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Color constancy through inverse-intensity
chromaticity space
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Existing color constancy methods cannot handle both uniformly colored surfaces and highly textured surfaces
in a single integrated framework. Statistics-based methods require many surface colors and become error
prone when there are only a few surface colors. In contrast, dichromatic-based methods can successfully
handle uniformly colored surfaces but cannot be applied to highly textured surfaces, since they require precise
color segmentation. We present a single integrated method to estimate illumination chromaticity from single-
colored and multicolored surfaces. Unlike existing dichromatic-based methods, the proposed method requires
only rough highlight regions without segmenting the colors inside them. We show that, by analyzing high-
lights, a direct correlation between illumination chromaticity and image chromaticity can be obtained. This
correlation is clearly described in ‘‘inverse-intensity chromaticity space,’’ a novel two-dimensional space that
we introduce. In addition, when Hough transform and histogram analysis is utilized in this space, illumina-
tion chromaticity can be estimated robustly, even for a highly textured surface. © 2004 Optical Society of
America

OCIS codes: 150.0150, 150.2950.
1. INTRODUCTION
The spectral energy distribution of light reflected from an
object is the product of the illumination spectral energy
distribution and the surface spectral reflectance. As a re-
sult, the color of an object observed in an image is not the
actual color of the object’s surface. Recovering the actual
surface color requires the capability to discount the color
of illumination. A computational approach to recover the
actual color of objects is referred to as a color constancy
algorithm.

Human perception inherently has the capability of
color constancy. This capability plays important roles in
object recognition processes. Unfortunately, up to now,
the mechanism of human perception color constancy has
not been well understood. For machine vision, color con-
stancy is essential for various applications, such as color-
based object recognition, color reproduction, image re-
trieval, reflection components separation, etc. This has
motivated researchers in the field of machine vision to de-
velop various color constancy methods.

Previous work. Finlayson and Schaefer1 categorized
color constancy methods into two classes: statistics-
based and physics-based methods. Statistics-based
methods utilize the relationship between color distribu-
tions and statistical knowledge of common lights and
surfaces.2–8 One drawback of these methods is that they
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require many colors to be observed on the target surfaces.
On the other hand, physics-based methods,9–13 whose al-
gorithms are based on understanding the physical process
of reflected light, can successfully deal with fewer surface
colors, even to the extreme of a single surface color.1,14 In
addition, based on the surface type of the input image,
physics-based methods can be divided into two groups:
diffuse-based and dichromatic-based methods. Diffuse-
based methods assume that input images have only dif-
fuse reflection, while dichromatic-based methods assume
that both diffuse and specular reflections occur in the im-
ages. Geusebroek et al.15,16 proposed a physical basis of
color constancy by considering the spectral and spatial de-
rivatives of the Lambertian image formation model.
Andersen and Granum17 provided an analysis on image
chromaticity under two illumination colors for dichro-
matic surfaces. Since our aim is to develop an algorithm
that is able to handle both single and multiple surface col-
ors, we will concentrate our discussion in this section on
existing physics-based methods, particularly dichromatic-
based methods.

Methods in dichromatic-based color constancy rely on
the dichromatic reflection model proposed by Shafer.18

Klinker et al.19,20 introduced a method to estimate illumi-
nation color from a uniform colored surface by extracting
a T-shape color distribution in RGB space. However, in
2004 Optical Society of America
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real images, it becomes quite difficult to extract the T
shape as a result of noise, thereby making the final esti-
mate unreliable.

Lee11 introduced a method to estimate illumination
chromaticity using highlights of at least two surface col-
ors. The estimation is accomplished by finding an inter-
section of two or more dichromatic lines in chromaticity
space. While this simple approach based on the physics
of reflected light provides a handy method for color con-
stancy, it suffers from a few drawbacks. First, to create
the dichromatic line for each surface color from high-
lights, one needs to segment the surface colors beneath
the highlights. This color segmentation is difficult when
the target object is highly textured. Second, nearly par-
allel dichromatic lines caused by similar surface colors
can make the intersection sensitive to noise. Conse-
quently, for real images, which usually suffer from noise,
the estimation for similar surface colors becomes un-
stable. Third, the method does not deal with uniformly
colored surfaces. Parallel to this, several methods have
been proposed in the literature.8,21,22

