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Abstract
Existing color constancy methods cannot handle both uni-
form colored surfaces and highly textured surfaces in a
single integrated framework. Statistics-based methods re-
quire many surface colors, and become error prone when
there are only few surface colors. In contrast, dichromatic-
based methods can successfully handle uniformly colored
surfaces, but cannot be applied to highly textured surfaces
since they require precise color segmentation. In this pa-
per, we present a single integrated method to estimate il-
lumination chromaticity from single/multi-colored surfaces.
Unlike the existing dichromatic-based methods, the pro-
posed method requires only rough highlight regions, with-
out segmenting the colors inside them. We show that, by
analyzing highlights, a direct correlation between illumina-
tion chromaticity and image chromaticity can be obtained.
This correlation is clearly described in “inverse-intensity
chromaticity space”, a new two-dimensional space we in-
troduce. In addition, by utilizing the Hough transform and
histogram analysis in this space, illumination chromaticity
can be estimated robustly, even for a highly textured sur-
face. Experimental results on real images show the effec-
tiveness of the method.

1. Introduction
The spectral energy distribution of light reflected from an
object is the product of illumination spectral energy distri-
bution and surface spectral reflectance. As a result, the color
of an object observed in an image is not the actual color of
the object’s surface. Recovering the actual surface color re-
quire the capability to discount the color of illumination. A
computational approach to recover the actual color of ob-
jects is referred to as a color constancy algorithm.

Many algorithms for color constancy have been pro-
posed. Finlayson et al. [8] categorized them into
two classes: statistics-based and physics-based methods.
Statistics-based methods usually relate color distribution
and statistical knowledge of common lights and surfaces
[2, 4, 6, 19, 22, 24]. One drawback of these methods is
their requirement that many colors be observed on the tar-

get surfaces. On the other hand, physics-based methods
[3, 5, 10, 15, 16], which base their algorithms on under-
standing the physical process of reflected light, can success-
fully deal with fewer surface colors, even to the extreme of
a single surface color [8, 9]. Geusebroek et al. [12, 11] pro-
posed a physical basis of color constancy by considering
the spectral and spatial derivatives of the Lambertian image
formation model. Andersen et al. [1] provided an analysis
on object chromaticity under two illumination colors. Since
our aim is to develop an algorithm that is able to handle
both a single and multiple surface colors, in this section,
we will concentrate our discussion on the existing physics-
based methods, particularly dichromatic-based methods.

Methods in dichromatic-based color constancy rely on
the dichromatic reflection model proposed by Shafer [20].
Klinker et al. [13] introduced a method to estimate illumi-
nation color from a uniform colored surface, by extracting
a T-shape color distribution in the RGB space. However, in
real images, it becomes quite difficult to extract the T-shape
due to noise, making the final estimate unreliable.

Lee [15] introduced a method to estimate illumination
chromaticity using highlights of at least two surface colors.
The estimation is accomplished by finding an intersection
point of two or more dichromatic lines in the chromatic-
ity space. While this simple approach based on the physics
of reflected light provides a handy method for color con-
stancy, it suffers from a few drawbacks. First, to create the
dichromatic line for each surface color from highlights, one
needs to segment the colors of the highlights. This color
segmentation is difficult when dealing with highly textured
surfaces. Second, the estimation of illumination chromatic-
ity becomes unstable when the surface colors are similar.
Third, the method does not deal with uniformly colored sur-
faces. Parallel to this, several methods have been proposed
in the literature [3, 21, 23, 18].

Recently, two methods have been proposed which ex-
tend Lee’s algorithm [15]: Finlayson et al. [7], proposed
imposing a constraint on the colors of illumination. This
constraint is based on the statistics of natural illumination
colors, and improves the stability in obtaining the intersec-
tion point, i.e., it addresses the second drawback of Lee’s
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method. Furthermore, Finlayson et al. [8] proposed the use
of the Planckian locus as a constraint to accomplish illu-
mination estimation from uniformly colored surfaces. This
Planckian locus constraint on the illumination chromatic-
ity makes the estimation more robust, especially for nat-
ural scene images. However, the method still has a few
drawbacks. First, the position and the shape of the Planck-
ian locus in chromaticity space make the estimation error
prone for certain surface colors, such as bluish, yellowish,
and reddish colors. Second, as they include diffuse regions
in obtaining dichromatic lines, the result can become inac-
curate. While the fact that their method does not require
reflection separation is one of the advantages, the diffuse
cluster usually has a different direction from the specular
cluster; as a result, the dichromatic line can be shifted from
the correct one. Third, like the previous methods, for mul-
ticolored surfaces, color segmentation is required.

