×3 (LT1 (X′)))) + X′ ; (2)

where X′ denotes the attended feature by the MSA layer and X′′ is the output
feature of the FFN; � denotes the assigned nonlinear activation (GELU[16] by
default); LT1 and LT2 are the first and second linear layers, respectively.

4.2 SAMixer-based Decoder

Through careful examination of KITTI-Materials images and also in agreement
to past works on material recognition (e.g., [30, 29, 43, 31, 33, 46]), we find that
efficient and faithful encoding of local texture patterns of different materials
is critical for per-pixel material recognition. The appearance of textures, how-
ever, vary significantly with scale and occlusion. Structural dependencies and
co-occurrences of local texture features may help extract a representation ro-
bust to this variability. Unlike semantic objects, however, materials often show



8 S. Cai, R. Wakaki, S. Nobuhara, and K. Nishino

more complicated spatial distributions (i.e., more fragmented) and lack promi-
nent shape cues. This makes fusion of local textures and long-range context cues
even challenging. To realize effective fusion for Transformer-induced features, we
propose a novel multi-level multi-scale feature fusion model based on MSA, which
we refer to as SAMixer. Figure 3 depicts the diagram of the SAMixer-based
decoder. SAMixer can efficiently fuse local and non-local features to generate
robust representations for road scene materials.

Discussion on the Challenge of MSA-based Feature Fusion. MSA introduces in-
formative context dependencies to deep learning representations. For multi-scale
feature fusion, however, it inevitably causes excessive computational overhead.
Suppose that � =

�
Xi 2 RHi×Wi×Ci j i = 1; 2; : : : ; N

	
is a set of feature maps

for fusion (N = 4 in our experiments). The fused feature map X 2 RH×W×C is
generated by mixing all element feature maps Xi 2 � at each aligned position
(h;w) 2 
H×W , where 
H×W denotes the spatial lattice of X. Note that before
fusion, each of the feature maps Xi of different sizes should be transformed and
interpolated to the same size H �W � C which we refer to as the anchor size.

With MSA feature fusion, each transformed and interpolated Xi with the
anchor size is projected to Qi, Ki, Vi, where qi (h;w), ki (h;w), vi (h;w) with
the unified length C are corresponding feature vectors of Qi, Ki, Vi at the given
spatial position (w; h), respectively. To fuse each feature vector at an aligned
position (w; h), MSA can be defined as

Attention (q (h;w) ;k (h;w) ;v (h;w)) = Softmax

�
q (h;w) kT (h;w)p

d

�
v (h;w) ;

(3)
where q (h;w) ;k (h;w) ;v (h;w) = [qi (h;w)] ; [ki (h;w)] ; [vi (h;w)] 2 RN×C are
the query, key, and value of the position (h;w), respectively, formed by arrang-
ing the corresponding feature vectors along the row-axis. Let F (h;w) 2 RN×C

denote the attended feature descriptor at position (h;w) computed by the MSA
layer, each fused feature vector X(h;w) 2 RC can be obtained by applying a
simple average aggregation along the row-axis or a linear projection on F (h;w).
In this way, the computational complexity is O(N2). General MSA can be ex-
cessively expensive in computational cost for feature fusion since coarse features
of local texture patterns are usually of large sizes.

Proposed SAMixer. We construct SAMixer with MSA consuming only O(N+1)
computational complexity by deriving a new balanced query-key similarity (Q-
K-Sim) measure in which a container feature is introduced by simply aggregating
(i.e., summing) all input features to trigger the MSA computation. SAMixer also
introduces a new built-in bottleneck local encoding-decoding (BLSED) strategy
to realize further efficiency and accuracy. Figure 3 depicts the SAMixer. In the
following paragraphs, we present the two core components of SAMixer, i.e., the
balanced Q-K-Sim measure and BLSED strategy.

Balanced Query-Key Similarity Measure. Vanilla query-key similarity measure
q (h;w) kT (h;w) defines a balanced (i.e., symmetric) computation on the fea-
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ture set � for fusion. In contrast, for each query vector qi (h;w) (where i =
1; 2; : : : ; N), its corresponding decomposed group of query-key similarity mea-
sure qi (h;w) kT (h;w) is imbalanced for different key vectors. That is, for 8i; j 2
f1; 2; : : : ; Ng ; i 6= j, the query vector qi (h;w) is likely closer to the correspond-
ing key vector ki (h;w) than a key vector kj (h;w), because both qi (h;w) and
ki (h;w) are generated from the same feature vector xi (h;w) 2 RC . As a result,
employing a decomposed group of query-key similarity measures independently,
although efficient, leads to imbalanced feature fusion and the representational
ability of the fused feature is limited.

Our goal is to calculate an efficient balanced MSA on the feature set � by ap-
plying only one group of query-key similarity measures. As depicted in Figure 3,
We achieve this by introducing a novel query-key similarity measure which we
refer to as the balanced query-key similarity measure.

