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Abstract—In this paper, we tackle the problem of geometric and photometric modeling of large intricately shaped objects. Typical target

objects we consider are cultural heritage objects. When constructing models of such objects, we are faced with several important issues

that have not been addressed in the past—issues that mainly arise due to the large amount of data that has to be handled. We propose

two novel approaches to efficiently handle such large amounts of data: A highly adaptive algorithm for merging range images and an

adaptive nearest-neighbor search to be used with the algorithm. We construct an integrated mesh model of the target object in adaptive

resolution, taking into account the geometric and/or photometric attributes associated with the range images. We use surface curvature

for the geometric attributes and (laser) reflectance values for the photometric attributes. This adaptive merging framework leads to a

significant reduction in the necessary amount of computational resources. Furthermore, the resulting adaptive mesh models can be of

great use for applications such as texture mapping, as we will briefly demonstrate. Additionally, we propose an additional test for the

k-d tree nearest-neighbor search algorithm. Our approach successfully omits back-tracking, which is controlled adaptively depending on

the distance to the nearest neighbor. Since the main consumption of computational cost lies in the nearest-neighbor search, the

proposed algorithm leads to a significant speed-up of the wholemerging process. In this paper, we present the theories and algorithms of

our approaches with pseudo code and apply them to several real objects, including large-scale cultural assets.

Index Terms—Adaptive integration of range images, laser reflectance strength, nearest-neighbor search.

�

1 INTRODUCTION

MODELING the shape and appearance of objects in the real
world are important issues in computer vision.

Cultural heritage objects are one of the worthiest candidates
formodelingof their shape andappearance. There are several
advantages to modeling these objects, for example, presenta-
tion, preservation, and restoration. Many cultural assets are
large in scale and, at the same time, their shapes consist of
delicate and intricately curved surfaces. In this paper, our
target objects were mainly intricately shaped objects, such as
statues of the Great Buddha and ancient temple buildings.
High resolution andhighprecision are required formodeling
these objects, just as when modeling small objects.

To acquire the 3D coordinates of the surface points of
objects, we use range sensing systems. Asmost range sensing
systems, e.g., stereo, structured light, and laser range finders,
return range images obtained fromparticular viewingpoints,
each output range image covers only a small portion of the
target object surface. To ensure that the entire surface of the
target is captured, multiple range images of the same object
have to be acquired while changing the viewpoint. Thus, the
main issue of modeling real objects is creating the entire
model of an object from multiple range images. The

“integration” of multiple observations into a unified model
is the main issue tackled in this paper.

1.1 Previous Work

1.1.1 Geometric Modeling

So far, due to the recent development of range finders, several
researchers [1], [2], [3], [4], [5] have studied the modeling of
cultural heritage objects using such powerful sensors. Fig. 1
shows the modeling steps using a range finder. The
3D modeling of the shape of the object is accomplished by
performing the following three steps:

1. Acquiring the range images (scanning).
2. Aligning of those acquired range images from

different viewpoints (aligning).
3. Reconstructing the unified 3Dmeshmodel (merging).

In the first step, a target object is observed from various
viewpoints. If it is a small object, it is mounted on a
turntable or a robot arm.

In the secondstep,multiple range imagesare aligned into a
common coordinate system. If an object is mounted on a
turntable or a robot arm, the aligning step is accomplished by
recording each local coordinate system a priori. Otherwise,
range images are aligned by using registration algorithms
which establish point correspondences and minimize the
total distance between those points, e.g., feature-based
methods [6], [7], ICP-based methods [8], [9], etc. Besl and
McKay [8] proposed a point-based matching method, while
Chen and Medioni’s method [10] is based on the distance
evaluation between the point and the polygons.Wheeler and
Ikeuchi [11] introduced M-estimator to the ICP scheme for
discarding outliers as wrong correspondences. Neugebauer
[12] proposed the idea of “simultaneous registration” that
aligns range images simultaneously to avoid the error
accumulation of the pairwise alignment methods. Several

392 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 3, MARCH 2005

. R. Sagawa is with the Institute of Scientific and Industrial Research, Osaka
University, 8-1 Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan.
E-mail: sagawa@am.sanken.osaka-u.ac.jp.

. K. Nishino is with the Department of Computer Science, Columbia
University, 1214 Amsterdam Ave., MC 0401, New York, NY 10027.
E-mail: kon@cs.columbia.edu.

. K. Ikeuchi is with the Institute of Industrial Science, University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
E-mail: ki@cvl.iis.u-tokyo.ac.jp.

Manuscript received 20 Oct. 2003; revised 12 July 2004; accepted 23 Aug.
2004; published online 14 Jan. 2005.
Recommended for acceptance by S. Seitz.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0325-1003.

0162-8828/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society



other variants of simultaneous alignment have been devel-
oped [13], [14], [15], [16]. Huber and Hebert [17] proposed a
method of automatic aligning range images without any
knowledge about initial positions of range images, while
other methods require a rough estimation of their positions.