Recently, three methods have been proposed that ex-
tend Lee’s algorithm12: Lehmann and Palm23 developed
a more robust technique to identify the dichromatic lines
in chromaticity space. The success of this technique de-
pends on an assumption that, in each highlight region,
the surface color is uniform. As a consequence, the tech-
nique fails when dealing with complex textured surfaces,
which usually have more than one surface color in their
highlight regions. Finlayson and Schaefer24 proposed
imposing a constraint on the colors of illumination. This
constraint is based on the statistics of natural illumina-
tion colors, and it improves the stability in obtaining the
intersection, i.e., it addresses the second drawback of
Lee’s method. Furthermore, Finlayson and Schaefer1

proposed the use of the Planckian locus as a constraint to
accomplish illumination estimation from uniformly col-
ored surfaces. This Planckian constraint on the illumi-
nation chromaticity makes the estimation more robust,
especially for natural scene images. However, the
method still has a few drawbacks. First, the position and
the shape of the Planckian locus in chromaticity space
make the estimation error prone to certain surface colors,
such as blue or yellow. Second, as they include diffuse
regions in obtaining dichromatic lines, the result could
become inaccurate. While the fact that the method of
Finlayson and Schaefer1 does not require reflection sepa-
ration is one of the advantages, the diffuse cluster usually
has a different direction from that of the specular cluster
because of noise; as a result, the dichromatic line can be
shifted from the correct one. Third, like other previous
methods, color segmentation is required for multicolored
surfaces.

Contributions. In this paper, our goal is to accomplish
illumination chromaticity estimation for single-colored
and multicolored surfaces based on a dichromatic reflec-
tion model. Briefly, the method is as follows. Given a
single colored image, we estimate rough highlight regions
by thresholding on brightness and saturation values. We
transform the pixels of the estimated highlight regions
into inverse-intensity chromaticity space, a novel space
that we introduce. In this space, the correlation between
image chromaticity and illumination chromaticity be-
comes linear. As a result, based on this linear correla-
tion, we are able to estimate illumination chromaticity for
both single-colored and multicolored surfaces, without
segmenting the color underneath the highlights. In ad-
dition, we use Hough transform and histogram analysis
for accurate and robust estimation.

In comparison with Lee’s method,12 the method has two
advantages: First, it does not require multicolored sur-
faces, and second, it does not suffer from the problem of
similar surface colors. It also advances the method of
Lehmann and Palm,23 since it does not assume that the
surface color underneath a highlight region is uniform, as
well as being feasible even for uniformly colored surfaces.
Moreover, unlike the dichromatic method of Finlayson
and Schaefer,1 the method does not require known cam-
era sensitivity and a strong constraint on illumination
such as a blackbody radiator. Basically, this paper pro-
vides two main contributions. First, it presents a single
integrated method that can be applied for both uniformly
colored surfaces and highly textured surfaces. Second, it
introduces an inverse-intensity chromaticity space that
clearly describes the linear correlation between image
chromaticity and illumination chromaticity.

Note that, while having the ability to work on a rough
estimate of highlight regions is one of the advantages of
our method, the problem of identifying highlight regions
is still an open and challenging problem. Moreover, al-
though the method does not require any other intrinsic
camera characteristics, such as sensor sensitivity as well
as the assumption of a narrowband sensor, it assumes
that the output of the camera is linear to the flux of in-
coming light.

The remaining discussion of the paper is organized as
follows. In Section 2, the reflection model of inhomoge-
neous materials and image color formation is discussed.
In Section 3, we explain the theoretical derivation of the
correlation between image chromaticity and illumination
chromaticity. In Section 4, we apply the theoretical deri-
vation in a practical computational method to estimate il-
lumination chromaticity. In Section 5, the distribution in
inverse-intensity chromaticity space is discussed in detail
in order to understand the main factors that determine
the robustness of the estimation. We provide a brief de-
scription of the implementation, the experimental results,
and the evaluations for real images in Section 6. Finally,
in Section 7, we conclude our paper.

2. REFLECTION MODEL
Optically, most objects can be divided into two categories:
homogeneous and inhomogeneous objects. Homogeneous
objects, which have a uniform refractive index throughout
their surface and body, produce only specular reflection.25

On the contrary, inhomogeneous objects, which have vary-
ing refractive indices in their surface and body, exhibit
diffuse reflection. In addition, because of the refractive-
index difference between the object’s surfaces and the air,
inhomogeneous objects also reflect specular reflection.18

The amount of the reflected light is governed by Fresnel’s
law, while the direction of the specular reflection is rela-
tive to the local surface normal. Thus reflection of
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opaque inhomogeneous objects can be modeled as a linear
combination of diffuse and specular reflections, which is
known as the dichromatic reflection model.18 The model
states that the light reflected from an object is a linear
combination of diffuse and specular reflections:

I~l, x̄! 5 wd~ x̄!Sd~l, x̄!E~l, x̄!

1 ws~ x̄!Ss~l, x̄!E~l, x̄!, (1)

where x̄ 5 $r, s, t% is the position of a surface point in a
three-dimensional world coordinate system and wd(x̄)
and ws(x̄) are the geometrical parameters for diffuse and
specular reflection, respectively, whose values depend on
the geometric structure at location x̄. Sd(l, x̄) is the dif-
fuse spectral reflectance function, Ss(l, x̄) is the specular
spectral reflectance function, and E(l, x̄) is the spectral
energy distribution function of the illumination.