In this paper, our goal is to accomplish illumination chro-
maticity estimation for single/multi- colored surfaces with-
out using color segmentation. To achieve this goal, we de-
velop a novel method based on the dichromatic reflection
model, which uses highlights as a main source to analyze.
Unlike previous dichromatic-based methods, the method
does not require any color segmentation, thus it is appli-
cable even for highly textured surfaces. We set our anal-
ysis on specular regions that can be easily obtained with
a simple thresholding of the intensity values. This ability
to work on rough estimates of highlight regions is one of
the advantages of our method. Moreover, the method can
handle all possible colors of illumination, since we do not
make assumptions on the illumination chromaticity. Also,
the method is camera-independent, as no intrinsic camera
characteristics are required. Along with the new method, we
introduce a new space, inverse-intensity chromaticity space,
in which the correlation between image chromaticity and il-
lumination chromaticity can be characterized.

The rest of the paper is organized as follows: in Section
2, the reflection model of inhomogeneous materials and im-
age color formation is discussed. In Section 3, we explain
the method in detail, describing the derivation of the theory
and the algorithm for estimating illumination chromaticity.
We provide a brief description of the implementation, ex-
perimental results and the evaluations for real images in
Section 4. Finally in Section 5, we conclude our paper.

2 Reflection Model
Surface reflection of dielectric inhomogeneous objects can
be described with the dichromatic reflection model, which
states that the light reflected from an object is a linear com-
bination of diffuse and specular reflections:

I(λ, x̄) = wd(x̄)Sd(λ, x̄)E(λ, x̄)+ws(x̄)Ss(λ, x̄)E(λ, x̄)
(1)

where x̄ = {r, s, t} is the position of a surface point in
a three-dimensional world coordinate system; wd(x̄) and

ws(x̄) are the weighting factors for diffuse and specular re-
flection, respectively; their values depend on the geomet-
ric structure at location x̄. Sd(λ, x̄) is the diffuse spec-
tral reflectance function; Ss(λ, x̄) is the specular spectral
reflectance function; E(λ, x̄) is the spectral energy distri-
bution function of the illumination.

For most dielectric inhomogeneous objects, the spectral
reflectance distribution of the specular reflection component
is similar to the spectral energy distribution of the incident
light [17]. Researchers usually assume that both of them are
the same [8, 23, 15, 3]. Lee et al. [17] named this assump-
tion the neutral interface reflection (NIR) assumption. As a
result, we can set Ss(λ, x) as a constant, and Equation (1)
becomes:

I(λ, x̄) = wd(x̄)Sd(λ, x̄)E(λ, x̄) + w̃s(x̄)E(λ, x̄) (2)

where w̃s(x̄) = ws(x̄)ks(x̄), with ks(x̄) is a constant scalar
w.r.t. the wavelength.

Image Formation. An image taken by a digital color
camera can be described as:

Ic(x) = wd(x)
∫

Ω

S(λ, x)E(λ)qc(λ)dλ +

w̃s(x)
∫

Ω

E(λ)qc(λ)dλ (3)

where x = {x, y} is the two dimensional image coordinates
and qc is the three-element-vector of sensor sensitivity and
index c represents the type of sensors (R, G, and B). The
integration is done over the visible spectrum (Ω). Note we
ignore camera noise and gain. In addition, we assume a
uniform color of illumination over the input image, so that
the illumination spectral distribution E(λ) becomes inde-
pendent of the image coordinate (x).

For the sake of simplicity, equation (3) is written as:

Ic(x) = md(x)Λc(x) + ms(x)Γc (4)

where md(x) = wd(x)L(x)kd with L(x) as the spectral
magnitude of the surface irradiance on a plane perpendic-
ular to the light source direction. kd is the scene radi-
ance to surface irradiance ratio of diffuse surface. ms =
w̃s(x)L(x) and Λc =

∫
Ω

s(λ)e(λ)qc(λ)dλ with s(λ) as the
normalized surface reflectance spectral function and e(λ)
as the normalized illumination spectral energy distribution.
Also, Γc =

∫
Ω

e(λ)qc(λ)dλ.

