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Abstract

Tracking individuals in extremely crowded scenes is a

challenging task, primarily due to the motion and appear-

ance variability produced by the large number of people

within the scene. The individual pedestrians, however, col-

lectively form a crowd that exhibits a spatially and tempo-

rally structured pattern within the scene. In this paper, we

extract this steady-state but dynamically evolving motion of

the crowd and leverage it to track individuals in videos of

the same scene. We capture the spatial and temporal varia-

tions in the crowd’s motion by training a collection of hid-

den Markov models on the motion patterns within the scene.

Using these models, we predict the local spatio-temporal

motion patterns that describe the pedestrian movement at

each space-time location in the video. Based on these

predictions, we hypothesize the target’s movement between

frames as it travels through the local space-time volume. In

addition, we robustly model the individual’s unique motion

and appearance to discern them from surrounding pedes-

trians. The results show that we may track individuals in

scenes that present extreme difficulty to previous techniques.

1. Introduction

Tracking objects or people is a crucial step in video anal-

ysis with a wide range of applications including behavior

modeling and surveillance. Such automatic video analysis,

however, has been limited to relatively sparse scenes pri-

marily due to the limitations of tracking techniques. Ex-

tremely crowded scenes present significant challenges to

traditional tracking methods due to the large number of

pedestrians within the scene. These types of high-density

and cluttered scenes, however, are perhaps in the most need

of video analysis since they capture a large population of

pedestrians in public areas.

Fixed-view surveillance systems continuously capture

Figure 1. By modeling the spatio-temporal variations in the

crowd’s motion, we track pedestrians that exhibit significant vari-

ations in their motion and their appearance as they move through

an extremely crowded scene.

the longitudinal variations of the motions that take place in

the scene. These variations result from pedestrians exhibit-

ing different speeds and directions as they traverse the dense

crowd. Pedestrian movement in local areas, however, tends

to repeat due to the large number of people in the video. As

such, the steady-state motion within the scene, i.e., the typ-

ical motions exhibited by pedestrians, may be learned from

the large amount of video recorded by the camera and used

to predict the movement of each individual.

In extremely crowded scenes, the motion of the crowd

varies spatially across the frame and temporally throughout

the video. The physical environment of the scene constricts

the possible movements of pedestrians in specific areas, but

the crowd varies naturally over short periods of time. As

a result, the crowd’s movement in one area of the frame

may be completely different from that in another, and the

pedestrian motion in the same area of the frame can change

dramatically.

In this paper, we exploit the steady-state motion of the

crowd, i.e., the underlying structure formed by the spatial

and temporal variations in the motion exhibited by pedes-
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trians, to track individuals in extremely crowded scenes.

Our key insight is that the spatio-temporal variations of the

crowd’s motion can be learned from videos of the same

scene to predict an individual’s movement. Specifically, we

leverage the crowd’s motion as a set of priors in a particle

filtering-based framework. First, we model the local spatio-

temporal motion pattern in each sub-volume of the video

defined by a regular grid, similar to [10]. We then train

a hidden Markov model (HMM) on the motion patterns at

each spatial location of the video to model the steady-state

motion of the crowd. Using these HMMs, we predict the

motion patterns a subject will exhibit as they move through

a video of the same scene, effectively hypothesizing their

movement based on the crowd’s motion. We then compute

a distribution of the subject’s motion between frames based

on the predicted motion pattern. Finally, we track the in-

dividual using their predicted motion pattern and by mod-

eling their unique motion and appearance. We show that

our approach faithfully captures the crowd’s motion within

the scene and provides superior tracking results compared

to modern approaches on extremely crowded scenes.

2. Previous Work

Since the literature on tracking is extensive, we only

review work that model motion in cluttered or crowded

scenes. Previous work [6, 20] track features and asso-

ciate similar trajectories to detect individual moving enti-

ties within crowded scenes. They assume that the subjects

move in distinct directions, and thus disregard possible lo-

cal motion inconsistencies between different body parts. As

noted by Okabe et al. [20], such inconsistencies cause a

single pedestrian to be detected as multiple targets. Ex-

tremely crowded scenes, especially when captured in rel-

atively near-field views as is often the case in video surveil-

lance, necessitate a method that captures the multiple mo-

tions of a single target and also discerns different pedestri-

ans with similar movements.

