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Abstract

Atmospheric conditions induced by suspended particles,

such as fog and haze, severely degrade image quality.

Restoring the true scene colors (clear day image) from a

single image of a weather-degraded scene remains a chal-

lenging task due to the inherent ambiguity between scene

albedo and depth. In this paper, we introduce a novel proba-

bilistic method that fully leverages natural statistics of both

the albedo and depth of the scene to resolve this ambigu-

ity. Our key idea is to model the image with a factorial

Markov random field in which the scene albedo and depth

are two statistically independent latent layers. We show

that we may exploit natural image and depth statistics as

priors on these hidden layers and factorize a single foggy

image via a canonical Expectation Maximization algorithm

with alternating minimization. Experimental results show

that the proposed method achieves more accurate restora-

tion compared to state-of-the-art methods that focus on only

recovering scene albedo or depth individually.

1. Introduction

Poor weather conditions caused by suspended particles
in the air, such as fog and haze, may significantly reduce
the contrast and distort the colors of the scene, resulting in
a severely degraded image. Discerning content in such im-
ages poses significant challenges even for human observers
and can cause computer vision algorithms for scene analy-
sis to fail miserably. Fortunately, the physical interaction of
light rays with such particles, i.e. scattering, is well under-
stood: the image intensities of a foggy image may be writ-
ten as a function of the corresponding original scene color
(albedo) and depth [10] 1.

Restoring the true scene color from a single weather-
degraded image is, however, an inherently ill-posed prob-
lem that cannot be analytically solved unless one of the
two constituents, either the scene depth or colors, is known.

1In this paper we assume that single scattering dominates the weather
effect on the image.

This is due to the inherent bilinearlity between scene albedo
and depth as we make explicit in this paper. To this end,
as in any other ill-posed computer vision problem we en-
counter, past work has focused on imposing additional con-
straints to resolve the ambiguity. In particular, recent work
focuses on estimating the scene albedo by significantly
constraining their values to maximize contrast [15] or to
be decorrelated from depth-induced effects (transmission)
within constant albedo regions [4]. In these work, the scene
depth is rather a byproduct that can be computed once the
scene albedo is estimated using a physically-based scatter-
ing image model. Due to their formulation these methods
result in overly contrast-stretched images [15] and inaccu-
rate restoration of the color or depth [4]. A recent inde-
pendent work [5] leverages an empirical observation, that
within local regions the scene albedo values are very small
in at least one color channel, to constrain the depth varia-
tion. The method still suffers from the ambiguity between
color and depth leading to inaccurate restoration.

In this paper, we derive a novel method for “defogging” a
single image by factorizing the image into scene albedo and
depth. The key insight underlying our method is that both
the scene albedo and scene depth convey valuable structural
information to the resulting foggy image and thus these two
factors should be jointly estimated. Due to the inherent am-
biguity between the scene albedo and depth, such joint esti-
mation necessitates a canonical method that can seamlessly
incorporate additional constraints on each of the factors. To
this end, we derive a canonical probabilistic formulation
based on a Factorial Markov Random Field (FMRF) [6].
The image generation is modeled as an FMRF with a single
observation, the foggy image, and two statistically indepen-
dent latent layers that represent the scene albedo (clear day
image) and the scene depth. With this formulation, we may
impose natural statistics priors, such as a heavy-tail prior
on the gradients of the scene albedo and piecewise constant
prior on the depth. We show that we may obtain a maxi-
mum a posteriori (MAP) estimate through an Expectation
Maximization algorithm tailored to the specific FMRF for-
mulation. We also show that we may directly extract useful
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albedo priors, i.e., scene-specific priors, from the given sin-
gle foggy image and incorporate them into the estimation.

We experimentally evaluate the effectiveness of the
method by showing the factorization results on a number of
images. The results show the method achieves more physi-
cally plausible estimates of both the scene albedo and depth,
resulting in more accurate decomposition of the image.