3. Estimation Method
Chromaticity can be defined as:

c(x) =
Ic(x)
ΣIi(x)

(5)

where ΣIi(x) = Ir(x) + Ig(x) + Ib(x).
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In the previous section, Λc and Γc have already been
defined as integral functions of the normalized surface re-
flectance, normalized illumination spectral and camera sen-
sitivity. Besides these definitions, we can also define them
using chromaticity. For diffuse reflection component (ms =
0) Λc becomes equal to c, while for specular reflection com-
ponent (md = 0) Γc equals to c. Also we can assume
ΣΓi = ΣΛi = 1 without loss of generality. As a result,
we have three types of chromaticity: image chromaticity
(c), surface chromaticity (Λc) and illumination chromatic-
ity (Γc). The image chromaticity can be directly obtained
from the input image using Equation (5).

3.1 Image Chromaticity and Intensity
In this section, we analyze the three types of chromaticity
to characterize the correlation between image chromaticity
and intensity.

By substituting each channel’s intensity in equation (5)
with its definition in equation (4), the image chromaticity
can be written in terms of dichromatic reflection model as:

c(x) =
md(x)Λc(x) + ms(x)Γc

md(x)ΣΛi(x) + ms(x)ΣΓi
(6)

By deriving the last equation we can obtain the correlation
between specular and diffuse reflection coefficients (the lo-
cation parameter can be removed since we are working on
each pixel independently):

ms =
md(Λc − c)

c − Γc
(7)

Then, by plugging Equation (7) into Equation (4), the cor-
relation between intensity and image chromaticity can be
described as:

Ic = md(Λc − Γc)(
c

c − Γc
) (8)

Figure 1.b depicts both specular and diffuse points in
chromaticity-intensity space. The specular points form a
curved cluster in the space, as the correlation between the
values of image chromaticity (c) and intensity (Ic) are not
linear.

3.2. Image Chromaticity and Illumination
Chromaticity

By introducing p which we define as p = md(Λc −Γc) and
using simple algebra operations, the correlation between
image chromaticity and illumination chromaticity can be
derived from the Equation (8):

c = p
1

ΣIi
+ Γc (9)

This equation is the core of our method. It shows that by
knowing image chromaticity (c) and total intensity (ΣIi),

Figure 1: Synthetic image with a single surface color rendered
using Torrance-Sparrow reflection model [25]. b. Projection of
the diffuse and specular pixels into chromaticity-intensity space,
with c representing the green channel

we are able to determine the illumination chromaticity (Γc).
The details are as follows.

If the values of p are constant throughout the image, the
last equation becomes a linear equation, and the illumina-
tion chromaticity (Γc) can be estimated in a straightforward
manner by using general line fitting algorithms. However,
in most images, the values of p are not constant, since p de-
pends on the diffuse coefficient (md), surface chromaticity
(Λc) and illumination chromaticity (Γc) itself.

For the sake of simplicity, for the moment we assume
that the values of Λc are constant, which makes the values
of p depend solely on md, as Γc has already been assumed
to be constant.

According to the Lambert’s Law [14], the value of md

is determined by diffuse albedo (kd), intensity of incident
light (L), and the angle between lighting direction and sur-
face normal. The value of diffuse albedo is constant if the
surface has a uniform color. The angles between surface
normals and light directions depend on the shape of the ob-
ject and the light distribution; hence the angles differ for
each surface point. The values of L are mostly determined
by the location of illuminants, which will be constant if
the locations of the illuminants are distant from the surface.
However, for relatively nearby illuminants, the values of L
may vary w.r.t. the surface point. As a result, in general
conditions, the values of md vary over the entire surface.

Fortunately, for some sets of surface points, the differ-
ences of md are small and can be approximated as constant.
We can take this approximation for granted, as current or-
dinary digital cameras automatically do it for us as a part
of their accuracy limitation. Hence, specular pixels can be
grouped into a number of clusters that have the same values
of md. These groups can be observed in Figure 2, where
it is shown that pixels with the same md, which means the
same p, form a curved line. The number of curved lines
depends on the number of different values of md.

