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Abstract
Integration of multiple range images is important to

make use of 3D data acquired from stereo systems, laser
range finders, etc. We propose a new range image inte-
gration method based on volumetric representation. Un-
like other volume-based integration methods, we adaptively
subdivide voxels depending on the curvature of the sur-
face to be reconstructed, providing efficient representation
of the underlying geometry and efficient use of computa-
tional resources. In our range image merging framework,
additional attributes, e.g., color, laser reflectance power,
etc., can be taken into account as well as 3D geometric in-
formation. This ability allows us to generate 3D models
preserving sharp edges around texture boundaries, thereby
providing a good basis for efficient rendering and texture
mapping. The overall framework is designed to be robust
against noise, taking consensus carefully in both geometry
and color, which could be suitable for 3D model reconstruc-
tion from noisy stereo images. In this paper, we describe the
system, and present several results of applying our frame-
work to real data. We also present some other future appli-
cations based on our framework.
1. Introduction

When building a 3D model of a real world object,
the problem of registration and integration (alignment and
merging) of multiple range images becomes crucial. As
most range sensing systems, e.g., stereo, structured light,
laser range finder, return range images obtained from par-
ticular viewing points, each output range image covers only
a portion of the target object surface. Thus, all of the range
images must be transformed into one common coordinate
system, registered with one another and then stitched to-
gether to comprise one geometric model. Alignment of
multiple range images is accomplished by recording each
local coordinate system a priori, e.g., by using motion con-
trolled stages, mounting range finders on robot arms and so
on, or by establishing point correspondences and minimiz-
ing the total distance between those points, e.g., feature-
based methods [3, 17], ICP-based methods [1, 2, 8, 9, 23],
etc.

For merging multiple pre-aligned range images, several
approaches have been proposed. Turk and Levoy [29] pro-
posed a method to “zipper” two range images at a time,

by first removing overlapping portions of the meshes, next
clipping one mesh against another, and then re-triangulating
the mesh on the boundary. Although this is an intuitive pro-
cess to merge two range images, pairwise merging does not
work when merging multiple range images. Given a num-
ber of range images overlapping each other, a merging pro-
cedure which extracts the isosurface is necessary. Merging
methods that make use of volumetric, implicit-surface rep-
resentation and the marching-cubes algorithm [20] are suit-
able for this purpose. Hoppe et al. [16] construct 3D sur-
face models by applying the marching-cubes algorithm to
a discrete, implicit-surface function generated from a set of
range images. After inferring local surface approximations
from clouds of points based on tangent plane estimations,
local search is accomplished to compute the signed distance
from each voxel to the surface of the point set. Curless and
Levoy [6] enhances Hoppe’s algorithm in a few significant
points. However, none of these methods, including several
others [13], compensate for noise or extraneous point data;
the data is assumed to be part of the object and noise is
assumed to be negligible. Each of these methods suffers
from inaccuracy due to their integration strategy, e.g., in-
tegrating unrelated observations, and these accuracy prob-
lems will affect the result even when the data is noise-free.
Wheeler et al. [30, 31] addressed these important problems
by designing a consensus surface algorithm. The consensus
surface algorithm attempts to justify the selection of obser-
vations used to produce the average by finding a quorum
or consensus of locally coherent observations. This process
successfully eliminates many troublesome effects of noise
and extraneous surface observations, and also provides de-
sirable results with noise-free data.

Based on Wheeler’s algorithm to robustly integrate mul-
tiple range images, we propose a range image integration
method which can construct 3D models with photometric
attributes. Considering applications that utilize geometric
models, for instance, 3D object recognition and localization
tasks, it is desirable to construct 3D models with additional
attributes such as color and intensity. With the additional
information provided by photometric attributes, higher ac-
curacy and robustness can be expected from those applica-
tions. By taking a consensus of appearance changes of the
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target object from multiple range images, we reconstruct the
3D model with appearance values attached per vertex, suc-
cessfully discarding outliers due to noise produced in the
image-capturing process. This algorithm, taking consensus
of photometric attributes, can also be used to derive the rigid
part of the appearance change on the object surface, provid-
ing a 3D model with Lambertian reflected light values under
a static illumination environment.

In some sense, our method is analogous to “Voxel Col-
oring” [5, 19, 25], where photometric consistency is used
to carve a volume to reconstruct a geometric model with
texture. Our framework goes the opposite way; we already
have 3D information; from it, we construct a photometric
consistent geometric model.