For most dielectric inhomogeneous objects, the spectral
reflectance distribution of the specular reflection compo-
nent is similar to the spectral energy distribution of the
incident light.24 Researchers usually assume that both
are the same.1,9,12,22 Lee et al.26 named this well-known
assumption the neutral interface reflection assumption.
All dichromatic-based methods, including our method,
use this assumption as one of the basic assumptions. As
a result, we can set Ss(l, x̄) as a constant, and Eq. (1) be-
comes

I~l, x̄! 5 wd~ x̄!Sd~l, x̄!E~l, x̄! 1 w̃s~ x̄!E~l, x̄!,
(2)

where w̃s(x̄) 5 ws(x̄)ks(x̄), with ks(x̄) being a constant
scalar with respect to the wavelength.

Image formation. An image taken by a digital color
camera can be described as

Ic~x! 5 wd~x!E
V

Sd~l, x!E~l!qc~l!dl

1 w̃s~x!E
V

E~l!qc~l!dl, (3)

where Ic is the sensor response (RGB pixel values), which
in this paper we call image intensity, x 5 $x, y% stands
for the two-dimensional image coordinates, and qc is the
three-element-vector of sensor sensitivity with index c
representing the type of sensor (r, g, and b). The integra-
tion is done over the visible spectrum (V). Note that we
ignore camera noise and gain. In addition, we assume a
uniform color of illumination over the input image, so
that the illumination spectral distribution E(l) becomes
independent of the image coordinate (x). For the sake of
simplicity, Eq. (3) is written as

Ic~x! 5 wd~x!Bc~x! 1 w̃s~x!Gc , (4)

where Bc(x) 5 *VSd(l, x)E(l)qc(l)dl and Gc
5 *VE(l)qc(l)dl. The first part of the right-hand side
of the equation represents the diffuse reflection compo-
nent, while the second part represents the specular reflec-
tion component.
3. INVERSE-INTENSITY CHROMATICITY
SPACE
In this paper, chromaticity, also commonly called normal-
ized rgb, is defined as

sc~x! 5
Ic~x!

( Ii~x!

, (5)

where ( Ii(x) 5 Ir(x) 1 Ig(x) 1 Ib(x).
If we consider the chromaticity definition in the last

equation and the image intensity definition in Eq. (4), for
the diffuse-only reflection component (w̃s 5 0), the chro-
maticity becomes independent of the diffuse geometrical
parameter wd , since it is factored out by using Eq. (5).
We call this diffuse chromaticity (Lc), with the definition

Lc~x! 5
Bc~x!

( Bi~x!

. (6)

On the other hand, for the specular-only reflection compo-
nent (wd 5 0), the chromaticity is independent of the
specular geometrical parameter (w̃s), which we call
specular chromaticity (Gc):

Gc 5
Gc

( Gi

. (7)

Consequently, by considering Eqs. (6) and (7), we can
write Eq. (4) as

Ic~x! 5 md~x!Lc~x! 1 ms~x!Gc , (8)

where

md~x! 5 wd~x!( Bi~x!, (9)

ms~x! 5 w̃d~x!( Gi . (10)

We can also set (s i(x) 5 (L i(x) 5 (G i 5 1, without loss
of generality. Note that we assume that the camera out-
put is linear to the flux of incoming light intensity, since,
in our method, only by using that assumption can the
above chromaticity definitions be applied to estimate illu-
mination chromaticity.

A. Image Chromaticity and Image Intensity
By replacing each channel’s image intensity in Eq. (5)
with its definition in Eq. (8) and considering pixel-based
operation, we can write the image chromaticity in terms
of a dichromatic reflection model:

sc 5
mdLc 1 msGc

md( L i 1 ms( G i

. (11)

By deriving the last equation, we can obtain the correla-
tion between ms and md :

ms 5
md~Lc 2 sc!

sc 2 Gc
. (12)
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Fig. 1. (a) Synthetic image with a single surface color; (b) projection of the diffuse and specular pixels into the chromaticity-intensity
space, with c representing the green channel.
Then, by plugging Eq. (12) into Eq. (8), we can describe
the correlation between image intensity (Ic) and image
chromaticity ( sc) as

Ic 5 md~Lc 2 Gc!S sc

sc 2 Gc
D . (13)

The last equation shows that the correlation between im-
age intensity (Ic) and image chromaticity ( sc) is not lin-
ear.

If a uniformly colored surface is projected into
chromaticity-intensity space, according to Eq. (13), the
specular pixels will form a curved cluster (nonlinear cor-
relation), as illustrated in Fig. 1(b). On the other hand,
the diffuse pixels will form a straight vertical line, since
image chromaticity ( sc), which equals diffuse chromatic-
ity (Lc), is independent of image intensity (Ic).