Data association techniques [4, 7, 12, 22] connect large

numbers of short trajectories or detected targets for simul-

taneous tracking in cluttered scenes. These techniques use

the collective tracking information from all targets to im-

prove tracking accuracy, but assume the underlying detec-

tion is reliable. Extremely crowded scenes may contain over

a hundred pedestrians within a single frame, and possibly

thousands throughout the video, resulting in significant par-

tial occlusions well beyond those found in typical crowded

scenes. As such, they present challenges to detection-based

methods since frequently the entire individual is not visible

and correlating detections between frames becomes diffi-

cult, if not impossible. In addition, our approach learns the

scene’s steady-state of motion prior to tracking, rather than

combining separate tracking results.

Other work disregard the significant variations of pedes-
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Figure 2. Following [10], the video is subdivided into local spatio-

temporal volumes and an HMM is trained on the motion patterns

at each spatial location to capture the steady-state motion of the

crowd. Using the trained HMM and previously observed motion

patterns On
1 , . . . , On

t−1, we predict the motion pattern eOn
t that de-

scribes how a target moves through the video.

trian movement and appearance that can occur in crowded

scenes. Ali and Shah [1] and Rodriguez et al. [18] model

the motion of individuals across the frame in order to track

pedestrians in crowds captured at a distance. Similarly,

Pless et al. [9] learn a single motion distribution at each

frame location from videos of automobile traffic. These

approaches impose a fixed number of possible motions at

each spatial location in the frame. In extremely crowded

scenes, however, pedestrians in the same area of the scene

may move in any number of different directions. We encode

many possible motions in the HMM, and derive a full dis-

tribution of the motion at each spatio-temporal location in

the video. In addition, natural body movements appear sub-

tle when captured at a distance but create large appearance

changes in near-view scenes, which we explicitly model.

Nestares and Fleet [14] also use neighboring motion pat-

terns to improve tracking. They increase the continuity of

the motion boundary tracking from Black and Fleet [5] by

including multiple image neighborhoods. In our work, how-

ever, we use a dynamic temporal model of sequential mo-

tion patterns rather than assuming continuity across spatial

locations.

3. Predicting Motion Patterns

The pedestrians in extremely crowded scenes collec-

tively form a structure in the observed motions at and across

different space-time locations. We capture the spatial and

temporal variations of the crowd’s motion using the local

spatio-temporal motion pattern models introduced by Kratz

and Nishino [10]. To model the motion in local areas, the

video is subdivided into small sub-volumes, or cuboids, de-

fined by a regular grid as shown in Fig. 2. The pedestrian

motion through the cuboid at spatial location n and time t
(i.e., the local spatio-temporal motion pattern On

t ) is rep-



resented by a 3D Gaussian N (µn
t ,Σn

t ) of spatio-temporal

gradients

µ
n
t =

1

M

M∑

i

∇Ii, Σn
t =

1

M

M∑

i

(∇Ii−µ) (∇Ii−µ)
T

, (1)

where ∇Ii is the 3D gradient at pixel i, and M is the number

of pixels in the cuboid.

The spatio-temporal motion patterns at each spatial loca-

tion vary over time, but tend to exhibit the Markov property.

To encode these temporal variations, an HMM is trained on

the motion patterns at each spatial location of the video as

shown in Fig. 2. The hidden states of the HMM are repre-

sented by a set of motion patterns {Ps|s = 1, . . . , S} that

are themselves 3D Gaussian distributions. The probability

of an observed motion pattern On
t (defined by µ

n
t and Σn

t )

given a hidden state s is

p (On
t |s) = p

(
dKL (On

t , Ps)

σs

)
∼ N (0, 1) , (2)

where Ps is the expected motion pattern, σs is the standard

deviation, and dKL (·) is the Kullback-Leibler (KL) diver-

gence [11]. Please see [10] for further details.