Therefore, for each group of pixels that share the same
value of md, we can consider p as a constant, which makes
Equation (9) become a linear equation, with p as its constant
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Figure 2: Enlargement of Figure 1.b, with n as the number of the
variance of md and i is a line index, where 1 ≤ i ≤ n

Figure 3: a. Sketch of specular points of a single surface color in
inverse-intensity chromaticity space. b. Sketch of specular points
of two surface colors in inverse-intensity chromaticity space.

gradient. These groups of pixels can be clearly observed
in a two-dimensional space: inverse-intensity chromaticity
space, with x-axis representing inverse-intensity ( 1

ΣIi
) and

y-axis representing image chromaticity (c), as illustrated in
Figure 3.a. Several straight lines in the space correspond
to several groups of different md values (several number of
different p: p1,. . . , pi,. . . , pn). These lines intersect at a sin-
gle point on the y-axis, which is identical to the illumination
chromaticity (Γc). Figure 4.b shows the specular points of
a synthetic image with a uniformly colored surface in the
inverse-intensity chromaticity space.

Now we relax the assumption of uniformly colored sur-
face to handle multicolored surfaces. Figure 3.b. illus-
trates the projection of two different surface colors into the
inverse-intensity chromaticity space. We can observe that
two clusters of straight lines with different values of surface
chromaticity head for the same value on the chromaticity
axis (Γc). Since we only consider points that have the same
values of p and Γc, then even if there are many different
clusters with different values of Λc, as is the case for mul-
ticolored surfaces, we can still safely estimate the illumina-
tion chromaticity (Γc) from the intersection with the chro-
maticity axis. This means that, for multicolored surfaces,
the estimation process is exactly the same to the case of a
uniformly colored surface. Figure 5.b shows the projection
of hightlighted regions of a synthetic image with two sur-
face colors into the inverse-intensity chromaticity space.

Figure 4: a. Diffuse and specular points of a synthetic image
(Figure 1.a) in inverse-intensity chromaticity space, with c repre-
senting the green channel. b. The cluster of specular region only

Figure 5: a. Synthetic image with multiple surface colors. b.
Specular points in inverse-intensity chromaticity space, with c rep-
resenting the green channel

3.3. Estimating Illumination Chromaticity
To estimate the illumination chromaticity (Γc) from inverse-
intensity chromaticity space, we use the Hough trans-
form. Figure 6.a shows the transformation from the inverse-
intensity chromaticity space into the Hough space, where its
x-axis represents Γc and its y-axis represents p. Since Γc is
a normalized value, the range of its value is from 0 to 1
(0 < Γc < 1).

Using the Hough transform alone does not yet give any
solution, because the values of p are not constant throughout
the image, which makes the intersection point of lines not
located at a single location. Fortunately, even if the values
of p vary, the values of Γc are constant. Thus, in principle,
all intersections will be concentrated at a single value of Γc,
with a small range of p’s values. These intersections are
indicated by a thick solid line in Figure 6.a.

If we focus on the intersections in the Hough space as
illustrated in Figure 6.b, we should find that larger number
of intersections at a certain value of Γc compared to other
values of Γc. This is due to the fact that in inverse-intensity
chromaticity space, within the range of Γc (0 < Γc < 1),
the number of groups of points that form a straight line
heading for certain value of Γc are more dominant than the
number of groups of points that form a straight line heading
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Figure 6: a. Projection of points in Figure 4.b into the Hough
space. b. Sketch of intersected lines in the Hough space.

Figure 7: a. Intersection-counting distribution in the green chan-
nel of chromaticity. b. Normalization result of the input synthetic
image into pure white illumination with regard to the illumination
chromaticity estimation. The estimated illumination chromatic-
ity is as follows: Γr = 0.5354, Γb = 0.3032, Γb = 0.1618,
the ground-truth values are: Γr = 0.5358, Γb = 0.3037, Γb =
0.1604

for other values of Γc.
In practice, we count the intersections in the Hough

space based on the number of points that occupy the same
location. The details are as follows. A line in the Hough
space is formed by a number of points. If this line is not
intersected by other lines, then each point will occupy a cer-
tain location uniquely (one point for each location). How-
ever, if two lines intersect, a location where the intersection
takes place will be shared by two points. The number of
points will increase if other lines also intersect with those
two lines at the same location. Thus, to count the inter-
sections, we first discard all points that occupy a location
uniquely, as it means there are no intersections, and then
count the number of points for each value of Γc.

As a consequence, by projecting the total number of
intersections of each Γc into a two-dimensional space,
illumination-chromaticity count space, with y-axis repre-
senting the count of intersections and x-axis representing
Γc, we can robustly estimate the actual value of Γc. Figure
7.a shows the distribution of the count numbers of intersec-
tions in the space, where the distribution forms a Gaussian-
like distribution. The peak of the distribution lies at the
actual value of Γc.