B. Image Chromaticity and Illumination Chromaticity
By introducing p, which we define as p 5 md(Lc 2 Gc),
we can derive from Eq. (13) that

Ic

sc
5

p

sc 2 Gc
. (14)

Since Ic /sc 5 ( Ii , then the correlation between image
chromaticity and illumination chromaticity becomes

sc 5 p
1

( Ii

1 Gc . (15)

This equation is the core of our method. It shows that by
solely calculating the value of p, we are able to determine
the illumination chromaticity (Gc), since image chroma-
ticity ( sc) and total image intensity (( Ii) can be directly
observed from the input image. The details are as fol-
lows.
If the values of p are constant and the values of ( Ii
vary throughout the image, the last equation becomes a
linear equation, and the illumination chromaticity (Gc)
can be estimated in a straightforward manner by using
general line-fitting algorithms. However, in most im-
ages, the values of p are not constant, since p depends on
md , Lc , and Gc . For the sake of simplicity, until the end
of this subsection, we temporarily assume that the values
of Lc are constant, making the values of p depend solely
on md , as Gc has already been assumed to be constant.

Equation (9) states that md 5 wd( Bi . According to
Lambert’s Law,27 wd is determined by the angle between
lighting direction and surface normal, while ( Bi is deter-
mined by diffuse albedo (kd) and intensity of incident
light (L). The angles between surface normals and light
directions depend on the shape of the object and the light
distribution. The angle will be constant if an object has a
planar surface and illumination directions are all the
same for all points in the surface. However, if the sur-
face is not planar or the illumination directions are not
uniform, then the angle will vary. For a surface with a
uniform color, the value of the diffuse albedo (kd) is con-
stant. The values of L (intensity of incident light) are
mostly determined by the location of illuminants, which
will be constant if the locations of the illuminants are dis-
tant from the surface. For relatively nearby illuminants,
the values of L may vary with respect to the surface point.
With all these aspects taken into consideration, in general
conditions, then, the value of md can be either constant or
varied. Yet, in most cases, the value of md will be varied
because most shapes of objects in the real world are not
planar and the assumption on uniform illumination direc-
tion, in some conditions, cannot be held.

Consequently, Eq. (15) poses two problems: first,
whether there are a number of specular pixels that have
the same md , and second, whether these pixels that have
the same md also have different ( Ii . If we consider a
single surface color, then the solution of the first problem
depends on wd and L. In the microscopic scale of the real
world, the combination of wd and L could be unique for
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certain circumstances. Fortunately, in the scale of image
intensity, for some set of surface points, the differences
between combinations of wd and L are small and can be
approximated as constant. We can take this approxima-
tion for granted, as current ordinary digital cameras au-
tomatically do it for us as a part of their accuracy limita-
tion. Moreover, in Section 5, we will explain that the
distribution of specular pixels for the same surface color
is localized in a certain area in inverse-intensity chroma-
ticity space, in which certain points have small differ-
ences in p and thus can be grouped together.

The second problem can be resolved by considering Eq.
(8). In this equation, two specular pixels will have the
same md but different Ic if their values of ms are differ-
ent. Equation (10) states that ms 5 w̃s( Gi . In the
Torrance and Sparrow reflection model,28 which is reason-
ably accurate for modeling specularity, w̃s is expressed as

w̃s 5 FG
1

cos ur
expS 2

a2

2f 2D , (16)

where F is the Fresnel reflection, G is the geometrical at-
tenuation factor, ur is the angle between the surface nor-
mal and the viewing direction, a is the angle between the
surface normal and the bisector of viewing direction and
illumination direction, and f is the surface roughness.
Thus, if the two specular pixels have the same surface

Fig. 2. (a) Sketch of specular points of a uniformly colored sur-
face in inverse-intensity chromaticity space, (b) sketch of specu-
lar points of two different surface colors.
color lit by a distant light source and have the same md ,
which implies the same p, then the ms of both pixels will
be different if their values of ur and a are different.

Hence, in general conditions, specular pixels can be
grouped into a number of clusters that have the same val-
ues of p and different ( Ii . For every group of pixels that
share the same value of md , we can consider p a constant,
which makes Eq. (15) linear, with p as its constant gradi-
ent. These groups of pixels can be clearly observed in
inverse-intensity chromaticity space, where its x axis rep-
resents 1/( Ii and its y axis represents sc , as illustrated
in Fig. 2(a). Several straight lines in the figure corre-
spond to several groups of different md values (several
numbers of p: p1 ,..., pj ,..., pn). These lines intersect
at a single point on the y axis, which is identical to the
illumination chromaticity (Gc). Figure 3(a) shows the
projection of all pixels of a synthetic image in Fig. 1(a)
into inverse-intensity chromaticity space. The horizontal
line in the figure represents the diffuse points, since the
image chromaticity of diffuse pixels will be constant re-
gardless of the change of ( Ii , whereas the slanted clus-
ter represents the specular points. If we focus on this
cluster by removing the diffuse points, then, according to
Eq. (15), we will find that a number of straight lines,
which compose the cluster, head for the value of illumina-
tion chromaticity at the y axis, as shown in Fig. 3(b).