After training a collection of HMMs on a video of typ-

ical crowd motion, we predict the motion pattern at each

space-time location that contains the tracked subject. Given

the observed motion patterns On
1 , . . . , On

t−1 in the tracking

video, the predictive distribution can be expressed by

p
(
On

t |O
n
1 , . . . , On

t−1

)
=

∑

s∈S

p (On
t |s)ω(s) , (3)

where S is the set of hidden states, ω(s) is defined by

ω (s) =
∑

s′∈S

p (s|s′) α̂ (s′) , (4)

and α̂ is the vector of scaled messages from the forwards-

backwards algorithm [17]. We compute the predicted local

spatio-temporal motion pattern Õn
t by taking the expected

value of the predictive distribution. The expected value be-

comes

Õn
t = E

[
p

(
On

t |O
n
1 , . . . , On

t−1

)]
=

∑

s∈S

Ps ω (s) , (5)

where Ps is the hidden state’s motion pattern from Eq. 2.

Eq. 5 is a weighted sum of the 3D Gaussian distributions

associated with the HMM’s hidden states. To solve for the

predicted motion pattern Õn
t (defined by µ̃

n
t and Σ̃

n

t ), we

estimate the weighted expected centroid [13] of the hidden

states. The predicted motion pattern becomes

µ̃
n
t =

∑

s∈S

ω (s)µs (6)

Σ̃
n

t = −µ̃
n
t (µ̃n

t )
T

+
∑

s∈S

ω (s)
(
Σs + µsµ

T
s

)
, (7)

where µs and Σs are the mean and covariance of the hidden

state s, respectively. Using the collection of HMMs that

represents the steady-state motion of the crowd, we have

predicted the local spatio-temporal motion patterns at each

space-time location of the video.

4. Spatio-Temporal Transition Distribution

After predicting the distribution of spatio-temporal gra-

dients, we use it to hypothesize the motion of the pedestrian

from one frame to the next, i.e., track the target. To achieve

this, we use the gradient information to estimate the optical

flow within each specific sub-volume and track the target in

a Bayesian framework. In addition, we estimate the optical

flow’s variance to compute a full distribution of the subject’s

movement between frames.

Bayesian tracking [8] can be formulated as maximizing

the posterior distribution of the state xt of the target at time

t given available measurements z1:t = {zi, i = 1 . . . t} by

p(xt|z1:t)∝p(zt|xt)

∫
p(xt|xt−1) p(xt−1|z1:t−1) dxt−1, (8)

where zt is the image at time t, p (xt|xt−1) is the transition

distribution, and p (zt|xt) is the likelihood. We model the

state vector xt as the width, height, and 2D location of the

target within the image. In this work, we focus on the tar-

get’s movement between frames and use a 2nd-degree auto-

regressive model [16] for the transition distribution of the

target’s width and height.

Ideally, the state transition distribution p (xt|xt−1) di-

rectly reflects the two-dimensional motion of the target be-

tween frames t− 1 and t. Thus we formulate the state tran-

sition distribution as

p (xt|xt−1) = N (xt − xt−1;ω,Λ) , (9)

where ω is the 2D optical flow vector, and Λ is the co-

variance matrix. We estimate these parameters from the

predicted local spatio-temporal motion pattern at the space-

time location defined by xt−1, i.e., we predict the state tran-

sition distribution using the motion of the crowd.

The predicted motion pattern Õn
t is defined by a mean

gradient vector µ̃ and a covariance matrix Σ̃ (we have

dropped the n and t for notational convenience). The mo-

tion information encoded in the spatio-temporal gradients

can be expressed in the form of the structure tensor matrix

G̃ = Σ̃ + µ̃µ̃
T . (10)

The optical flow can then be estimated from the structure

tensor by solving

G̃w = 0 , (11)

where w = [u, v, z]
T

is the 3D optical flow [19]. The opti-

cal flow is the structure tensor’s eigenvector with the small-

est eigenvalue [21]. Assuming that the change in time is 1,

the 2D optical flow is ω = [u/z, v/z]
T

.



Figure 3. The 3D optical flow w is estimated from the predicted

structure tensor matrix as the eigenvector with the smallest eigen-

value. The 2D optical flow ω is its projection onto the plane t = 1,

representing the predicted movement of the subject through the

cuboid. We estimate the optical flow’s variance by projecting the

other two eigenvectors v1 and v2 onto the same plane, and scaling

them with respect to the estimation confidence.