We also propose an algorithm to construct the 3D model
in an efficient representation. By taking the surface curva-
ture into account when splitting the voxels recursively in an
octree manner, the resulting 3D surface will be subdivided
more in high curvature areas and less in surface areas that
are near planar. Thus, the resulting geometric model will
require less triangular patches to represent the object sur-
face. Furthermore, by taking the photometric attributes into
account, we can construct 3D models that have higher detail
in surface areas that contain significant variation of appear-
ance, providing an efficient basis for texture-mapping and
shading. This is similar to research on mesh model simpli-
fication algorithms based on surface

[12, 14, 15], while we reconstruct a simplified 3D model
through a range image merging process based on implicit
surface representation. The simplification is done when
splitting voxels recursively, enabling better preservation of
topology and mass of the object compared with results
of other volume based simplification methods [26, 27].
Frisken et al.[11] proposed adaptive sampling of distance
field; however, their method does not produce a triangular
mesh model. For converting the volumetric representation
of the 3D model a to triangular-based mesh model, we pro-
pose an extended version of marching-cube algorithm; this
version handle voxels in different resolutions.

The remainder of this paper is as follows. In Section
2, we review Wheeler’s volumetric merging algorithm. In
Section 3, we propose an algorithm to construct 3D models
with photometric attributes. Section 4 describes the algo-
rithm to construct adaptive resolutional 3D models based
on both surface curvature and photometric attributes. Ex-
perimental results of applying the proposed method on real
data are provided in Section 5; finally, Section 6 concludes
the paper.

2. Volumetric Range Image Integration
In this section, we review the range image integration

algorithm proposed by Wheeler [30, 31], which we will use
as our basis.

In Wheeler’s algorithm, all range images are first stored
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Figure 1: Zero-crossing interpolation from the grid sampling
of an implicit surface

in a volumetric representation. The volume is split into
grids, with each grid containing samples of an implicit sur-
face. Namely, in each voxel, the signed distance ���� from
the center point of the voxel � to the closest point of the ob-
ject’s surface. Positive values of ���� indicate that the voxel
lies outside the surface, while negative values indicate that
it lies inside. The range image integration (view merging)
problem can be interpreted as, given multiple samplings of
this implicit function through multiple range images, extract
the isosurface that is the zero crossing of this function (Fig-
ure 1). To solve this problem, we first have to consider how
to compute ����, without knowing which, of many possible
surfaces, is the exact surface..

2.1. Consensus Surface Algorithm
Wheeler et al. proposed the consensus surface algo-

rithm, to compute the signed distance function ���� for ar-
bitrary points � when given � triangulated surface patches
from various views of the object surface.

Previous naive algorithms define the magnitude of the
implicit function ������ of each voxel as the distance from
the voxel center to the nearest triangle in all views (range
images). However, this definition returns false values when
range images contain errors. Figure 2 depicts this situation;
the point chosen as the closest point from � does not be-
long to the real surface, and the naive algorithm incorrectly
considers that � lies inside the object surface from noisy
surface normal information.

This sensitivity to noise in range data can be solved by
estimating the surface locally by averaging the observations
of the same surface. Nearby observations are compared us-
ing their locations and surface normals, and if those values
are within a predefined error tolerance, they can be consid-
ered to be observations of the same surface. The search
for “nearby” observations can be accomplished using k-d
trees [10] containing each range image separately. Given
multiple surfaces that can be considered to be observations
of the same surface, the consensus surface algorithm exam-
ines the closest point in each image’s triangle set to deter-
mine whether it can contribute to the consensus, by check-
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Figure 2: Naive algorithm: An example of inferring the in-
correct sign of a voxel’s value, ����, due to a single noisy
triangle.
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Figure 3: Consensus surface algorithm: The signed dis-
tance is chosen from the consensus surfaces inside the cir-
cle.

ing whether it is sufficiently close in terms of location and
normal direction. A simple example when two range image
surfaces are present is as follows.

SameSurface���
�
����� �������� ��

True �� �
�
� �

�
�� Æ�� � ��� � �� 	 ��� ���

False otherwise
(1)

where Æ� is the maximum allowed distance and �� is the
maximum allowed difference in normal directions.

Range image surfaces that pass this check are considered
to be the consensus surfaces, and the distance to the closest
one of them is used as the signed distance (See Figure 3).