For merging multiple prealigned range images, the third
step of the pipeline in Fig. 1, several approaches have been
proposed. Turk and Levoy [18] proposed a method to
“zipper” two range images at a time, by first removing
overlapping portions of the meshes, clipping one mesh
against another, and then retriangulating the mesh on the
boundary. Although integrating two range images is an
intuitive process, pairwise merging does not remove errors
well when merging multiple range images and is very
sensitive to noise in the range images. Soucy andLaurendeau
[19] also proposed a merging algorithm based on mesh
representation, which is also sensitive to noise of mesh
boundary.Given anumber of range images overlapping each
other, a merging procedure which extracts the isosurface is
suitable, e.g., amergingmethod thatmakesuseof volumetric,
implicit-surface representation and then extracts the mesh
surface by using the marching-cubes algorithm [20] (We will
abbreviate that algorithm as MC throughout the rest of this
paper). Hoppe et al. [21] constructed 3D surface models by
applying MC to a discrete, implicit-surface function gener-
ated from a set of range images. After inferring local surface
approximations fromclouds of points based on tangent plane
estimations, a local search was accomplished to compute the
signeddistance fromeach voxel to the surface of the point set.
Curless and Levoy [22] enhancedHoppe’s algorithm in a few
significant points by developing amethod to compute signed
distances from multiple range images. Their method effi-
ciently traverses the volume by resampling range images
along scanlines of voxels; since it finds corresponding points
on the screen space by projecting both voxels and a range
image, and, in effect, updates only anarrowbandof voxels on
either side of the zero level, it does not go through all voxels.
However, none of thesemethods, including [23], compensate
for outliers of point data; it is assumed that the data is part of
the object and the noise can be removed by averaging. Each of
these methods suffers from inaccuracy, e.g., integrating
unrelated observations, and these accuracy problems will
affect the result even when the data is noise-free. Whitaker
[24] proposed a level-set approach for integrating range
images; this approach introduced a smoothness constraint
using a Bayesian formulation for averaging observations.
Thismethod removes outliers of range images by smoothing.
Level-set methods [24], [25], [26] use the narrow-band

method to reduce the computational cost, which updates
the finite band of voxels on either side of zero level. Wheeler
et al. [27], [28] addressed these important problems by
designing a consensus surface algorithm. The consensus
surface algorithm attempts to justify the selection of observa-
tions used to produce the average by finding a quorum or
consensus of locally coherent observations. This process
successfully eliminates many troublesome effects of noise
and extraneous surface observations, and also provides
desirable results with noise-free data. We developed a new
methodbasedon thismethod tomerge large amounts of data.
The methods proposed in [27], [29] use an octree as the data
structure to reduce the computational cost of converting
range images to a volumetric representation.

In ourmerging algorithm, we search the nearest-neighbor
points of range images. The nearest-neighbor problem in
multidimensional space itself is a major issue in many
applications. Many methods have been developed to search
for the nearest neighbor of a query. A simple exhaustive
search computes the distance from a query to every point. Its
computational cost is OðnÞ. This approach is clearly
inefficient. Hashing and indexing [30], [31] finish a search
in constant time; however, they require a large space in
which to store the index table. For accessing multidimen-
sional data, some hierarchical structures have been pro-
posed, e.g., k-d tree [32], quadtree [33], R-tree [34], and octree
spline [35]. These trees differ in structure, but their search
algorithms are similar. The k-d tree [32] is one of the most
widely used structures for searching for nearest neighbors. It
is a variant of binary tree that partitions space using
hyperplanes that are perpendicular to the coordinate axes.
If a k-d tree consists of n records, the k-d tree requires
Oðn log2 nÞ operations to construct and Oðlog2 nÞ to search.
Zhang [36] proposed a method which prunes traversing
branches of a k-d tree when their records are farther than a
threshold. This method does not find any candidate if the
nearest neighbor is farther than the threshold. Greenspan
and Yurick [37] proposed an Ak-d tree for searching the
nearest-neighbor points approximately to speed up aligning
range images by omitting back-tracking. It does not
guarantee to find the correct nearest neighbor. This method
is similar to our idea [38]. However, the nearest neighbor
may not be accurate if it is farther than the bin size. In this
paper, we introduce a new thresholding method to the
k-d tree search. This method efficiently reduces the search
cost of merging large data sets of range images. The
difference between ours and Zhang’s method is that our
method always finds a candidate of the nearest neighbor,
sincewe need a rough estimation even if it is far from a query
for hole filling [39].

1.1.2 Photometric Modeling

Modeling appearance is known as photometric modeling
and typically involves registration of color images with a
geometric model so that the images can be texture mapped
onto the geometric model (Fig. 1). Several methods of
aligning color images with range images [27], [40], [41],
[42] have been proposed. Neugebauer and Klein [42]
proposed simultaneous registration of multiple texture
images. Wheeler [27] uses occluding edges extracted from
the 3D model for aligning with a 2D color image. If a range
image is obtained by a laser range finder, laser reflectance
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Fig. 1. Steps of geometric and photometric modeling of a small object.



strength (LRS) image can be obtained. Reflectance edges are
more robust than occluding edges for the change of view-
point. Kurazume et al. [40] thus extended a technique for
aligning a 2D color image and a range image of an object by
comparing the edges of the color image and the edges of LRS
values attached to the range image. To align a color image
with a merged mesh model by this method, we propose a
new method to merge range images with LRS values.

1.2 Overview of This Paper

In order to model large-scale and intricately shaped objects,
we propose the following techniques in this paper:

1. Adaptive merging of range images according to
geometric characteristics.

2. Adaptive merging of photometric attributes of range
images.

3. Adaptive searching of the nearest-neighbor points in
a huge amount of range images.

We first describe our merging algorithm, which is based
on Wheeler’s method [28] in Section 2. Then, we propose
two approaches to handle a huge amount of range images
in merging range images. Section 3 describes a new method
to merge range images in adaptive resolution. Then, we
propose a new method to merge LRS values of range
images in our merging framework in Section 4. Section 5
explains an adaptive neighbor search in finding the closest
point of a range image.