2. Related Work

Early approaches to defogging weather-degraded images
have focused on achieving the image decomposition with
additional observations or scene information. For instance,
methods in [3, 11] require multiple exposures of the same
scene to estimate parameter values related to the atmo-
spheric particles or the scene depth. Active methods require
the scene to be photographed using different imaging con-
ditions such as the degree of polarization [13] or require
manually specified depth values [12]. A more recent work
leverages scene depth directly provided by georeferenced
digital terrain or city models [8]. Although additional scene
information provides sound constraints to resolve the am-
biguity between albedo and depth or makes one of them
(depth) known, such information requires additional equip-
ment or conditions, e.g., imaging in different fog densities,
that may not be available.

Recent work that operate on single images impose con-
straints solely upon either the albedo or depth, but not di-
rectly on both. Tan [15] imposes a locally constant con-
straint on the albedo channel to increase the contrast of the
image. The method is not meant to restore the actual scene
albedo but rather just enhance the visibility, and thus does
not lead to physically meaningful estimates of the albedo
or depth. Fattal [4] imposes locally constant constraints of
albedo values together with decorrelation of the transmis-
sion in local areas, and then estimates the depth value from
the result. The method does not constrain the scene’s depth
structure, but only the scene albedo. Similarly recent in-
dependent work by He et al. [5] imposes constraints only
on the depth structure induced by an empirical observation
made on the possible values of scene albedo within a local
region. We will show the similarity of this constraint to the
initial estimation of (not the prior on) depth values in our
method.

By estimating the depth and albedo simultaneously
through a canonical probabilistic formulation, our approach
can impose structural constraints on both the depth and
albedo values. Past work on single image defogging [4, 5,
15] may be viewed as a special case of our framework, one
with a single latent layer opposed to the two layers we con-
sider and jointly estimate. Finally, our work exploits natu-
ral structural information extracted from the input image it-
self, i.e. creating scene-specific priors on the scene albedo,
which has not been leveraged in the past.

3. Factorial Formulation

Suspended atmospheric particles cause scattering of di-
rect light from the air and its reflection from the scene sur-
faces. The amount of attenuation caused by this scattering is
proportional to the distance from the observer. As a result,
the observation, i.e., a foggy image, becomes a function of
the true scene color and depth.

Under realistic conditions, in particular, where Allard’s
law that describes the distance dependent exponential decay
of reflected light transmission and the light sources modeled
as aggregated airlight that exponentially increases along the
path length it travels (see [10] for a detailed derivation with
a complete review of the literature), the imaged colors in a
single foggy image can be modeled as a function of the cor-
responding scene albedo ρ(x) (a vector of 3 color channels)
and depth d(x)

I(x) = L∞ρ(x)e−βd(x) + L∞(1 − e−βd(x)) . (1)

In this equation, β is the attenuation coefficient that we as-
sume to be uniform across the entire scene, that is we as-
sume spatially homogeneous fog, L∞ is the airlight vector
of 3 color channels, and x is the 2D image coordinates. To
be more precise, the depth is shared among all color chan-
nels and thus d(x) should be considered as d(x)[1 1 1]T,
making it a 3-vector. Note that when d(x) = ∞, Equation
1 reduces to I(x)|d(x)=∞ = L∞ indicating that we directly
observe the airlight L∞. In practice, this means that we may
obtain a good estimate of L∞ by picking an image color at
locations where no objects occlude the sky. We may also
assume the attenuation coefficient β to be known as it is
simply a multiplicative constant on the depth [3].

Estimating the scene albedo ρ(x) and depth d(x) for
each scene point corresponding to individual image coor-
dinates from a single foggy image is an inherently ill-posed
problem. We may see this in a more explicit form through
simple algebraic rearrangements of Equation 1:

ln

(
I(x)

L∞

− 1

)
= ln(ρ(x) − 1) − βd(x) (2)

Ĩ(x) = C(x) + D(x) , (3)

where we have explicitly separated the contributions of
scene albedo as C(x) = ln(ρ(x)−1) and depth as D(x) =

−βd(x) 2. The left hand side Ĩ(x) denotes the log of
airlight-normalized input image offset by 1. As made ex-
plicit in Equation 3, estimating the scene albedo and depth
by estimating C(x) and D(x) at each image coordinate is a
completely ill-posed problem that suffers from the bilinear-
lity of those two factors. Reaching meaningful estimates of
these two factors from the single observation requires addi-
tional constraints on the solution space. We achieve this by

2Again, this is a 3-vector with shared depth values.