Now we relax the assumption of a uniformly colored
surface to handle multicolored surfaces. Figure 2(b) il-
lustrates the projection of two different surface colors into
inverse-intensity chromaticity space. We can observe
that two specular clusters with different values of diffuse
chromaticity head for the same value on the chromaticity
axis (Gc). Since we consider only points that have the
same values of p and Gc , then even if there are many dif-
ferent clusters with different values of Lc , as is the case
for multicolored surfaces, we can still safely estimate the
illumination chromaticity (Gc). This means that, for
multicolored surfaces, the estimation process is exactly
the same as that in the case of a uniformly colored sur-
face. Figure 4(b) shows the projection of highlight re-
gions of a synthetic image with two surface colors [Fig.
4(a)] into inverse-intensity chromaticity space.
Fig. 3. (a) Diffuse and specular points of a synthetic image [Fig. 1(a)] in inverse-intensity chromaticity space, with c representing the
green channel; (b) cluster of specular points that head for the illumination-chromaticity value in the y axis.
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Fig. 4. (a) Synthetic image with multiple surface colors; (b) specular points in inverse-intensity chromaticity space, with c representing
the green channel.

Fig. 5. (a) Projection of points in Fig. 3(b) into Hough space, (b) sketch of intersected lines in Hough space.
4. COMPUTATIONAL METHOD TO
ESTIMATE ILLUMINATION CHROMATICITY
To estimate the illumination chromaticity (Gc) from
inverse-intensity chromaticity space, we use the Hough
transform. Figure 5(a) shows the transformation from
inverse-intensity chromaticity space into Hough space,
where its x axis represents Gc and its y axis represents p.
Since Gc is a normalized value, the range of its value is
from 0 to 1 (0 , Gc , 1).

Using the Hough transform alone does not yet give any
solution, because the values of p are not constant
throughout the image, which causes the intersection
point of lines not to be located at a single location. For-
tunately, even if the values of p vary, the values of Gc are
constant. Thus, in principle, all intersections will be con-
centrated at a single value of Gc , with a small range of p
values. These intersections are indicated by a thick solid
line in Fig. 5(a).

If we focus on the intersections in the Hough space as
illustrated in Fig. 5(b), we should find a larger number of
intersections at a certain value of Gc compared with that
at other values of Gc . The reason is that, in inverse-
intensity chromaticity space, within the range of Gc (0
, Gc , 1), the number of groups of points that form a
straight line heading for a certain value of Gc are more
dominant than the number of groups of points that form a
straight line heading for other values of Gc .
In practice, we count the intersections in Hough space
based on the number of points that occupy the same loca-
tion. The details are as follows. A line in Hough space
is formed by a number of points. If this line is not inter-
sected by other lines, then each point will occupy a certain
location uniquely (one point for each location). However,
if two lines intersect, a location where the intersection
takes place will be shared by two points. The number of
points will increase if other lines also intersect with those
two lines at the same location. Thus, to count the inter-
sections, we first discard all points that occupy a location
uniquely, as it means that there are no intersections, and
then count the number of points for each value of Gc .

As a consequence, by projecting the total number of in-
tersections of each Gc into a two-dimensional space
(illumination-chromaticity count space), with the y axis
representing the count of intersections and the x axis rep-
resenting Gc , we can robustly estimate the actual value of
Gc . Figure 6 shows the distribution of the count num-
bers of intersections in the space, where the distribution
forms a Gaussian-like distribution. The peak of the dis-
tribution lies at the actual value of Gc .

5. DISCUSSION
In this section, we analyze the distributions of points of
highlight regions in inverse-intensity chromaticity space.
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This analysis is important, since by understanding the
distribution, we can know the main factors that deter-
mine the accuracy and the robustness of the illumination-
chromaticity estimation using the space. Note that,
while in this discussion, for the sake of simplicity we as-
sume a single surface color, the analysis results can be ap-
plied to multicolored surfaces as well.

First, we analyze the distribution when the values of
md are constant throughout the image. For a uniformly
colored surface, this constant md makes p identical for all
specular points. As a result, the distribution of the
specular pixels forms a single straight line in inverse-
intensity chromaticity space, as shown in Fig. 7. AB, in
the figure, represents the specular line whose gradient is
determined by the value of p and whose length is repre-
sented by h, i.e., the distance between the brightest
specular point and the corresponding diffuse point that
has the same p value. Mathematically, the value of h is
determined by

h 5 U ms
A

md
A~md

A 1 ms
A!