4. Experimental Results
In this section, we first briefly describe the implementation
of the proposed method, then present several experimental
results and show the evaluation of our experiments.

Implementation Implementation of the proposed method
is quite simple. Given an image that has highlights, we first
find the highlights by using intensity as an indicator. These
highlight locations need not be precise; even if regions of
diffuse pixels are included, the algorithm works robustly.
Of course, more preciseness is better. Usually, we obtain
the specular pixels from the top 55% to 65% of pixel inten-
sities. This simple thresholding will fail if the diffuse inten-
sities are dominantly brighter than the specular intensities,
although this is rarely the case in real images. Then, for
each color channel, we project the highlighted pixels into
inverse-intensity chromaticity space. From this space, we
use the conventional Hough transform to project the clusters
into the Hough space. During the projection, we count all
possible intersections at each value of chromaticity. We plot
these intersection-counting numbers into the illumination-
chromaticity count space. Ideally, from this space, we can
choose the tip as the estimated illumination chromaticity.
However, as noise always exists in real images, the result
can be improved by computing the median of a certain per-
centage from the highest counts. In our implementation, we
use 30% from the highest counted number.

Experimental Conditions We conducted several exper-
iments on real images, which were taken using a SONY
DXC-9000, a progressive 3 CCD digital camera, by setting
its gamma correction off. To ensure that the outputs of the
camera are linear to the flux of incident light, we used a
spectrometer: Photo Research PR-650. We examined the
algorithm using three types of surface, i.e., uniform col-
ored surfaces, multicolored surfaces, and highly textured
surfaces. We used convex objects to avoid interreflection,
and excluded saturated pixels from the computation. For
evaluation, we compared the results with the average values
of image chromaticity of a white reference image (Photo
Research Reflectance Standard model SRS-3), captured by
the same camera. The standard deviations of these average
values under various illuminant positions and colors were
approximately 0.01 ∼ 0.03.

Result on a uniformly colored surface Figure 8.a shows
a real image of a head model that has a uniformly col-
ored surface and relatively low specularity, illuminated by
Solux Halogen with temperature 4700K. Under the illumi-
nation, the image chromaticity of the white reference taken
by our camera has chromaticity value: Γr = 0.3710, Γg =
0.31803, Γb = 0.3103.

Figure 8.b shows the specular points of the red channel
of chromaticity in the inverse-intensity chromaticity space.
Even there is some noise, generally, all points form several
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Figure 8: a. Real input image with a single surface color. b. Re-
sult of projecting the specular pixels into inverse-intensity chro-
maticity space, with c representing the red channel. c. Result of
projecting the specular pixels, with c representing the green chan-
nel. d. Result of projecting the specular pixels, with c representing
the blue channel.

Figure 9: a. Intersection-counting distribution for red channel
of illumination chromaticity in Figure 8. b. Intersection-counting
distribution for green-channel c. Intersection-counting distribution
for blue channel.

straight lines heading for a certain point in the chromatic-
ity axis. The same phenomenon can also be observed in
Figure 8.c and Figure 8.d. Figure 9 shows the intersection-
counting distribution in the illumination-chromaticity count
space. The peaks of the distribution denote the illumina-
tion chromaticity. The result of the estimation was: Γr =
0.3779, Γg = 0.3242, Γb = 0.2866. The error of the esti-
mation compared with the image chromaticity of the white
reference was εr = 0.0069, εg = 0.0061, εb = 0.0237,
which indicates the estimation is considerably accurate.

Result on a multi-colored surface Figure 10.a shows a
plastic toy with a multicolored surface. The illumination is
Solux Halogen covered with a green filter. The image chro-
maticity of the white reference under this illuminant taken
by our camera was Γr = 0.29804, Γg = 0.45807, Γb =

Figure 10: a. Real input image with multiples surface colors. b.
Result of projecting the specular pixels into inverse-intensity chro-
maticity space, with c representing the red channel. c. Result of
projecting the specular pixels, with c representing the green chan-
nel. d. Result of projecting the specular pixels, with c representing
the blue channel.

Figure 11: a. Intersection-counting distribution for the red chan-
nel of illumination chromaticity in Figure 10. b. Intersection-
counting distribution for the green channel c. Intersection-
counting distribution for the blue channel.