The estimated optical flow from the structure tensor pro-

vides the expected motion vector for the state transition dis-

tribution. It does not, however, provide the covariance ma-

trix Λ that encodes the variance of the flow vector. We

exploit the rich motion information encoded in the struc-

ture tensor to estimate the covariance based on the shape

of the distribution of gradients. Specifically, the magnitude

of the eigenvalues λ1, λ2, λ3 of G̃ provide a confidence of

how much gradient information is present in the directions

of the eigenvectors. If the video volume contains a single

dominant motion vector and sufficient texture, then G̃ is

rank 2 and λ3 ≪ λ1, λ2. In addition, the eigenvectors of

the structure tensor indicate the primary directions of the

spatio-temporal gradients. As shown in Fig. 3, the optical

flow vector ω is a projection of the 3D optical flow w onto

the plane t = 1. Thus we consider the eigenvectors of Λ

to be the projection of the eigenvectors v1 and v2 of G̃

onto the same plane, providing uncertainty in the primary

directions of the spatio-temporal gradients. Since the eigen-

values of G̃ indicate a confidence in the flow estimation,

we consider them inversely proportional to the eigenvalues

of Λ, as a higher confidence value indicates less variance.

Thus Λ can be estimated by

Λ = [v′
1,v

′
2]

[
λ3

λ1

0

0 λ3

λ2

]
[v′

1,v
′
2]

−1
, (12)

where v′
1 and v′

2 are the projections of v1 and v2 onto the

plane t = 1.

By estimating the state transition distribution using the

predicted motion pattern, we have predicted the pedestrian’s

motion as they pass through the cuboid at each space-time

location. Intuitively, we have imposed a spatio-temporal

prior on the movement of pedestrians based on the motion

Appearance Template TA

Motion
Template
TM

Template
Weights
w

Observed Image zt

Figure 4. The pedestrian’s appearance template TA and motion

template TM are represented by a color histogram and an image of

spatio-temporal gradients, respectively. The observed frame zt is

used to estimate the motion model’s error at each pixel, illustrated

by the weight image w. The pedestrian’s natural movement causes

lower weights in moving areas such as the head and shoulders.

Pixels behind the pedestrian also change significantly as indicated

by the dark background area.

of the crowd.

5. Discerning Pedestrians

The large number of individuals in extremely crowded

scenes also presents unique challenges to modeling the like-

lihood distribution p (zt|xt). The density of the crowd

makes it difficult to discern a specific individual from pedes-

trians not being tracked. In addition, the individual’s ap-

pearance may change significantly due to their natural body

movements. To robustly represent an individual, we model

the likelihood function using their motion in conjunction

with their appearance.

Typical models of the likelihood distribution p (zt|xt)
maintain a template T that represents the target’s character-

istic appearance using either a color histogram or an image.

The distribution is modeled using the difference between a

region R (defined by state xt) of the observed image zt and

the template. The likelihood is computed by

p (zt|xt) =
1

Z
exp

−d (R, T )

σ
, (13)

where σ is the variance, d(·) is a distance measure, and Z is

a normalization term. We assume pedestrians exhibit con-

sistency in their appearance and their motion, and model

them in a joint likelihood by

p(zt|xt) = pA (zt|xt) pM (zt|xt) , (14)

where pA and pM are the appearance and motion like-

lihoods, respectively. We model each of these distribu-



tions in the form of Eq. 13, with parameters {σA, TA} and

{σM , TM} for the appearance and motion distributions, re-

spectively. For our appearance distribution, we use a color

histogram model [16].

As illustrated in Fig. 4, we model the motion template

TM with an image of spatio-temporal gradients to represent

the target’s movement between frames. Other motion rep-

resentations use feature trajectories [20], assuming that the

motion across the entire target is uniform. Human move-

ment, however, is typically not uniform when captured at

a close distance and causes gradual changes in the spatio-

temporal gradients. We capture these variations by updating

the motion template TM during tracking. After tracking in

frame t, we update each pixel i in the motion template by

T t
M,i = α∇RE[xt|z1:t],i + (1 − α) T t−1

M,i , (15)

where T t
M is the motion template at time t, ∇RE[xt|z1:t] is

the region of spatio-temporal gradient defined by the track-

ing result (i.e., the expected value of the posterior), and α is

the learning rate. We also update the appearance histogram

TA using the same learning rate to model the subject’s ap-

pearance changes.