@1 1 ~md
A!2~Lc 2 Gc!

2#1/2U ,

(17)

Fig. 6. Intersection-counting distribution of green channel.
Estimated illumination chromaticity: Gr 5 0.535, Gb 5 0.303,
Gb 5 0.162; ground-truth values: Gr 5 0.536, Gb 5 0.304, Gb
5 0.160.

Fig. 7. Distribution of specular and diffuse pixels in inverse-
intensity chromaticity space when md is constant.
where ms
A and md

A are the ms and md values of the bright-
est specular pixel at A. The value of md

A is identical to
the value of md

B .
Equation (17) implies that surface roughness, one of

the components of ms , significantly determines the value
of h. Two objects that have the same shape and surface
color, located at the same position, and lit by the same il-
lumination, when viewed from the same location (the
same value of md

B) will have different values of h if the
surface roughnesses of the objects are different. The
smaller surface roughness (larger value of ms

A) will pro-
duce longer h. On the other hand, the larger surface
roughness (smaller value of ms

A) will produce shorter h.
For our estimation method, the longer h is better, yet for-
tunately, even if h is short, as long as the highlight re-
gions can be obtained, the illumination-chromaticity esti-
mation can be done accurately.

Second, we analyze the distribution when the values of
md vary throughout the image. If md varies, for uni-
formly colored surfaces, p will also vary, which conse-
quently makes specular points in inverse-intensity chro-
maticity space form a number of straight lines heading for
a unique value in the y axis. If the change of md is as-
sumed to be continuous (smooth surface), the straight
lines will grow into a cluster, as illustrated in Fig. 8.
AB, in the figure, represents the specular straight line
from the brightest specular point to the corresponding dif-
fuse point that has the same value of p. The length of
AB is represented by h, which value is also determined by
Eq. (17). Point C represents the diffuse point that has
the dimmest specular pixel (but its ms is larger than
zero). The length of BC is represented by v, which
equals Vmax 2 Vmin , where Vmax and Vmin are the values
of inverse intensity of diffuse pixels that have identical p
to the dimmest specular pixel and to the brightest specu-
lar pixel, respectively. Note that it is not necessary that
the value of Vmin be the lowest inverse-intensity value of
diffuse pixels, since some diffuse pixels, in certain condi-
tions, could have inverse-intensity values smaller than
Vmin .

The value of v, which is determined by Vmax and Vmin ,
depends not only on md but also on several factors that

Fig. 8. Distribution of specular and diffuse pixels in inverse-
intensity chromaticity space when md varies.
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determine the value of ms , such as surface roughness.
By considering the Torrance and Sparrow reflection model
in Eq. (16), if the surface has small surface roughness,
then the number of specular pixels (pixels whose ms does
not equal zero) is relatively small, which could make the
diversity of md in highlight regions also small. On the
contrary, if the same surface has large surface roughness,
then the number of specular pixels is relatively large,
making the diversity of md in highlight regions possibly
large. As a result, since surface roughness affects the di-
versity of md in highlight regions, it also affects the value
of v. In general cases, smaller surface roughness will
cause the value of v to be smaller, while larger surface
roughness will cause the value of v to be larger.

Besides the values of h and v, we also need to know the
shape of the boundaries of the distribution. As explained
above, the shape of AB is a straight line whose gradient
equals the p of the brightest specular pixel, while the
shape of BC is a straight horizontal line, since for all dif-
fuse pixels, their image chromaticity values are identical
regardless of the change of image intensity. Unlike both
lines, the shape of AC in general cases is not a straight
line. To know the shape of the line, we need to define the
vertical distances between points at AC and the diffuse
horizontal line, which is represented by d, as shown in
Fig. 8. The values of d are determined by

dj 5 U ms
j

md
j 1 ms

j
~Lc 2 Gc!U , (18)

where superscript j is the index of specular points located
at AC and md

j is the diffuse pixel that has p identical to
that of the corresponding specular point located at AC
with index j. From Eq. (18), we can conclude that the
shape of AC is a curved line, since according to the Tor-
rance and Sparrow reflection model, ms is a Gaussian
function [Eq. (16)].

Once the factors are known that determine the distri-
bution of specular points when md varies, then if the sur-
face roughness is small, v will be small, h will be long,
and AC will be more parallel to AB. In this condition,
the estimation using our computational method can be
done accurately and robustly. On the contrary, if the sur-
face roughness is large, then v will be large, h will be
short, and AC will be more parallel to BC, making the
estimation in practice less robust compared with that for
relatively smaller surface roughness.

6. EXPERIMENTAL RESULTS
We will briefly describe the implementation of the pro-
posed method and then present several experimental re-
sults on real images as well as an evaluation of our
method.