2 CONSENSUS SURFACE ALGORITHM

2.1 Signed Distance Field

Using all range images, this method first constructs a
volumetric representation, which is called a signed distance
field (SDF). Those range images are assumed to be already
aligned into a common coordinate frame. In this volumetric
representation, 3D space is partitioned into three-dimen-
sional voxels. A voxel has a signed distance fðxxxxÞ from its
center xxxx to the nearest surface. The sign of fðxxxxÞ is positive if
the center xxxx is outside the object; it is negative if the center xxxx is
inside the object. Because the surface of the object is
represented implicitly by fðxxxxÞ ¼ 0, fðxxxxÞ is called the implicit
surface function. Fig. 2 shows a 2D slice viewof an example of
SDF, which is composed of nine voxels. If the surface is
converted to SDF, the fðxxxxÞ of each voxel is computed as
shown.Thevoxels inside theobject aredarkgrayand theones
outside the object are white.

2.2 Marching-Cubes Algorithm

Though a volumetric representation such as SDF can be
visualized by volume rendering [43], a mesh model is
suitable for our goal, which is geometric modeling and the
analysis of objects. Lorensen and Cline [20] proposed the
marching-cubes algorithm, which converts the volumetric
representation to a mesh model. MC constructs a surface
mesh by “marching” around the cubes which contain the
zero level of the implicit surface fðxxxxÞ ¼ 0. MC generates
surface triangles to intersect voxels which have positive
signed distances and voxels which have negative signed
distances. Since the original algorithm has ambiguity in the
algorithm of generating triangles, Nielson and Hamann [44]
proposed a method to resolve ambiguous cases.

2.3 Taking a Consensus of Range Images

To compute signed distances from multiple range images,
our approach is based on the consensus surface algorithm
proposed by Wheeler et al. [28]. It computes the implicit
surface function fðxxxxÞ of each voxel using multiple range
images. Fig. 3 shows an example in which there are three
range images which are intersecting between two neighbor-
ing voxels. The centers of the two voxels are xxxx and xxxx0. After
this, the definition of a range image is a mesh model which
consists of 3D vertices and triangles that connect the
neighboring vertices. If there is a large discontinuity
between vertices, we do not connect them in the same
manner with [18], [23]. The normal vectors of the range
images in Fig. 3 are facing outwards of the object. The
normal vector of each vertex is computed by averaging the
normal vectors of triangles which share the vertex.

To compute the signed distance value fðxxxxÞ, the algorithm
finds the nearest point to the center of the voxel in each range
image. Since the nearest point is not always on a vertex of the
triangles, the algorithm finds the nearest vertex of a range
image and computes the nearest point in the triangles which
include the nearest vertex. We assume that the true nearest
point is in the neighborhood of the vertex. Although it is a
heuristic that can fail, it works well in practice. In this
example, there are three nearest points A, B, and C.

If the positions of the nearest points are close and their
normal vectors are similar directions, we regard those points
as having consensus. The consensus surface algorithm
computes a reliable point by taking an average of the points
which have consensus. If there are some reliable points, the
algorithm chooses the reliable nearest points from them. In
this case, because C is isolated, the method discards C and
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Fig. 2. An example of implicit surface function computed from an explicit
surface.

Fig. 3. Consensus surface algorithm: The signed distance is chosen

from the consensus surfaces inside the gray circle.



takes an average ofA andB, and computes the magnitude of
fðxxxxÞ by the distance between xxxx and the averaged point. Since
the inner product ðxxxx� ppppÞ � nnnn > 0, where the averaged nearest
point is pppp and its normal vector is nnnn, xxxx is outside and the sign
is determined as fðxxxxÞ > 0. Similarly, xxxx0 is inside and
fðxxxx0Þ < 0. Because the algorithm discards outliers, it is not
simply averaging the distance together as [22].

Though the original algorithm [28] uses a weighting
scheme for computing consensus, we simply count the
number of overlapping range images. If the number is more
than a consensus threshold, the overlapping range images
are valid and we take average of them. Otherwise, they are
discarded from averaging. The consensus threshold de-
pends on the accuracy of the range finder. In our
experiment, the value is 2; thus, we can discard outliers if
three range images are acquired at a point and one of them
is an outlier as Fig. 3. On this assumption, we do not have to
handle the boundary of range images in a special manner.

2.4 Subdividing Voxels Based on Octree

To determine where the implicit surface is, we have to
compute the signed distances of all voxels around the zero
level of the implicit function. It is costly to compute the
signed distances of all voxels since the computational cost is
Oðn3Þ if the volume of interest is uniformly divided into
n� n� n voxels along each axis.

Wheeler [28] proposed the strategy of computing signed
distances by subdividing the volume of interest recursively
in an octree manner. It starts with the entire volume being a
single voxel for computing the signed distance; it sub-
divides the voxel if the signed distance satisfies the
following inequality,

jfðxxxxÞj < 3
ffiffiffi

3
p

2
w; ð1Þ

where w is the width of the voxel of interest. If (1) is satisfied,
the implicit surface can exist inside the voxel or the neighbor
voxels. It stops subdividing if the voxel becomes the user-
defined finest resolution. Since the width of voxels that
contain the implicit surface is the same, MC [20] is applied to
the voxels of the same size which are subdivided in an octree
manner. Subdividing voxels in an octree manner practically
reduces the computational cost to Oðn2Þ because the finest
resolution voxels exist only near the surface.

3 ADAPTIVE MERGING ALGORITHM

Wheeler’s algorithm produces a mesh model of the finest
resolution everywhere; however, the dense sampling is not
necessarywhere the shapeof the object is nearlyplanar. Thus,
we propose an algorithm to construct the 3D model in an
efficient representation. By taking the surface curvature into
account when splitting the voxels recursively in an octree
manner, the resulting 3D surface will be subdivided more in
high curvature areas and less in surface areas that are nearly
planar. Therefore, the resulting geometric model will require
fewer triangular patches to represent the object surface.

This is similar to research on mesh model simplification
algorithms based on surfaces [45], [46], [47]. On the other
hand, we reconstruct a simplified 3Dmodel through a range
imagemerging process based on implicit surface representa-
tion. Our approach is more reasonable than generating a
dense mesh model of constant resolution and simplifying it.