0.24387.
Figure 10.b, c, d show the specular points of multiple

surface colors in inverse-intensity chromaticity space. From
Figure 11, we can observe that, even for several surface col-
ors, the peak of intersection counts was still at a single value
of Γc. The result of the estimation was Γr = 0.3194, Γg =
0.4387, Γb = 0.2125. The error of the estimation with re-
gard to the image chromaticity of the white reference was
εr = 0.0213, εg = 0.0193, εb = 0.0317.

Results on highly textured surface Figure 12.a shows a
cover of a magazine with a highly textured surface. The
illumination is Solux Halogen covered with a blue filter.
The image chromaticity of the white reference under this
illuminant taken by our camera has a chromaticity value of
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Figure 12: a. Real input image with a highly textured surface. b.
Result of projecting the specular pixels into inverse-intensity chro-
maticity space, with c representing the red channel. c. Result of
projecting the specular pixels, with c representing the green chan-
nel. d. Result of projecting the specular pixels, with c representing
the blue channel.

Figure 13: a. Intersection-counting distribution for red channel
of illumination chromaticity in Figure 12. b. Intersection-counting
distribution for green channel c. Intersection-counting distribution
for blue channel.

Γr = 0.25786, Γg = 0.31358, Γb = 0.42855. The result
of the estimation was Γr = 0.2440, Γg = 0.3448, Γb =
0.4313. The error of the estimation compared with the im-
age chromaticity of the white reference was εr = 0.01386,
εg = 0.0312, εb = 0.00275.

Figure 14.a shows another magazine cover with a com-
plex multicolored surface, which was lit by a fluorescent
light covered with a green filter. The image chromaticity
of the white reference under this illuminant taken by our
camera has a chromaticity value of Γr = 0.2828, Γg =
0.48119, Γb = 0.2359. The result of the estimation was
Γr = 0.3150, Γg = 0.5150, Γb = 0.2070. The error of the
estimation compared to the image chromaticity of the white
reference was εr = 0.0322, εg = 0.03381, εb = 0.0289.

Figure 14: a. Real input image of complex multicolored surface.
b. Result of projecting the specular pixels into inverse-intensity
chromaticity space, with c representing the red channel. c. Re-
sult of projecting the specular pixels, with c representing the green
channel. d. Result of projecting the specular pixels, with c repre-
senting the blue channel.

Figure 15: a. Intersection-counting distribution for the red chan-
nel of illumination chromaticity in Figure 14. b. Intersection-
counting distribution for the green channel c. Intersection-
counting distribution for the blue channel.

Evaluation To evaluate the robustness of our method, we
have also conducted experiments on 6 different objects: 2
objects with a single surface color, 1 object with multiple
surface colors, and 3 objects with highly textured surfaces.
The colors of illuminants were grouped into 5 different col-
ors: Solux Halogen lamp with temperature 4700K, incan-
descent lamp with temperature around 2800K, Solux Halo-
gen lamp covered with green, blue and purple filters. The
illuminants were arranged at various positions. The total
of images in our experiment was 43 images. From these
images, we calculated the errors of the estimation by com-
paring them with the image chromaticity of the white refer-
ence, which are shown in Table 1. The errors are consider-
ably small, as the standard deviations of the reference image
chromaticity are around 0.01 ∼ 0.03.
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Table 1: The performance of the estimation method with
regard to the image chromaticity of the white reference

red green blue
Average of error (ε̄) 0.01723 0.01409 0.0201
Minimum error (εmin) 0.00095 0.00045 0.00021
Maximum error (εmax) 0.04500 0.04200 0.04631
Std. dev. of error (Sε) 0.0106 0.01124 0.01260

5. Conclusion
We have introduced a new method for illumination chro-
maticity estimation.The proposed method can handle both
uniform and non-uniform surface color object without re-
quiring color segmentation. It is also applicable for multi-
ple objects with various colored surfaces, as long as there
are no interreflections. We only require a rough estima-
tion of the specular surface regions, which can be easily
obtained through simple intensity thresholding. We also
introduced the inverse-intensity chromaticity space to ana-
lyze the relationship between illumination chromaticity and
image chromaticity. Our method utilizes Hough transform
and histogram analysis to robustly estimate the illumination
chromaticity through this new space. There are many ad-
vantages of the method. First, the capability to cope with
either single surface color or multiple surface colors. Sec-
ond, color segmentation and intrinsic camera characteris-
tics are not required. Third, the capability to deal with all
possible illumination colors. The experimental results have
shown that the method is accurate and robust even for highly
textured surfaces.
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