Implementation. Implementation of the proposed
method is quite simple. Given an image that has high-
lights, we first find the highlight regions by using thresh-
olding on image intensity and saturation values. Follow-
ing the method of Lehmann and Palm,23 we define the
thresholding as follows:
Ĩ 5
Ir 1 Ig 1 Ib

3
. TaĨmax,

S̃ 5 1 2
min~Ir , Ig , Ib!

Ĩ
, TbS̃max,

(19)

where Ĩmax and S̃max are the largest Ĩ and S̃ in the whole
input image, respectively. Ta and Tb are the thresholds
of image intensity and saturation, respectively. In our
implementation, we set Ta and Tb from 0.4 to 0.6.

This thresholding technique cannot always produce
precise highlight regions. Fortunately, in practice, our
estimation method does not need precise highlight re-
gions; even if relatively small regions of diffuse pixels are
included, the algorithm could work robustly. Of course,
more preciseness is better. Then, for each color channel,
we project the highlight pixels into inverse-intensity chro-
maticity space. From this space, we use the conventional
Hough transform to project the clusters into Hough space.
During the projection, we count all possible intersections
at each value of chromaticity. We plot these intersection-
counting numbers into the illumination-chromaticity
count space. Ideally, from this space, we can choose the
tip as the estimated illumination chromaticity. However,
as noise always exists in real images, the result can be
improved by computing the median of a certain percent-
age from the highest counts. In our implementation, we
use 30% from the highest counted number.

Note that, first, in our current implementation we esti-
mate three color channels of illumination chromaticity in-
dependently. In fact, since (G i 5 1, we can solely esti-
mate two color channels instead of three color channels.
Second, the problem of determining highlight regions is
still an open and challenging problem, and our method
could fail for specific domains that do not follow our
thresholding described in Eqs. (19).

Experimental conditions. We have conducted several
experiments on real images, which were taken with a
SONY DXC-9000, a progressive 3 CCD digital camera, by
setting its gamma correction off. To ensure that the out-
put of the camera is linear to the flux of incident light, we
used a spectrometer (Photo Research PR-650). We exam-
ined the algorithm by using four types of input, i.e., uni-
form colored surfaces, multicolored surfaces, highly tex-
tured surfaces, and a scene with multiple objects. We
used convex objects to avoid interreflection and excluded
saturated pixels from the computation. For evaluation,
we compared the results with the average values of image
chromaticity of a white reference image (Photo Research
Reflectance Standard model SRS-3), captured by the
same camera. The standard deviations of these average
values under various illuminant positions and colors were
approximately 0.01–0.03.

Result on a uniformly colored surface. Figure 9(a)
shows a real image of a head model that has a uniformly
colored surface and relatively low specularity, illuminated
by a Solux Halogen with temperature 4700 K. Under the
illumination, the image chromaticity of the white refer-
ence taken by our camera has chromaticity values Gr
5 0.371, Gg 5 0.318, Gb 5 0.310.
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Fig. 9. (a) Real input image with a single surface color, (b) projection of the red channel of the specular pixels into inverse-intensity
chromaticity space, (c) projection of the green channel of the specular pixels into inverse-intensity chromaticity space, (d) projection of
the blue channel of the specular pixels into inverse-intensity chromaticity space.

Fig. 10. (a) Intersection-counting distribution for the red channel of illumination chromaticity for the image in Fig. 9, (b) intersection-
counting distribution for the green channel, (c) intersection-counting distribution for the blue channel.
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Fig. 11. (a) Real input image with multiple surface colors, (b) projection of the red channel of the specular pixels into inverse-intensity
chromaticity space, (c) projection of the green channel of the specular pixels into inverse-intensity chromaticity space, (d) projection of
the blue channel of the specular pixels into inverse-intensity chromaticity space.

Fig. 12. (a) Intersection-counting distribution for the red channel of illumination chromaticity for the image in Fig. 11, (b) intersection-
counting distribution for the green channel, (c) intersection-counting distribution for the blue channel.
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Fig. 13. (a) Real input image of complex textured surface, (b) projection of the red channel of the specular pixels into inverse-intensity
chromaticity space, (c) projection of the green channel of the specular pixels into inverse-intensity chromaticity space, (d) projection of
the green channel of the specular pixels into inverse-intensity chromaticity space.

Fig. 14. (a) Intersection-counting distribution for the red channel of illumination chromaticity for the image in Fig. 13, (b) intersection-
counting distribution for the green channel, (c) intersection-counting distribution for the blue channel.
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Fig. 15. (a) Real input image of a scene with multiple objects; (b) result of projecting the specular pixels into inverse-intensity chro-
maticity space, with c representing the red channel; (c) result of projecting the specular pixels, with c representing the green channel; (d)
result of projecting the specular pixels, with c representing the blue channel.