The core idea of this balanced Q-K-Sim measure is the new tailored element
feature referred to as the container feature that enables balanced computation
on a single group of query-key similarity measures. We generate this container
feature X0 2 RH×W×C by aggregating each of the features in � with a simple
summation (i.e., X0 =

PN
i=1 Xi). Then, the feature set � can be expanded into

a new set �� comprising of N + 1 feature elements by introducing X0.
Similarly, for 8 (h;w) 2 
H×W , we generate the key and value descriptors

�k (h;w) ;�v (h;w) = [�ki (h;w)]; [�vi (h;w)] 2 R(N+1)×C from features in �� and the
single query vector q0 (h;w) 2 RC from the container feature vector x0 (h;w) 2
RC , respectively. With this, we can compute an efficient balanced MSA on ��

Attention
�

q0 (h;w) ;�k (h;w) ;�v (h;w)
�

= Softmax

 
q0 (h;w)�kT (h;w)p

d

!
�v (h;w) :

(4)
With the proposed balanced Q-K-Sim measure, we can preserve the balance
of MSA while reducing the quadratic complexity of O(N2) to only O(N + 1).
As a result, our model can effectively fuse high-resolution features to produce
discriminative representations for road scene materials.

Bottleneck Local Statistics Encoding-Decoding Strategy. We achieve further ef-
ficiency and accuracy by introducing a lightweight embedded encoder-decoder
strategy in the SAMixer. Figure 3 depicts the process of the proposed BLSED
strategy. We first assign an anchor size H�W�C, where H = H1

2l and W = W1

2l .
Here, l 2 Z+; H1 and W1 are the largest height and width of all the input fea-
tures extracted by the hierarchical encoder. Note that we apply l = 1 such that
S = 2l = 2 by default in our experiments.

Before the MSA computation, we encode local statistics Ui 2 RHi×Wi×C

from each of the input feature maps Xi in �� whose spatial resolutionsHi�Wi are
higher than H �W , respectively, by employing corresponding 2D convolutions
ConvSi×Si

with kernel-size of Si�Si and stride of Si (Si = Hi

H is divisible by 2).
To reduce computational cost, each ConvSi×Si

is replaced by splicing a depth-
wise convolution with a linear layer. We interpolate all the feature maps to the
anchor size whose spatial resolution is smaller than H � W . We preserve the
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size of any feature naturally possessing spatial resolution of H�W . Note that ��
comprises the container feature X0, so index i = 0; 1; : : : ; N . Particularly, since
the anchor size is smaller than the highest resolution of features, we produce the
container feature by X0 =

PN
i=1 UPi (Xi), where UPi denotes up-sampling via

an bilinear interpolation with a scale factor of H1

Hi
(equivalent to W1

Wi
). For i = 1,

UP degrades to an identity mapping.
After the MSA computation, we decode the attended fused feature map

U 2 RH×W×C to a high-resolution feature map U′ 2 RH1×W1×C with a channel-
spatial decoupled combination scheme which significantly reduces the compu-
tational cost. We first generate the spatial mask P 2 RH1×W1×1 from U by
applying a linear transformation LTdeco with input channels of C and output
channels of S2. That is, for each feature vector u (h;w) 2 RC of U, LTdeco gener-
ates corresponding S2 spatial feature units and unfolds these feature units into a
spatial feature patch p (h;w) 2 RS×S×1. Then, each feature vector u (h;w) and
its corresponding spatial feature patch p (h;w) are combined by element-wise
summation � to produce the feature patch u′ (h;w) 2 RS×S×C of U′:

u′ (h;w) = (1S×S 
 u (h;w))� (1C 
 p (h;w)) ; (5)

where 
 denotes Kronecker product; 1S×S and 1C each denotes a ones matrix
of the corresponding size. Then, we obtain U′ by arranging each of the feature
patches u′ (h;w) according to their spatial position order.

With the proposed BLSED strategy, SAMixer achieves higher efficiency by
operating on condensed feature maps.

Segmentation Mask Generation. The output feature Xout 2 RH1×W1×C of SAMixer
is generated by applying a linear layer LTout (with a GELU activation �) over
the output of the FFN layer:

Xout = � (LTout (LT2 (� (LT1 (DWConv3×3 (X′
0)))) + X′

0)) ; (6)

where X′
0 = X0 + U′, and LT1 and LT2 denote the first and second linear layers

of the FFN, respectively. Unlike the FFN in MiT-B2, we employ a depth-wise
convolution before LT1, which increases the speed of the FFN. The segmentation
mask is obtained by employing a linear layer with an output channel-size of the
number of material classes (i.e., 20) on Xout.