The adaptivemeshmodel created by ourmethod can be used
for the input of simplification algorithms for further mesh
optimization. The simplification is done when splitting
voxels recursively, enabling better preservation of the
topology and mass of the object compared with the results
of other volume-based simplification methods [48], [49].
Frisken et al. [50] proposed adaptive sampling of the signed
distance field. They generate surface meshes based on the
surface nets approach [51]. For converting the volumetric
representation of the 3D model to a triangle-based mesh
model,weproposeanextendedversionof themarching-cube
algorithm; this version handles voxels at different resolu-
tions. However, the aim of their paper is not merging range
images. Thus, we propose a method for adaptively merging
range images.

3.1 Subdividing Voxels Based on the Geometric
Attributes of Range Images

We determine the sampling interval of the signed distance,
depending on the variation of geometric attributes to
efficiently represent the final mesh model. Depending on
the change in surface curvature, the proposed method
coarsely samples in planar areas, consequently reducing the
amount of data and computation, while creating a finer
model of an intricately shaped object by efficiently utilizing
computation power.

Our method determines the variation of surface curva-
ture by comparing surface normals of range images. We
compare the normal nnnni of each 3D point of all range images
inside the voxel in interest and the normal �nnnnnnnn of the
approximated plane (see Fig. 4), which can be estimated
by applying principal component analysis (PCA) to all
point data in the voxel. If the angle between the data point
normals nnnni and approximate normal �nnnnnnnn satisfies

max
i

ðarccosðnnnni � �nnnnnnnnÞÞ < �n; ð2Þ

where �n is the threshold of the angle, the sampling interval
is fine enough, and no further voxel splitting is required.

To avoid erroneous subdivisions of voxels by the influence
of noise included in each range image, our method takes a
consensus between range images on the decision of voxel
subdivision. Now, Nn is the number of range images which
satisfies (2) and Nall is that of consensus range images. Our
method does not subdivide the voxel if

Nn

Nall
> Tn; ð3Þ

where Tn is the threshold of consensus for normal vectors.
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Fig. 4. Comparison of the normal vector of each vertex and the

approximate normal �nnnnnnnn by PCA.



If a range image is not smooth, the computation of normal
vectors becomes unstable, especially in the case that it
contains zigzag noise, which has high spatial frequency. It
often occurs with a laser range finder when range images are
acquired under inappropriate conditions. In such a case, the
algorithm of computing consensus does not work well, and
neither does the subdivision based on geometric attributes
because their criteria are based on normal vectors. Thus, we
proposed another method for taking consensus of range
images [52], which does not depend on normal vectors. If
range images contain zigzag noise, we refine those range
images by [52] before merging them. Since the refined range
images have reliable normal vectors, we can avoid erroneous
subdivisions of voxels by the influence of noise included in
each range image. We therefore assume that the normal
vector is reliable for subdividing voxels.

The algorithm of traversing an octree with adaptive voxel
subdivision is represented as Algorithm 1. In this algorithm,
ConsensusSurface (xxxx;Rset) computes the nearest point pppp and
its normal vector nnnn from the point xxxx. The changes from the
original algorithm are indicated by gray boxes. To determine
whether to subdivide the current voxel N , we consider the
curvature of range images inside the voxel by LocalCurva-
ture (N;Rset). LocalCurvature returns the percentage of
range images which satisfies (2). Moreover, since we
subdivide the voxels adaptively, the voxels attain sufficient
resolution even if the threshold value of the magnitude of a
signed distance is reduced to

ffiffi

3
p

2 w. If voxels are at a fixed
resolution, a voxel should be subdivided if one of the
neighboring voxels contains vertices of range images.
However, in the case of adaptive resolution, it is enough to
subdividevoxelswhich containsvertices inorder to attain the
sufficient resolution of a merged mesh model.

3.2 Marching Cubes for Adaptive Octree

The original marching-cubes algorithm can be applied only
to voxels that have the same resolution (size of voxels). We

extend the algorithm to triangulate voxels at different
resolutions as generated in our method.

For voxels that are surrounded by voxels with the same
resolution, the vertices of a cube to march are the centers of
eight adjacent voxels. In a similarmanner, voxels surrounded
by different size voxels will have a set of adjacent voxels,
which areno longer cube-shapedas shown inFig. 5.Whenwe
use voxels of fixed resolution (grids of gray lines), a mesh
model of the dotted line is generated, and its vertices are on
the edges of cubes. When we use adaptively subdivided
voxels up to one level higher resolution (grids of black lines),
themeshmodel of a solid line is generated, and its vertices are
on the edges of transformed cubes. If we subdivide the high
curvature area into small voxels, the generated mesh model
gets closer to the real surface (gray thick lines) without
increasing unnecessary vertices in planar areas. Since a
transformed cube becomes a skewed rectangle or a triangle in
a 2D slice of the volume, as shown in Fig. 5, the vertices of the
mesh model generated by MC are on those edges.

Fig. 6 shows three partially subdivided cubes, whose
vertices are the centers of voxels. One of eight voxels which
compose a cube is subdivided in Fig. 6a. Similarly, two voxels
are subdivided in Figs. 6b and 6c. After subdivision, a cube is
partitioned into several forms: For example, in Fig. 6a, the
number of forms is seven and their vertices are {ABCDdEFG},
{Aabcd}, {ABbdE}, {Ebdfh}, {dEhFG}, {Fcdgh}, and {abc-
defgh}. The form composed by {abcdefgh} is a cube and
{Aabcd} is a quadratic pyramid, while {ABbdE} is not a
polyhedron. SinceMC interpolates points of zero level on the
edges, the form to which MC is applied is not necessarily a
cube, nor even a polyhedron.