Figure 1. The Factorial Markov Random Field formulation con-

sists of two layers of latent variables associated with the depth

factor D(x) and albedo factor C(x).

imposing realistic constraints on both the scene albedo and
depth (and thus on C and D) and decompose the image into
these two factors by jointly estimating them.

In order to canonically incorporate constraints on each
factor, we construct a Factorial Markov Random Field [6]
as depicted in Fig. 1. The FMRF formulation consists of a
single observation, the foggy image, and two layers of latent
variables. We associate one hidden layer with the albedo
term C and the other with the depth D. These two latent
layers can be considered statistically independent, since sur-
face color and its geometric structure are not statistically
tied to each other. We can then factor the albedo and depth
from the foggy image by maximizing the posterior proba-
bility

p(C,D|Ĩ) ∝ p(̃I|C,D)p(C)p(D) , (4)

where we have dropped the image coordinates as the prob-
abilities are computed over the entire image, p(̃I|C,D) is
the likelihood of the observation, and p(C) and p(D) are
the priors. We assume uniform probability for the observa-
tion p(̃I). The structure of the FMRF permits constraints to
be imposed simultaneously and independently in the form
of priors on each layer.

Note that, though the structure of each underlying layer
is enforced by the priors imposed on them, they are inter-
related through the observation layer. The simultaneous es-
timation of both factors relies on their interaction, i.e., the
likelihood of the observation. In order to retain the structure
imposed on the factors through the priors, and to model the
noise inherent in the observations, we model the likelihood
as a mixture of Gaussian distributions with spatially uni-
form variance and weights

p(̃I|C,D) =
∏

x

N (̃I(x)|C(x) + D(x), σ2) , (5)

where σ2 is the variance of the noise.
Note that in this factorial framework, we may impose

any type of priors on the scene albedo and depth indepen-
dently, which enables us to fully leverage any realistic con-
straints on these factors. The prior on the albedo layer can
reflect the natural image statistics, in particular the heavy-
tail distribution of its gradients. As such we may model it
as a Laplace distribution. The prior on the depth layer can
reflect the geometric structure of the scene, which in real-
world scenes often exhibits sparse gradients similar to natu-
ral image statistics [9] or piecewise constant layering, each
of which can be modeled with a Laplace distribution or a
delta function (Potts model), respectively. These priors will
accurately capture the geometric structures of urban settings
where the scene is composed of planar surfaces. For contin-
uously varying scene geometry, we may impose a Gaussian
prior on the depth layer. The significance of the factorial
formulation lies in the fact we may incorporate any of such
priors in a canonical manner.

4. Factorial MRF Estimation

The estimation of the albedo ρ(x) and depth d(x) cor-
responds to maximizing the posterior probability given in
Equation 4. Direct maximization of this equation is in-
tractable due to the interdependence of the hidden variables.
In order to estimate the latent layers, we adopt and tailor
the Expectation Maximization (EM) approach proposed by
Kim and Zabih [6]. This approach corresponds to alterna-
tively minimizing two Markov random fields that are tied
together by their current estimates and the generative model
of the observations.

The general EM approach alternates between comput-
ing the posterior probabilities of the latent variables and
maximizing the expected log likelihood of the distribution
parameters. Thus in the expectation step we estimate the
albedo and depth values assuming a known variance σ2.
This is identical to minimizing the log energy of

∑

x

Q(̃I(x),D(x),C(x)) +
∑

x

∑

y∈Nx

VD(d(x), d(y))

+
∑

x

∑

y∈Nx

VC(ρ(x), ρ(y)) , (6)

where Nx is the set of pixels neighboring pixel x,
Q(̃I(x),D(x),C(x)) is the data energy reflecting the like-
lihood, VD(d(x), d(y)) is the potential energy for the depth
imposed by the prior on it, and VC(ρ(x), ρ(y)) is the po-
tential energy for the albedo imposed by its prior.