To further discern the target from the surrounding crowd,

we identify frequently changing areas of the motion tem-

plate and reduce their contribution to the computation of

the motion likelihood. We measure the change in motion at

time t and pixel i by the angle between the spatio-temporal

gradient from the tracking result RE[xt|z1:t] and the motion

template T t−1
M . Pixels that change drastically due to the

pedestrian’s body movement or partial occlusions produce

a large angle between vectors. Since the pedestrian’s mo-

tion changes gradually, we update this error measurement

during tracking. The error at pixel i and time t becomes

Et
i = α arccos (ti · ri) + (1 − α) Et−1

i , (16)

where ti and ri are the normalized gradient vectors of the

motion template and the tracking result at time t, respec-

tively, and α is the learning rate from Eq. 15. To reduce the

contributions of frequently changing pixels to the compu-

tation of the motion likelihood, we weigh each pixel in the

likelihood’s distance measure. The weight of each pixel i is

inversely proportional to the error, and computed by

wt
i =

1

Z

(
π − Et−1

i

)
, (17)

where Z is a normalization term such that
∑

i wt
i = 1.

Fig. 4 shows an example of a subject, their motion tem-

plate, and the weights. The distance measure of the motion

likelihood distribution becomes

d (R, TM ) =
∑

i

wt
i arccos (ti · ri) , (18)

where again ti and ri are the normalized gradients.

Figure 5. We use videos of two real-world extremely crowded

scenes containing a large amount of individuals to evaluate our

method. The concourse scene (left) has few physical restrictions

on pedestrian movement, resulting in irregular trajectories. The

ticket gate scene (right) has more structure, but still contains a

large number of individuals moving in different directions.

Figure 6. The angular error between the predicted optical flow vec-

tor and the observed optical flow vector, averaged over all frames

in the video, for the concourse (left) and ticket gate (right) scenes.

White indicates a high error for predicted motion patterns in ar-

eas with little texture such as the ceiling. Areas where pedestrian

targets are present, however, contain enough spatio-temporal gra-

dient information for a successful prediction.

Table 1. Tracking Error on Extremely Crowded Scenes

PF OF OA Ours

TG 82 42 26 23

C 126 71 80 21

6. Experimental Results

We evaluated our approach on a number of videos of two

real-world extremely crowded scenes of a train station [10],

frames of which are shown in Fig. 5. The first scene, from

the station’s concourse, contains a large number of pedes-

trians moving in different directions. The second, from the

station’s ticket gate, contains pedestrians moving in similar

directions through the turnstiles and changing directions af-

ter exiting the gate. For each scene, we train the HMMs on

a video of consistent crowd activity, and then track individ-

uals in a different video from the same scene. The training

video for the concourse scene contains 300 frames (about

10 seconds of video), and the video for ticket gate scene

contains 350 frames. We set the cuboid size to 10×10×10
for both scenes. The learning rate α, appearance variance

σA, and motion variance σM are 0.05.

We evaluated the angular error [3] between the flow esti-

mated from the predicted structure tensor G̃ and the actual

gram matrix G to measure the accuracy of the predicted

motion patterns. The median angular error (in radians) is



Figure 7. Scenes that lack temporal variations in motion, such as

the one shown here from the data set used in [1], exhibit a single

motion vector at each spatial location. Such scenes are special

cases of reduced complexity that can easily be handled with our

approach. The superimposed trajectories show successful tracking

of individuals in the scene.

0.47 for the ticket gate scene, and 0.24 for the concourse

scene. Fig. 6 shows the angular error averaged over the en-

tire video for each spatial location in both scenes. Areas

with little motion, such as the concourse’s ceiling, result in

higher error due to the lack of gradient information. High

motion areas, however, have a lower error that indicates a

successful prediction of the local spatio-temporal motion

patterns.