Fig. 7 shows examples of a transformed cube. Fig. 7b is a
pyramid, suchas {Aabcd} inFig. 6a.Wecan regard that Fig. 7b
is equal to Fig. 7a whose upper four vertices have the same
signed distance with the top vertex of Fig. 7b and they gather
to the position of top vertex of Fig. 7b. Thus, we can generate
the isosurface of Fig. 7b by applying MC to the transformed

396 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 3, MARCH 2005

Fig. 5. Edges connecting adjacent voxels in an adaptive octree and the

generated mesh model by MC.

Fig. 6. Partially subdivided cubes.



cube from Fig. 7a. By regarding the irregular forms as
degenerated and transformed cubes, MC can be applied to
them without creating new tables of mesh generation for the
irregular forms.

Fig. 7c is {AijbdE} in Figs. 6b and 7d is {BklbdE} in Fig. 6c.
In the case of Figs. 7b and 7c, two triangles are generated.
However, the number of triangles is reduced in the case of
Fig. 7d because the number of edges of the transformed
cube is reduced. We therefore removed the redundant
vertices of the mesh model after generation by MC.

4 ADAPTIVE MERGING wITH REFLECTANCE

PROPERTIES

With regard to applications that utilize geometric models,
for instance, 3D object recognition and localization tasks, it
is desirable to construct 3D models with additional
attributes such as color and intensity. With the additional
information provided by photometric attributes, higher
accuracy and robustness can be expected from those
applications. Thus, it is necessary to efficiently create a
model with photometric attributes. In this section, we
consider an adaptive merging method which subdivides
voxels based on photometric attributes.

When we acquire a range image using a laser range
finder, we can obtain a LRS value of the surface for each
vertex of the range image. Thus, our proposed method takes
a consensus of the reflectance parameters of the target object
from multiple range images. It reconstructs the 3D model
with reflectance parameters attached per vertex, discarding

outliers due to noise and specular reflection produced in the
image-capturing process.

4.1 Laser Reflectance Strength Attached to Range
Images

Laser range finders measure distance by shooting a laser and
receiving its reflection from the target object. Thedistance to a
particular point on the target object is computed by
measuring the time duration between the time laser was shot
and the time it was received back in time-of-flight range
finders bymeasuring thephasedifference inphase-transition
based range finders, or by optical triangulation of the
illuminant, surface, and optical sensors. In either case, an
LRS value, which is the ratio of the discharged laser strength
and the reflected laser strength, can be obtained per each
3D point. If we assume the dichromatic reflection model, as
the laser can be considered to be light with a very narrow
wavelength distribution, almost a single value, the behavior
of the reflected laser on the target surface can be considered to
be the same as the general light reflection. Namely, almost
isotropic reflection analogous to diffuse reflection and sharp
reflection distributed around the perfect mirror direction
analogous to specular reflection occurs. Since the specular
reflection is observed only if the laser is almost parallel to the
normal direction of the object surface, the observed laser is
usually caused by the diffusive reflection. Thus, it is
exceptional to observe the specular reflection, which can be
regarded as an outlier. Fig. 8 depicts four images using the
LRS values attached to each 3D point as pixel values,
rendered from the view point of the laser range finder
Cyrax2400 [53].

LRS values are considered to depend on the character-
istics of the surface, the incident angle of laser light, and the
distance from the sensor. The LRS value which we obtain by
a laser range finder is the ratio of the discharged laser
strength and the reflected laser strength. If we assume that
the LRS value depends only on the diffuse reflection, the
relationship of the LRS value and the other parameters are
represented by the following equation:

I1 ¼ I0e
��x; ð4Þ

I2 ¼ rI1e
��x cos �; ð5Þ

where I0 is the discharged laser strength, I1 is the incident
laser strength on the surface, and I2 is the reflected laser
strength. As for the other parameters, x is the distance from
the laser range finder, � is the absorption coefficient of the
laser in the air, r is the reflectance parameter of the surface,
and � is the incident angle of the laser (see Fig. 9). Since I0 is
a given value and I2 is measured by the sensor, while I1 is
unknown, (4) and (5) become
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Fig. 7. Examples of degenerated cubes and the surfaces generated

by MC.

Fig. 8. Range images of the Great Buddha of Kamakura using LRS values as pixel values.



I2
I0

¼ re�2�x cos �: ð6Þ

Since the reflectance parameter r is a characteristic value to

the surface, we want to obtain r by using several observa-

tions from various viewpoints.
Since we can obtain I2=I0; x and � for each vertex of

range images, the unknown variables are r and �. The

logarithm of (6) becomes

log
I2
I0

¼ log r� 2�xþ log cos �: ð7Þ

Thus, the system becomes a linear equation with two

unknowns. Since we find corresponding points of the range

images in taking a consensus of range images, as shown in

Fig. 3, we can solve the system if more than two correspond-

ing points are found. If we have more than three equations,

we can solve the system by the least square method.
Another method to estimate the reflectance parameter r is

calibrating the absorption coefficient � before scanning a

target. Since the absorption coefficient � depends on the

atmosphere around the environment of the target, � can be

assumed to be constant for all points in the range images

which are acquired at roughly the same time. If we measure

the same point from a fixed direction with varying distances,

we can estimate � by fitting � to the following equation:

y ¼ �2�xþ c; ð8Þ

where y ¼ log I2=I0 and c ¼ log rþ log cos �. Once � is

determined, the reflectance parameter r can be computed

by (6); however, the reflectance parameters of the corre-

sponding points, which are found in the merging process,

vary because of the specular reflection. Thus, in the merging

process, we take a consensus of r of the corresponding

points of the range images.
The reflectance variation of the corresponding points

should have aDC component because of the invariant diffuse

reflection with a sharp peak caused by specular reflection

added to it, which can be observed from a narrow viewing

direction. Thus, if the point is observed from a sufficient

number of viewing directions, the histogram of the reflec-

tance parameters should have a sharp peak at the diffuse

reflection value, with some distribution around it due to

specular reflection. Fig. 10 depicts an example of the LRS

values of the corresponding points for a voxel. Based on this

consideration,we take themedianvalueof the corresponding

points as a consensus value of the reflectance parameter.