Since the data energy is dependent upon both factors
D(x) and C(x) we cannot minimize the total energy di-
rectly. To efficiently minimize Equation 6, we use the
pseudo observable [6], where each layer will be estimated
in an alternating fashion by minimizing the corresponding



Figure 2. An initial depth estimate for a pumpkin field image. Re-

dundant structure due to albedo intensity variations, such as the

specular highlights on the pumpkins, is removed during the FMRF

minimization.

partial energies assuming that the other layer’s values are
known. Thus Equation 6 becomes two separate partial en-
ergies

∑

x

Q(̃I(x),D(x), C̄(x)) +
∑

x

∑

y∈Nx

VD(d(x), d(y)) (7)

∑

x

Q(̃I(x), D̄(x),C(x)) +
∑

x

∑

y∈Nx

VC(ρ(x), ρ(y)) , (8)

where C̄(x) and D̄(x) are the expected values of C(x) and
D(x), respectively. We estimate the expected values as the
maximum a posterior values of the hidden variables, that is,
their current estimate. Although more flexible estimations
are possible using the priors [6], we found that there is little
improvement for the increased computational cost.

The pseudo-observables for the depth layer are simply
Ĩ(x) − C̄(x), and similarly for the albedo layer they are

Ĩ(x) − D̄(x). We solve Equations 7 and 8 using well-
established energy-minimization techniques [14]. In par-
ticular, we use derivatives of graph-cuts [1, 2, 7], depending
on the functional forms of the priors. Since the pseudo-
observables depend on the current estimate from the other
layer, the expectation step is iterated until convergence. The
maximization step consists of estimating σ2 using the max-
imum likelihood estimator.

We treat each channel of the image as statistically inde-
pendent and estimate their albedos separately. The depth
values, however, are shared across all of the channels and
we use all three channels of the image when estimating the
depth to exploit as much information as possible.

Energy minimization techniques generally assume that
the values of the hidden variables are discrete, as contin-
uous values vastly increase the computational cost. We
assume that our source images are represented by 8-bits
per channel, and thus we discretize our albedo estimate to
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Figure 3. A scene-specific albedo prior is estimated by approxi-

mating the chromaticity gradients with an exponential power dis-

tribution for each color channel.

|C| = 256 possible values. The number of depth values |D|
depends on the scene. We found that a sufficient represen-
tation rarely requires more than 100 possible values.

The convergence time of the EM algorithm depends on
the initial guesses of the albedo and depth values. While
random initializations result in the same minimization [6],
we exploit a general property of our formulation to initial-
ize the depth values. Note that, in Equation 1, the max-
imum depth value d(x) = ∞ occurs when I(x) = L∞.
When I(x) $= L∞, the maximum possible distance of point
x occurs when ρ(x) is farthest from the airlight, or when

ρ(x) = 0. We choose the initial depth d̂(x) to be

d̂(x) = min
k

Ĩk(x)

−β
, (9)

where k is the red, green, and blue color channels. In other
words, we initialize d(x) to the farthest possible value that
the observation allows. This proves to be an effective esti-
mate, as illustrated in Fig. 2. Recent independent work [5]
refer to a similar estimate of the (optical) depth as the dark
channel prior. The dark channel prior is computed in lo-
cal regions resulting in blocky estimates, while our initial
depth estimates are computed pixelwise. Note that these are
simply initially estimates which are then refined by the EM
algorithm to accurately factorize albedo and depth layers.

The EM algorithm using the pseudo-observables pro-
vides an efficient and effective process for jointly estimating
the foggy image factors. The ill-posed nature of Equation 3
suggests multiple local minima, and thus we rely on the pri-
ors p(D) and p(C) to steer the minimization to physically-
plausible local minimum. Our use of the FMRF model
allows for maximum flexibility in incorporating these pri-
ors, as the depth and albedo statistics vary depending on the



captured scene. In fact, the only restriction on the form of
the priors is imposed by the energy-minimization technique
employed [7].