2.2. Octree-based Voxel Splitting
To represent surface in volume, the volume has to be fine

only around where the surface lies, instead of having fixed
resolution [6]. In Wheeler’s algorithm, this is accomplished
by recursively splitting the voxels in an octree manner. Vox-
els containing zero crossing or neighboring zero crossing
implicit function values are subdivided into the finest level
by checking the magnitude of the signed distance 1. As
the resolution of voxels containing the resulting surface are
the same (Figure 4), the marching-cube algorithm [20] can
be applied straightforwardly to extract the final triangular-
based mesh surface.

1Refer to [30, 31] for details.

surface

2D slice
of octree

Figure 4: A 2D slice of the octree splitting volume. The
resolution is high around the surface and low elsewhere.

3. Consensus Surface with Photometric At-
tributes

In applications utilizing geometric models, e.g., 3D ob-
ject recognition/localization, non-rigid appearance varia-
tion plays a crucial role in the accuracy and robustness.
In particular,, specular reflection causes the appearance to
change non-rigidly, consequently making the whole process
difficult. Thus, to date, most object recognition and object
localization algorithms simply neglect specular reflection as
outliers and assume Lambertian surfaces for target scene
and model. To cooperate with this basic assumption on pho-
tometric properties, it is highly desirable to construct the
geometric model to be used in such applications with Lam-
bertian reflection property. If the 3D model is represented
with photometric attributes that are rigid against changes
in illumination and viewing directions, higher accuracy and
robustness can be expected. Furthermore, if the illumina-
tion directions and viewing directions can be pre-estimated
when processing recognition algorithms, non-rigid appear-
ance variation such as specular reflection can be predicted
and added to the 3D model appearance to further elevate the
accuracy.

We accomplish this photometrically rigid 3D model con-
struction in our range image integration framework. As
examples of photometric attributes attached to range im-
ages, we consider two different attributes: laser reflectance
strength and intensity/color.

In brief, laser range finders measure distance by shoot-
ing a laser and receiving its reflection from the target object.
Distance to a particular point on the target object is com-
puted by measuring the time duration between the laser shot
and received back time in time-of-flight range finders, or
by measuring the phase difference in phase-transition based
range finders. In either case, the ratio of the discharged laser
strength and the reflected laser strength can be returned per
each 3D point. We will refer to this additional attribute of
range images obtained from laser range finders as laser re-
flectance strength (LRS). As the laser can be considered
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Figure 5: Two images of the Great Buddha in Kamakura,
using LRS values as pixel values.

as light with very narrow wavelength distribution, almost
a single value, the behavior of the reflected laser on the tar-
get surface can be considered as same as the general light
reflection. Namely, almost isotropic reflection analogous
to diffuse reflection and sharp reflection distributed around
the perfect mirror direction analogous to specular reflection
occurs. Since the laser reflected in the perfect mirror direc-
tion will not be observed from the range finder direction,
the portion of the laser that is reflected back can be con-
sidered to be caused by this diffusive reflection. Figure 5
depicts two images using the LRS values attached to each
3D point as pixel values, rendered from the view point of
the laser range finder. Although the LRS values are almost
view-independent, they do vary slightly depending on the
scanned direction [21].

To construct a 3D model with these LRS values attached
to each vertex, we take the consensus of the LRS values
from different range images as well as the 3D information
when merging multiple range images. In this LRS attribute
case, the consensus can be obtained simply by taking the
median of the LRS values from multiple range images in-
side each voxel and assigning it to each voxel center.

As an example of applications utilizing this LRS value
attached 3D model, robust 2D-3D registration can be con-
sidered [18].

The color or intensity of target objects can be handled
in the same manner. Range images with color information
attached per vertex can be obtained by using range finders
that can acquire color images aligned to range images, e.g.,
Minolta Vivid900 etc., stereo systems, or by aligning 2D
images taken separately to range images obtained by laser
range finders [18, 28]. As is well-known, the color vari-
ation on the object surface is composed of two reflection
components: the diffuse reflection and the specular reflec-
tion. While the diffuse reflection is almost independent of
the viewing direction and its strength varies depending on
the illumination direction, the specular reflection changes
its strength drastically depending on the viewing direction
and illumination direction. For simplicity, we consider a
situation where the color images of the target object are
taken under a static illumination environment with only the
viewing direction varying while the object stays static. This

Figure 6: An example of the histogram of the intensity values
of consensus points. Some outliers due to specular reflec-
tion are observed. In this case, the median value is 0.04.