4.2 Subdividing Voxels Based on the Reflectance of
Range Images

We have introduced a new criterion of voxel subdivision
based on the geometric attributes of the surface for the
adaptive merging method in Section 3.1. As the second
criterion of voxel subdivision, we propose the voxel
subdivision based on the variation of the reflectance
parameters. Photometric attributes are used for the criterion
of mesh simplification in [45], [47]. We estimate reflectance
parameters in addition to geometric attributes. For further
applications, such as texture mapping, we subdivide voxels,
which are not subdivided by geometric attributes, from the
viewpoint of reflectance parameters. It can be accomplished
in a similar manner as with geometric attributes.

If we subdivide voxels around the drastic variation of
reflectance parameters, each triangular patch contains almost
the same reflectance parameters. Since the LRS image and
color/intensity image of an object are highly correlated, those
3Dmodels tessellatedwith regard to the reflectance variation
of themodels areuseful toaccomplish further textureanalysis
and synthesis. For instance, the registration of a 2D image and
a 3D model of an object can be considered. Kurazume et al.
[40] used the edges of LRS values attached to a range image. If
we apply this method to our merged 3D model, the
subdivision based on the reflectance parameters is desirable
to extract fine edges of reflectance parameters, and we can
directly extract 3D reflectance edges from range images.
Moreover, when a texture image is mapped on the adaptive
model subdividedbasedon the reflectance parameters, view-
dependent texture mapping like [54] can achieve higher
compression since global texture compression stacking
triangular patches with a similar texture can be applied.

In a similar manner to subdividing by the curvature of the
surface, our method computes the variation of reflectance
parametersof3Dpoints inside thevoxelof interest.Now,ri; rj
are the reflectance parameters of neighbor points included in
a range image. If the maximum difference satisfies

max
i;j

ðDistanceðri; rjÞÞ < �r; ð9Þ

where �r is the threshold and Distanceðri; rjÞ is the function
which computes thedifference of two reflectance parameters,
the sampling interval is fine enough for the range image.

Our method also takes a consensus while considering the
reflectance parameters. Similar to (3), our method does not
subdivide the voxel if
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Fig. 9. Reflection model of a laser light.

Fig. 10. An example of the histogram of the reflectance parameter of

corresponding points. Some outliers due to specular reflection are

observed. In this case, the median value is 0.04.



Nr

Nall
> Tr; ð10Þ

where Nr is the number of range images which satisfy (9)
and Tr is the threshold of consensus for the reflectance
parameters.

5 ADAPTIVE NEAREST-NEIGHBOR SEARCH

In the previous section, we described algorithms for
constructing 3D models that efficiently represent the object
by adaptivelymerging a large amount of range images.When
thenumberof range images and thenumberof points in those
range images is very large, it is also crucial to speed up the
merging process. The speed of thewhole process depends on
howefficiently one can search the nearest-neighbor points. In
many cases of merging a lot of range images simultaneously,
most of thevertices of the range images canbediscarded from
searching the nearest-neighbor points since the portion of
range imageswhichareoverlappedataposition isquite small
compared with the total range images.

We introduce an additional test that takes place when
traversing the k-d tree. This test compares the distance froma
query to the nearest neighborwith a threshold defined by the
user. Since thismethod improves the locality of reference, we
can reduce not only the computational cost for searching the
nearest neighbor but also the required memory to traverse a
k-d tree. At the same time as reducing the search cost, this
method roughly estimates the nearest neighbor even if it is far
fromaquery.The signeddistance isusedwhenwe fill holes of
a model [39]. Since the hole filling works well even if we do
not find the true nearest neighbor, our adaptive nearest-
neighbor search is effective.

5.1 Basic Search Algorithm Using k-d Tree

First, we explain the basic algorithm by which the k-d tree
searches for the nearest neighbor. Fig. 11 shows a 2D example
of a k-d tree that consists of four leaf nodes labeled A, B, C,
and D. We do not describe how to construct a k-d tree in this
paper; for details, please refer to [32].

Now, we describe how to find the nearest-neighbor point
from a query point pppp. In the search algorithm, we start at the
root node and traverse down to the leaf node that contains
the query point. In Fig. 12, the leaf node A contains pppp and
we compute the distances from pppp to the records of A.

To avoid examining all leaf nodes, the algorithm prunes
branches by the Bounds-Overlap-Ball (BOB) test [32]. After
node A is examined, the distance from pppp to the nearest
neighbor is d. We examine B if d satisfies the following
BOB test:

d > dB; ð11Þ

where dB is the distance from the query point pppp to the
boundary of A and B. Similarly, we compare d with dC and
dD to decide whether or not we will examine C and D. In
this case, d satisfies (11) for B, C, and D. Thus, we have to
examine all nodes. If the hypersphere of radius d is
completely inside of a node after examining the node, the
algorithm finishes the search. (This is called the Ball-Within-
Bounds (BWB) test.)