5. Scene-Specific Priors

The FMRF model provides a general method for fac-
torizing a single foggy image into its scene albedo and
depth by leveraging natural constraints imposed on the la-
tent layers. For instance, again, depth variation of real-
world scenes can be naturally modeled with piecewise con-
stant or smooth priors using delta or Gaussian functions,
respectively. Although surface color variation will obey the
natural image statistics, well-captured in the heavy-tail dis-
tribution of its gradients often modeled with Laplace distri-
butions, the actual gradient distribution can vary fairly sig-
nificantly depending on the scene in the image. As such,
determining the exact parameter values to incorporate these
constraints on the gradient distribution as a prior can be-
come a tedious task.

We observe that the statistics of the image gradients for
a clear day image (the albedo image) can be approximated
directly from the input image. By converting the foggy
original input image into a chromaticity image, we may
minimize the effect of fog on the gradients, given the fact
that gradient orientations are fairly invariant to illumination
and the chromaticity normalizes the magnitudes of the color
vectors in the image. To this end, we first calculate the chro-
maticity of the image for each channel:

ik(x) =
Ik(x)

Ir(x) + Ig(x) + Ib(x)
, (10)

where k indicates the channel of interest and r, g, b indicate
the red, green, and blue channels, respectively. We then
calculate the gradient ∇ik(x), and compute its histogram,
which may be viewed as an approximation of the joint dis-
tribution of the gradients under a clear day sky. An example
distribution is shown in Fig. 3.

To accurately capture the gradient distribution, we model
it with an exponential power distribution, since its shape
may not align with a simple Laplace distribution depending
on the scene, and use it as the prior on the albedo layer:

p(C) =
∏

x

∏

y∈Nx

exp
|ρ(x) − ρ(y)|γ

λ
, (11)

where λ is the variance parameter and γ relates to the kur-
tosis of the distribution. Note that we ignore the scaling
factor of the exponential power distribution, which normal-
izes the distribution, since it only results in a constant in the
total and partial energies. By estimating these parameters
and fitting Equation 11 to the gradient distributions of each
channel of the chromaticity image, we may impose priors
that are specifically tailored to the scene in the input image.

6. Results

We evaluated our method on six real-world images de-
graded by fog. For each image, we estimated the expo-
nential power distribution for each of the three chromaticity
channels and empirically set the attenuation coefficient to an
appropriate value 3. For the depth prior, we used a Gaussian
distribution for smoothly varying scene structure and a delta
function for planar scenes. Although we set these empiri-
cally, we may simply run the method and pick the instance
that produces better quantitative results by examining the
residual errors after the minimization. For all of the images,
we used 100 depth labels and 256 possible albedo labels.

Fig. 4 shows the results of our method compared with a
polarization-based method that requires minimum two im-
ages [10]. An attenuation coefficient of 1.75 and a delta
depth prior are used. The polarization result reflects the re-
moval of actual physical attenuation and thus we consider
it to be the ground truth clear day image. Our method di-
rectly estimates the image albedo which is not exactly the
clear day image but rather the true colors as if there were
no airlight at all. This discrepancy explains the increase in
contrast of our results. The overall consistency between our
estimates and the polarization-based method demonstrates
the accuracy of our method. Readers may also compare this
result with Fig. 7 in [4] to confirm the higher accuracy of
our method against other methods.

A direct comparison of our approach to that of Fattal [4]
is shown in Fig. 5. We used an attenuation coefficient of
2 together with a Gaussian depth prior. Our scene-specific
albedo priors produce superior consistency in the color of
the recovered albedo, resulting in a more uniform appear-
ance across the varying geometric structures of the scene
(compare the green colors across the field and orange colors
of different pumpkins). As shown in Fig. 5(d), our results
do not suffer from artifacts seen in the results of [4]. Our
approach estimates the depth variation of the scene more
accurately, as can be seen in its globally smooth variation
towards the top of the image as well as its robustness against
highlights observed on the pumpkin surface at grazing an-
gles 4.

Fig. 6 shows the results on a scene with shallow depth
and sharp geometric objects. For this image, we used a
delta depth prior to identify the piecewise constant struc-
tures in the scene. As highlighted in Fig. 6(d), our approach
recovers finer details of objects closer to the viewer, such
as the leaves, and farther away, such as the facade of the
house, that are not recovered with the method in [4]. Due

3Note that this only scales the depth labels with a constant value and
we may instead set it to one and estimate the optical depth.