assumption can be made naturally when scanning objects
with laser range finders, especially when the target object
is large, and also when scanning small objects to build 3D
models for use in object recognition tasks in indoor scenes.
As the illumination direction can be considered to be static
for all color images, the intensity variation of each 3D point
on the target object surface should have a DC component
because of the invariant diffuse reflection with a sharp peak
caused by specular reflection added to it which can be ob-
served from a narrow viewing direction. Thus, if each 3D
point is observed from enough viewing directions, the his-
togram of the intensity values should have a sharp peak at
the diffuse reflection value with some distribution around it
due to image capturing noise. Figure 6 depicts an example
of this from real data. Based on this consideration, by tak-
ing the the median from multiple range images inside each
voxel and assigning it to each voxel, we can determine the
color or intensity values to be attached to the resulting 3D
model.
4. Integrating in Adaptive Resolution

The original consensus surface algorithm efficiently
computes signed distances by utilizing an octree. How-
ever, it generated a mesh model in finest resolution every-
where. To reduce the amount of data to represent the object
and to use computational resources efficiently, we propose
a method which generates a mesh model in adaptive resolu-
tion; with appropriate resolution according to the geometric
and photometric characteristics of the observed object.
4.1. Voxel Subdivision based on Geometric At-

tribute
To efficiently represent the final mesh model, we deter-

mine the sampling interval of the signed distance depend-
ing on the variation of geometric attributes. As an example,
we use the surface curvature. Depending on the change in
surface curvature, the proposed method samples coarsely in
planar areas, consequently reducing the amount of data and
computation, while creating a finer model of an intricate
object by utilizing the computation power efficiently.

Our method determines the variation of surface curvature
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Figure 7: Our method approximates neighboring range im-
ages points to a plane and computes its normal vector �� by
principal component analysis (PCA) for the cloud of range
image points. The approximate normal is then used to de-
termine further subdivision.

comparing surface normals. We compare the normal �� of
each 3D point of all range images inside the voxel in interest
and the normal �� of the approximated plane (See Figure 7),
which can be estimated by applying PCA to all point data in
the voxel. If the angle between data point normals �� and
approximate normal �� satisfies

�	

�

�	�������� � ���� � Æ�� (2)

where Æ� is the threshold of angle, the sampling interval is
fine enough and no further voxel splitting is required.

To avoid erroneous subdivisions of voxels by the influ-
ence of noise included in each range image, our method
takes a consensus between range images on decision of
voxel subdivision. Now, �� is the number of range im-
ages which satisfies Eq.2. Our method does not subdivide
the voxel if

�� � ��� (3)
where �� is the threshold of consensus for normal vectors.

4.2. Voxel Subdivision based on Photometric At-
tribute

Voxel subdivision based on variation of photometric at-
tributes can be accomplished in a similar manner. When the
voxel is subdivided depending on geometric attributes only
or without consideration of any attributes, the appearance
of the resulting object will be significantly smoothed out.
Since ordinary shaders such as smooth shading and phong
shading will simply interpolate the intensity values attached
to each vertex, this smoothing is unavoidable. However, if
we can triangulate the 3D mesh model with regard to the
appearance variation, i.e. fine around appearance bound-
aries and having each triangular patch contain almost the
same texture color, simple shading will work dramatically
well. Also, 3D models tessellated with regard to its texture
variation are useful to accomplish further texture analysis
and synthesis. For instance, view-dependent texture map-
ping like [22] can achieve higher compression, since global
texture compression stacking triangular patches with simi-
lar texture can be applied.

In a similar manner to subdividing by the curvature of

2D slice of adaptive octree

edges of cubes for marching

Figure 8: Edges connecting adjacent voxels in an adaptive
octree: 3D space is partitioned into cubes or quadratic pyra-
mids, etc. Marching cubes can be applied to these irregular
forms without creating new tables of mesh generation for
each form, because they are considered to be degenerated
and transformed cubes.

the surface, our method computes the variation of photo-
metric attributes of 3D points inside the voxel of interest.
Now, ��� �� are the photometric attributes of neighbor points
included in a range image. If the maximum difference sat-
isfies

�	

���

�Distance���� ���� � Æ�� (4)

where Æ� is the threshold and Distance���� ��� is the func-
tion which computes the difference of two photometric at-
tributes, the sampling interval is fine enough for the range
image.

Our method also takes a consensus while considering
photometric attributes. Similar to Eq.3, our method does
not subdivide the voxel if

�� � ��� (5)

where �� is the number of range images which satisfies
Eq.4 and �� is the threshold of consensus for photometric
attributes.
4.3. Marching Cubes for Adaptive Octree

The original marching cubes algorithm can be applied
only to voxels that have the same resolution (size). We ex-
tend the algorithm for triangulation of voxels in adaptive
resolution generated from our method.