5.2 Bounds-Overlap-Threshold Test

In this section, we introduce the Bounds-Overlap-Threshold
(BOT) test to the search algorithm. BOT test prunes branches
which are farther than a threshold � in the similar manner to
BOB test. In Fig. 12, the node B andDare pruned. Though this
method is same as the thresholding technique proposed by
Zhang [36], his method discards all records farther than the
threshold from the result. In this situation, since the records
even innodeAarediscarded, it finds no records.On the other
hand, ourmethodchooses thenearest one fromall the records
which are examined while traversing a tree. Thus, it finds at
least a record even if all records are far away from the query.
In Fig. 12, the nearest neighbor is the record in node A, to
which the distance from the query is d. The pseudo code is
shown in the Appendix.

When we apply the BOT test to the consensus surface
algorithm, if the distance from a voxel to the range images is
larger than

ffiffi

3
p

2 w, where w is the interval of voxels, there is no
surface around the voxel. Thus, it is enough for us to find
that no point in the k-d tree is closer than

ffiffi

3
p

2 w, and we set

� ¼
ffiffi

3
p

2 w. Our merging method reduces the computation of
the SDF in an octree manner; therefore, the voxel width w

varies according to the depth of octree subdivision to which
the current voxel belongs; we adaptively change the
threshold � as well as the voxel width w.

6 EXPERIMENTS

For evaluation of our method, we have built a PC cluster
that consists of eight PCs, each equipped with dual
PentiumIII 800MHz processors with 1GB memory, con-
nected by 100BASE-TX Ethernet. Since consensus surfaces
can be computed independently requiring only adjacent
voxels, we have proposed a parallel merging algorithm [55],
[56] by splitting the whole volume into pieces and parallel
searching the nearest neighbors. With this parallel imple-
mentation, we are able to handle a huge amount of range
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Fig. 11. A 2D example of a k-d tree.

Fig. 12. The Bounds-Overlap-Threshold (BOT) test.



image data. In our experiments, we use the Cyrax 2400 and
2500 [53] to measure distances.

6.1 Preliminary Experiment of Estimation of
Reflectance Parameter

First, we verify the reflection model of (7). We measure the
same point several times from different distances. Since the
incident angles are constant in this experiment, the

reflectance parameters are considered to satisfy (8). Fig. 13
shows the logarithm of the LRS value (logðI2=I0Þ) at each
distance. At far distance (> 20m), the logarithm of the LRS
values becomes almost linear. Thus, it indicates that our
model is appropriate and � is estimated to be 1:7� 10�3.

However, at near distance (< 20m), the logarithm of LRS

values becomes nonlinear. One of the reasons is the focus of

the laser beam. Since laser range finders use lenses to detect

the light, the lasers are focused in the expected range. If the

distance of the object is in the unfocused range, a part of the

reflected laser does not land on the receiver. Thus, the

reflected laser is clipped by the receiver and the power of

light becomes less than expected. Though this result occurs

in the case of Cyrax, similar effects are expected to occur

with other laser range finders.

Nevertheless, our model works well in the focused range

of a laser range finder; however, we have to take the focus/

clipping effects into account when the object is in the

unfocused range. In the following experiments,wemeasured

objects in the focused range, and the reflectance parameters

were computed by (7) with the estimated �. If we use range

images acquired in the unfocused range, a look-up table,

which is created from the result shown in Fig. 13, is utilized to

estimate the reflectance parameters.

6.2 Adaptive Merging of Range Images

We first apply our method to a standard model from
Stanford University [57]. Fig. 14 shows the merged results of
the bunny from 10 range images. Fig. 14a is the result
without adaptive subdivision and Fig. 14b is the result with
adaptive subdivision based on the geometric attributes.
When we merge range images without adaptive integration,
the volume is divided to 128� 128� 128 voxels in the finest
resolution. We used �n ¼ 37� and Tn ¼ 0:5 for (2) and (3) for
generating Fig. 14b, which is chosen manually. Fig. 14a
contains 34,667 vertices and 69,463 triangles, while Fig. 14b
contains 23,671 vertices and 47,338 triangles. The computa-
tional times are 10 minutes and 4.8 minutes, respectively.
We computed the difference of Figs. 14a and 14b using
Metro [58]. The mean/RMS/max differences are 0.096 per-
cent/0.23 percent/2.7 percent of the longest edge of
bounding box. Therefore, our method effectively reduced
the amount of data and the computational time.

6.3 Adaptive Merging of Range-Reflectance Images

Next, we applied our algorithm to the Great Buddha of

Kamakura, whose height is about 11.3m. We acquired

16 range images with LRS values attached to each 3D point;

about 0.3 million vertices and 0.6 million triangles were
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Fig. 13. Ratio of discharged and reflected laser.

Fig. 14. Merged models of Stanford bunny. (a) Without adaptive subdivision. (b) With adaptive subdivision based on geometric attributes.
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Fig. 15. The merging result of the Great Buddha of Kamakura with reflectance parameters.

Fig. 16. Adaptive merging results of the Kamakura Buddha with reflectance parameter.



contained in each range image. Fig. 8 shows four of the range

images with reflectance parameters, and Fig. 15 shows the

merging result with reflectance parameters. Fig. 16 shows

three different results of our method. Column A contains the

models created without adaptive integration, Column B

contains those created by adaptive subdivision only based on

the curvature of the surface, and Column C contains those

with adaptive subdivision by the estimation of curvature and

reflectance. Row 1 contains wire-frame representations and

Row 2 has polygonal representations of these models. Row 3

shows the images rendered with reflectance. The far upper

and far lower rows are zoom-ups of the forehead of the

Buddha. We used �n ¼ 18�, �r ¼ 0:1, and Tn ¼ Tr ¼ 0:5.

When we merge range images without adaptive

integration, the volume is divided to 1; 024� 1; 024

�1; 024ð¼ 210Þ voxels in the finest resolution, and the

width of the finest voxel is about 1.4cm. The merged

model consists of 3.0 million vertices and 6.0 million

triangles. The mean difference between the merged

model and a range image is 2.7mm. It is appropriate

compared with the maximum error of the Cyrax2400,

which is about 7-8mm.