5 Experiments and Discussions

We evaluate the effectiveness of our method on the KITTI-Materials dataset
with detailed ablation studies and also thorough comparison with past mate-
rial segmentation methods [1, 32], road scene semantic segmentation methods
with CNN encoders [6, 44, 21, 50], related state-of-the-art transformers [11, 39,
40] and a gating-based dynamic network [51] that have been applied to semantic
segmentation. Note that DeepLabv3+ [6] also represents Liang et al. [22] without
semantic segmentation masks and using RGB only.
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Table 1. Material segmentation results on KITTI-Materials dataset for our methods
and other methods. “Trs” denotes “Transformer”; “DLv3+” denotes DeepLabv3+; Sym-
bols “⋄” and “⋆” denote “modified” and “our implementation,” respectively; Symbol “‡”
denotes methods whose original code cannot support multi-GPU training/inference
settings. ViT [11] and CvT [39] are applied with the All-mlp decoder [40].

Method Backbone Params Fps↑ Split-1 Split-2
mIoU(%)↑

MINC‡ [1] VGG16 [34] 134.34M 15.88 29.73 32.12
Matcontext‡ [32] VGG16⋄ [32] 25.42M 7.40 30.87 33.16

DLv3+ [6] ResNet101 [15] 59.34M 14.60 41.35 46.09
SK-ResNet101 [21] 60.47M 14.08 41.96 46.04

DeeperLab [44] ResNet101 [15] 240.58M 11.29 42.56 47.12
PSPNet [50] ResNet101 [15] 43.38M 14.22 31.92 37.11
DDF-DL [51] DDFNet101 [51] 42.94M 12.66 41.55 46.41

ViT [11] ViT-B/16 [11] 89.03M 13.69 40.02 46.06
CvT [39] CvT-13 [39] 21.89M 18.02 41.72 47.54

SegFormer [40] Mix-Trs-B2 [40] 27.36M 18.87 44.47 48.32
RMSNet (ours) Mix-Trs-B2 [40] 31.53M 16.81 46.82 50.34

5.1 Implementation Details

Two different training-test data splits (denoted by Split-1 and -2, respectively) of
KITTI-Materials with different characteristics are used for evaluation. The test
set of “split-1” contains more scenes with highways and rural areas while “split-2”
is biased to city scenes (see the supplemental material for details). Both splits
consist of all 1000 images of KITTI-Materials where 800 images for training
and 200 images for testing with different split rules. For all models, we apply the
AdamW optimizer with a weight decay of 0.01 for 300 epochs including 10 epochs
of linear warm-up. Following [40], we start the learning rate from 6� 10−5 and
6� 10−4 for encoders and decoders, respectively, with a cosine decay scheduler
and a mini-batch of 16. We adopt standard image augmentation settings [6].
In the training phase, images are randomly center-cropped and then resized to
512� 512 pixels, while in the testing, images are fixed to the original size (i.e.,
1216� 320 pixels). To reduce the negative effect of extreme data imbalance, we
calculated balancing weights based on class frequencies of materials and applied
them to CE-losses of all models. Experiments are conducted on a computer
with 4 � RTX A5000 GPUs. For fair comparisons, all encoders of our method
and compared methods use ImageNet [10] pre-trained weights obtained from
corresponding open-sourced projects or websites. All methods are evaluated in
the raw image size without multi-scale averaging augmentation [47]. We use
mean intersection of union (mIoU) to evaluate the performance of each model.

5.2 Experimental Results on KITTI-Materials

Based on the proposed KITTI-Materials dataset, we verify the effectiveness of
our network designs by comparing with (1) existing general material segmenta-
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Fig. 4. Visual examples on KITTI-Materials. Compared with DeepLabv3+ [6] (denoted
by “DLv3+”) and SegFormer [40]. “GT” denotes “ground truth”.
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Fig. 5. Visual examples of moving cars of different scales. “F” denotes “frame.”

tion methods for RGB images [1, 32]; (2) popular road scene semantic segmen-
tation methods with CNN encoders [6, 44, 50, 15]; (3) enhanced DeepLabv3+ [6]
with a multi-scale fusion method (i.e., SKNet [21]) and a state-of-the-art (SOTA)
gating-induced dynamic networks [51]; (4) related SOTA transformers [11, 39, 40]
that have been validated on semantic segmentation, where SegFormer [40] is the
closest model to our RMSNet.

As shown in Table 1, our RMSNet enjoys clear improvements over all com-
pared methods for general material segmentation and road scene semantic seg-
mentation in accuracy. Note that the major difference between RMSNet and
SegFormer-B2 is the replacement of the All-MLP decoder with our SAMixer-
based decoder. The results demonstrate the effectiveness of our network for road
scene material segmentation. Compared with popular semantic segmentation
frameworks [6, 44, 50] with CNN encoders [15, 21] and the SOTA gating-induced
dynamic network [51], RMSNet yields significant gains in accuracy. Our RM-
SNet also shows further accuracy improvements over other compared SOTA
Transformers [11, 39, 40] with competitive efficiency.

To demonstrate detailed performance differences on each material, we report
the per-class comparative results (see the supplemental material) with visual
examples shown in Figure 4, where we find that our network outperforms com-