A visualization of our tracking results1 is shown in

Fig. 8. Each row shows 4 frames of our method tracking

different subjects in crowded areas of the scene. The dif-

ferent trajectories in similar areas of the frame demonstrate

the ability of our approach to capture the temporal motion

variations of the crowd. For example, the yellow target in

row 2 is moving in a completely different direction than the

red and green targets, though they share the spatial location

where their trajectories intersect. Such dynamic variations

in the movement of targets cannot be captured by a single

motion model such as a floor fields [1]. For instance, Fig. 7

shows a marathon video from the data set used by Ali and

Shah [1]. The marathon runners at each frame location tend

to move in the same direction, as shown by the similar green

and yellow trajectories. Our approach successfully tracks

pedestrians in such scenes since they are special cases re-

quiring only a single possible motion at each frame loca-

tion.

Our motion and appearance likelihood successfully rep-

resents subjects with varying body movement. For example,

the face of the yellow target in row 1 of Fig. 8 is visible in

the second and third column, but not in the first and fourth.

Our method is also robust to partial occlusions, as demon-

strated by the blue and red targets in row 1 of Fig. 8.

Errors occur in the presence of severe occlusions, as

shown by the red targets in rows 2, 4, and 5 of Fig. 8. The

1Please see the supplementary video for tracking results.

Figure 9. Pedestrians moving against the crowd in the concourse

(top) and ticket gate (bottom) scenes are successfully tracked, even

though their motion patterns deviate from the learned model.
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Figure 10. The magnitude of the error vector (difference between

the ground truth state vector and tracking result) for subjects in the

concourse (C) and ticket gate (TG) scenes. Our tracker achieves

a consistently low error, except for on two very challenging cases

(C7 and TG5) that undergo almost complete occlusion.

third frame of these rows shows the target occluded, and our

method begins tracking the individual that caused the occlu-

sion. This behavior, though not desired, shows the ability of

our model to capture multiple motion patterns since the oc-

cluding individual is moving in a different direction.

As noted by Kratz and Nishino [10], pedestrians moving

against the crowd create anomalous motion patterns that de-

viate from the model. Nevertheless, our approach is able to

track these pedestrians, as shown in Fig. 9, since the pre-

dicted motion pattern reflects the deviation from the model.

In order to quantitatively evaluate our approach, we

hand-labeled ground truth tracking results for 7 targets in

the concourse scene and 6 targets in the ticket gate scene.

Given the ground truth state vector yt (defined by the width,

height, and 2D frame location of the target), the error of the

tracking result x̂t is ||yt − x̂t||2. Fig. 10 shows the track-

ing error for each subject averaged over all of the frames in

the video. Our approach achieves an error less than 25 for



Figure 8. Example frames from tracking results for the concourse (rows 1-3) and ticket gate (rows 4-6) videos. The video sequence in

each row progresses from left to right, and the colored curves show the trajectories of the targets up to the current frame. Individuals

are successfully tracked in the extremely crowded areas of both scenes. The diversity of trajectories show the ability of our approach to

capture spatial and temporal variations in the movement of pedestrians. Local motion variations are successfully captured, as shown by the

head motion of the yellow target in row 1. The red targets in rows 2, 4, and 5 are lost due to almost complete occlusions. Please see the

supplementary video for tracking results.

all but 2 of the targets. Target C7 and TG5 are lost during

tracking due to severe occlusion. Table 1 shows the error

(averaged over all videos) of our approach compared to that

of a color particle filter (PF) [16], an optical flow tracker



(OF) [2], and an occlusion-aware tracker (OA) [15]. The

occlusion-aware tracker also has a low error on the ticket

gate videos, but fails on the concourse videos due to signif-

icant appearance variations.

7. Conclusion

In this paper, we derived a novel probabilistic method

that exploits the inherent spatially and temporally varying

structured pattern of a crowd’s motion to track individuals

in extremely crowded scenes. Using a collection of HMMs

that encode the spatial and temporal variations of local

spatio-temporal motion patterns, the method successfully

predicts the motion patterns within the video. The results

show that leveraging the steady-state motion of the crowd

provides superior tracking results in extremely crowded ar-

eas. We believe the crowd’s motion can be further leveraged

to track across temporary full occlusions, which we plan to

investigate next.
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