The figures in Row 2 are rendered using triangular faces.

The result of the adaptive merging (B-2) seems completely

the same as the result of the fixed resolution (A-2).

However, if they are rendered by a wire frame, as shown

in Row 1, we can see that our adaptive merging algorithm

generates larger triangles in more or less planar areas. Thus,

the size of the result of the adaptive merging is reduced to

less than 50 percent of the result of the fixed resolution.

Consequently, the time for merging is also reduced to less

than 50 percent.

Fig. 16 Column A, Row 3 is the result of reflectance

merging without adaptive integration. The texture of

reflectance of Fig. 16 Column B, Row 3 is smoothed out

compared with Fig. 16 Column A, Row 3. However, by

considering the reflectance as a criterion of voxel subdivi-

sion, the sharp edges due to the variation in reflectance are

well preserved (see Fig. 16 Column C, Row 3).

The statistics of the merging process are described in

Table 1. The adaptivemerging algorithm reduces the amount

of data and computation time required using the original

merging method. We compared the difference between the

models of ColumnsA and B, themodels of ColumnsA andC

using Metro. The mean difference (0.99mm) between

Columns A and B was quite small compared with the height

of the Buddha. Our method successfully reduces the amount

of data and computation time. However, the mean errors are

quite small compared with the Buddha size. Also, adaptive

merging based on the photometric attributes successfully

reduces the amount of data and the computational time,

while it preserves the edges of the reflectance well.

6.4 Evaluation of BOT Test

Figs. 17 and 18 show an example of the distribution of the

number of records examined during the search for a nearest-

neighbor point inmerging range images.Whenwe search for

the nearest-neighbor points using theBOT test, the number of

records examined gets closer to 1 at any distance from the

query. This is because we adjust threshold � according to the

criterion described in Section 5.2. In this example, the total

numbers of records examined are 11,844,253without the BOT

test and 2,716,475 with the BOT test. Specifically, the

computational cost of searching the nearest-neighbor points

is reduced to 22.9percent of that of the basic search algorithm.

The performance of the BOT test depends on the

distribution of distances from queries to nearest-neighbor

points. Our method works best when the portion of the

number of nearest-neighbor points that are farther than �
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TABLE 1
Statistics of Models of the Buddha

Fig. 17. Relationship between distance from a query to the nearest

neighbor and the number of records examined using the basic search

algorithm for merging range images.

Fig. 18. Relationship between distance from a query to the nearest

neighbor and the number of records examined with the BOT test for

merging range images.



becomes larger. The BOT test can be appliedwith the variable

threshold � without recreating the structure of a k-d tree.

Thus, the BOT test works efficiently since we subdivide

voxels in an octree manner.

6.5 Application: Aligning a Merged Model with
a 2D Image

An example of applications utilizing a merged model with

reflectance is a 2D-3D registration [40]. Fig. 19 shows an

example of aligning a 2D image and a 3D model of the

Kamakura Buddha with reflectance. Fig. 19b is the edges of

the color values extracted using a Canny filter [59] from the

camera image Fig. 19a. Fig. 19c shows the occluding edges

and reflectance edges extracted from the 3D model. In

Figs. 19d and 19e, the method estimates the posture of the

cameraby takingmatchingedgesof 2D image (gray lines) and

3Dmodel (white lines). Fig. 19d is the initial postureof camera

before iterative computation and the posture converges to

Fig. 19e. Finally, texture mapping is accomplished using

estimated camera parameter (Fig. 19f).

7 CONCLUSION

In this paper, we have tackled the problem of geometric and

photometric modeling large-scale and intricately shaped

objects. In modeling such objects, the following new issues

occurred: Creating a detailed model from a huge amount of

data and merging of reflectance parameters of range images.

For merging a huge amount of range images, we

proposed two approaches: the adaptive algorithm of

merging range images and a new algorithm for searching

for the nearest neighbor using the k-d tree. First, we

developed an algorithm for constructing a 3D model in an

efficient resolution. Taking into account the surface curva-

ture and the photometric attributes, we constructed

3D models that have higher detail in surface areas that

contain high curvature and variety of reflectance para-

meters. If the nearest-neighbor point is far from a query, the

nearest neighbor is not used in extracting a merged mesh

model. Thus, we developed the Bounds-Overlap-Threshold

test, which approximately searches by pruning branches if

the nearest-neighbor point is beyond a threshold. This

technique drastically reduces the computational cost if the

nearest neighbor is far from a query.

We extended our merging framework to merge reflec-

tance parameters which are attached with range images

acquired by a laser range finder. By taking a consensus of

the appearance changes of the target object from multiple

range images, we reconstructed a 3D model with an

appearance which discards outliers due to noise. Also, we

were able to provide a model with Lambertian reflected

light values by discarding specular reflections as outliers.

The reflectance parameters of the model can be used for

aligning 2D images with the 3D model surface.

We have been able to successfully construct detailed

models using these proposed methods; these models have

millions of vertices and triangles. Thus, we canmake full use

of the power of range finders and can model large-scale and

intricately shaped objects using a huge amount of range

images.

APPENDIX

ALGORITHM OF BOT TEST

Algorithm 2 shows the algorithm of BOT test, which is

written in a recursive manner. N is the node of interest. pppp is

the query point. d is the distance of the current nearest

neighbor. rightsonðNÞ and leftsonðNÞ mean the children of

node N . drightsonðNÞ and dleftsonðNÞ are the distance from the
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Fig. 19. Aligning a 2D image with a 3D model of the Kamakura Buddha using the photometric attributes of the 3D model.



query to the boundary of the right/left child of N . The

difference from the basic algorithm is illustrated in the gray

boxes.
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