4This results in overly far estimates of depth towards the top parts of
the pumpkins in [4], whereas our method correctly estimates the depth of a
single pumpkin to be more or less uniform compared to the global variation
of the depth of the field.



(a) (b) (c)

Figure 4. A real-world hazy skyline (a), the result using polarization-based [10] removal (b), and our estimated albedo (c). Our method

estimates the scene albedo, resulting in higher saturation when compared to the result of the polarization-based method.

(a) (b) (c)

(d) (e) (f)

Figure 5. The results of factorizing a foggy image of a pumpkin patch (a) into the albedo (b) and depth images (c) compared with Fattal [4]

in (e) and (f). Our approach produces more accurate decomposition, completely removing the atmospheric interference. Observe in the

inset (d) the saturation in the pumpkin and green patch colors in the albedo estimates of [4] (right) indicating remaining fog. Our method

estimates consistent colors for the same region indicating higher accuracy (left).

to the inherent ambiguity in regions with colors similar to
the airlight, some portions of this scene have incorrect depth
estimates, such as the window frames. These regions will
have saturated depth estimates and can be easily detected
for post-processing, if necessary 5.

A comparison of our approach with that of He et al. [5] is
shown in Fig. 7. Our approach recovers significantly more
detail, especially in dense fog areas such as the right rock
face and distant trees. The deeper colors in the rocks and
trees reveal a more accurate restoration of scene albedo.
The recovered image appears dark due to the density of
the fog, an effect removed from the results of [5] by re-
exposure.

5For instance, we may discard the depth estimates in these regions and
simply fill in from surrounding estimates to arrive at better (but halluci-
nated) albedo and depth estimates.

In Fig. 8 and Fig. 9, we compare our results with the
results of Tan [15]. We used an attenuation coefficient of
1.2 and a Gaussian depth prior. Since each pixel is mod-
eled as an observation in the FMRF model, our approach
can isolate fine edges between different depth objects with
much finer detail, as visible in the lack of block artifacts
the approach in [15] suffers from (for instance, observe the
tree branches in Fig. 8). Our method achieves much greater
consistency in the colors of the recovered albedo layer when
compared with the original image as shown in Fig. 9. Our
scene-specific priors enforce a strict structure for each color
layer ensuring that the resulting albedo value is consistent
with the initial observation (the street sign should be yel-
low as our method successfully estimates, while the contrast
maximization method estimates it to be orange).



(a) (b) (c)

(d) (e) (f)

Figure 6. The results of factorizing a foggy image of a yard (a) into an albedo image (b) and a depth image (c) compared with the results

from Fattal [4] (e) and (f). Our approach identifies a greater level of detail in the depth (d). Observe that we recover the geometric structure

of the leaves and the facade of the house, both of which the results in [4] miss.

(a) (b) (c)

Figure 7. A foggy mountain scene (a) processed by He et al. [5] (b) and our approach (c). Our approach recovers significantly more detail

around dense fog areas such as the rock face on the right.

7. Conclusion

In this paper, we presented a novel probabilistic method
for factorizing a single image of a foggy scene into its
albedo and depth values. We formulated this problem as
an energy minimization of a factorial Markov random field,
enabling full exploitation of natural image and depth statis-

tics in the form of scene-specific priors. The experimen-
tal results demonstrate superior accuracy to state-of-the-art
methods for single image defogging, resulting in improved
depth reconstruction and consistency in the recovered col-
ors. Currently, we are investigating the possibility of con-
structing scene-specific depth priors to further improve the



(a) (b) (c)

Figure 8. A foggy lake scene (a) with results from contrast enhancement [15] (b) and our factorization method (c). Observe that due to our

pixel-level method, our results do not suffer from blocky artifacts as in [15] caused by enforcing piecewise contrast maximization.

(a) (b) (c)

Figure 9. A foggy street scene (a) processed with contrast enhancement [15] (b) and our factorization method (c). Our results retain a

greater consistency in the recovered colors when compared to the original image.

decomposition.
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