Fig. 16. (a) Intersection-counting distribution for the red channel of illumination chromaticity for the image in Fig. 13, (b) intersection-
counting distribution for the green channel, (c) intersection-counting distribution for the blue channel.
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Figure 9(b) shows the specular points of the red chan-
nel of chromaticity in inverse-intensity chromaticity
space. Even though there is some noise, generally, all
points form several straight lines heading for a certain
point in the chromaticity axis. The same phenomenon
can also be observed in Figs. 9(c) and 9(d). Figure 10
shows the intersection-counting distribution in the
illumination-chromaticity count space. The peaks of the
distribution denote the illumination chromaticity. The
result of the estimation was Gr 5 0.378, Gg 5 0.324, Gb
5 0.287.

Result on a multicolored surface. Figure 11(a) shows a
plastic toy with a multicolored surface. The illumination
is a Solux Halogen covered with a green filter. The image
chromaticity of the white reference under this illuminant
taken by our camera was Gr 5 0.298, Gg 5 0.458, Gb
5 0.244.

Figures 11(b)–11(d) show the specular points of mul-
tiple surface colors in inverse-intensity chromaticity
space. From Fig. 12, we can observe that, even for sev-
eral surface colors, the peak of intersection counts was
still at a single value of Gc . The result of the estimation
was Gr 5 0.319, Gg 5 0.439, Gb 5 0.212.

Result on a highly textured surface. Figure 13(a)
shows a magazine cover with a complex multicolored sur-
face, which was lit by a fluorescent light covered with a
green filter. The image chromaticity of the white refer-
ence under this illuminant taken by our camera has a
chromaticity value of Gr 5 0.283, Gg 5 0.481, Gb
5 0.236. The result of the estimation was Gr 5 0.315,
Gg 5 0.515, Gb 5 0.207. (See Fig. 14.)

Result on multiple objects. Figure 15(a) shows a scene
with multiple objects, which was lit by a fluorescent light
taken in an uncontrolled environment. The image chro-
maticity of the white reference under this illuminant
taken by our camera has a chromaticity value of Gr
5 0.337, Gg 5 0.341, Gb 5 0.312. The result of the esti-
mation was Gr 5 0.321, Gg 5 0.346, Gb 5 0.309. (See
Fig. 16.)

Evaluation. To evaluate the robustness of our method,
we also conducted experiments on six different objects:

Table 1. Performance of the Estimation Method
with Regard to the Image Chromaticity of the

White Reference

Error
Characteristics Red Green Blue

Average 0.0172 0.0141 0.0201
Standard deviation 0.01 0.01 0.01
two objects with a single surface color, one object with
multiple surface colors, and three objects with highly tex-
tured surfaces. The illuminants were grouped into five
different colors: Solux halogen lamp with temperature
4700 K, incandescent lamp with temperature of approxi-
mately 2800 K, and Solux halogen lamps covered with
green, blue, and purple filters. The illuminants were ar-
ranged at various positions. The total number of images
in our experiment was 43. From these images, we calcu-
lated the errors of the estimation by comparing them with
the image chromaticity of the white reference, which are
shown in Table 1. The errors are considerably small, as
the standard deviations of the reference image chromatic-
ity are approximately 0.01–0.03. In addition, we also
used the database of Lehmann and Palm23 to evaluate the
accuracy and the robustness of our method. The data-
base contains various colors of multiple objects. Table 2
shows the results of our estimation. Besides advancing
Lehmann and Palm’s method23 in handling uniformly col-
ored surfaces and highly textured surfaces, the results
also show that our method is more stable for general con-
ditions of illumination colors and input images
(unclipped/clipped images).

7. CONCLUSION
We have introduced a novel method for illumination-
chromaticity estimation. The proposed method can
handle both uniform and nonuniform surface color ob-
jects. Given crude highlight regions, the method can es-
timate illumination color without requiring color segmen-
tation. It is also applicable for multiple objects with
various colored surfaces, as long as there are no interre-
flections. In this paper, we also introduced inverse-
intensity chromaticity space to analyze the relationship
between illumination chromaticity and image chromatic-
ity. There are a few advantages of the method. First is
the capability to cope with either a single surface color or
multiple surface colors. Second, color segmentation in-
side highlight regions and intrinsic camera characteris-
tics are not required. Third, the method does not use
strong constraints on illumination, which several existing
color constancy methods, such as a blackbody radiator,
use. The experimental results have shown that the
method is accurate and robust even for highly textured
surfaces.
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Table 2. Estimation Results Using the Database of Lehmann and Palm

Illumination Average of Gr Std. Dev. of Gr Average of Gg Std. Dev. of Gg

Unclipped, white 0.320 0.02 0.329 0.02
Clipped, white 0.318 0.02 0.332 0.02
Unclipped, yellow 0.479 0.02 0.411 0.02
Clipped, yellow 0.469 0.02 0.399 0.02
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