For voxels that are surrounded by voxels with the same
resolution, the vertices of a cube to march are the central
points of 8 adjacent voxels. In a similar manner, voxels
surrounded by different size voxels will have a set of con-
nected voxels in a form of quadratic pyramid or other spe-
cial forms to march. Figure 8 shows the edges connecting
adjacent voxels in an adaptive octree. Since these forms can
be considered to be degenerated and transformed cubes, the
original marching cube algorithm can be applied without
modification.
5. Experiments

For this project, we have built a PC cluster that consists
eight PCs, each equipped with dual PentiumIII 800MHz
processors with 1GB memory, connected by 100BASE-TX
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Table 1: Statistics of models of the Buddha: Our method
reduces the amount of data and computation time. However,
the mean errors are quite small compared to the Buddha
size.

Number of points Time for Integration Mean Error
(A) 3.0 million 252 min. N/A
(B) 1.2 million 82 min. 0.99 mm
(C) 1.4 million 88 min. 0.44 mm

Ethernet. As consensus surfaces can be computed inde-
pendently requiring only adjacent voxels, we parallelize the
whole process by splitting the whole volume into pieces.
With this parallel implementation, we are able to handle a
huge amount of range image data.

First, we observe the shape and intensity of a box us-
ing the light-stripe range finder [24]. We acquire 60 range
and intensity images from various viewpoints by putting the
box on a turntable and rotating it six degrees for each step.
Since range and intensity images are already aligned, we
can attach intensity values to corresponding 3D points as
a photometric attribute. Specular reflection is observed in
some images(See Figure 9).

Figure 10 shows the merging result of the box. We ex-
perimented with our algorithm in two cases: merging with
adaptive subdivision based only on surface curvature and
based on both surface curvature and intensity. As can be
seen in Figure 10, although there are specular reflections in
some input images, they are not observed in the resulting
model.

When subdividing voxels only by the curvature of the
surface, the sampling becomes coarse in the planar area.
However, since the intensity varies drastically around the
character edges, the characters are smoothed out and de-
formed when rendered with simple smooth shading. On the
other hand, when voxel subdivision is accomplished based
on both curvature and intensity, the consensus surface sam-
pling becomes fine around the character edges. Because of
this, the sharpness of intensity edges is preserved well and
the shape of the characters are well rendered.

Next, we applied our algorithm to the Great Buddha of
Kamakura, whose height is about 13m. Sixteen range im-
ages with LRS values attached to each 3D point were ac-
quired by Cyrax 2400 [7]. Figure 11 shows 3 different re-
sults of our method. Their statistics are described in Table 1.
We compared the size and accuracy of the models between
A and B, A and C, using Metro [4].

In comparison of the images rendered with LRS val-
ues, the appearance of (B3) is smoothed out compared with
(A3). On the other hand, the sharp edges due to variation
in LRS values of (C3) are well preserved while successfully
reducing the amount of the data.

Figure 9: Range and intensity images of the box is acquired
from various viewpoints using a turn table. These are 2 in-
tensity images of 60 input images. Some images include
specular reflection.

6. Conclusion and Future Work
In this paper, we proposed a range image integration

framework which can construct 3D models with photomet-
ric attributes. By taking a consensus of appearance changes
of the target object from multiple range images, we recon-
struct the 3D model with an appearance which successfully
discards outliers due to noise. Also, we can provide a model
with Lambertian reflected light values by discarding specu-
lar reflection as outliers.

We also proposed an algorithm for constructing a 3D
model in an efficient representation. Considering the sur-
face curvature and the photometric attributes, we con-
structed 3D models that have higher detail in surface areas
that contain either high curvature or significant variation of
appearance. Thus, we could efficiently use computational
resources.

For future work, we are considering several applications
that make full use of models with photometric attributes,
for instance 2D-3D registration, 3D localization, efficient
texture mapping, global texture analysis, among others.
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Figure 11: Merging results of the Kamakura Buddha: Column (A) are the models created without adaptive integration. Column
(B) are the ones created by adaptive subdivision only based on the curvature of the surface. Column (C) are the ones with
adaptive subdivision by the estimation of curvature and LRS. Row (1) are wireframe representations and row (2) are polygonal
representations of these models. Row (3) are the images rendered with LRS values. The far upper and far lower rows are
zoom-ups of the forehead of the Buddha.
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