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1. Reflectance Estimation

Figure 1 depicts how we update reflectance parameters

using the geometry estimates and the input view images.

We optimize the reflectance parameters so that errors be-

tween the input view images and the rendered images for

each view are minimized. Using the current geometry esti-

mates, i.e., the estimated depths and the surface normals for

a reference view, we can synthesize the rendered images for

each view by computing irradiance (Eq. (1) of the main pa-

per) of each surface point and projecting it onto the image

plane. The projection onto the neighboring views, however,

makes the rendered images sparse. Instead, we warp both

the input and the rendered images into the reference view

so that the errors can be computed densely for each pixel in

the reference view. We warp the input view images Ik(m)
into the reference view as

log I ′
k
(m) =

∑

d

p̂(d;m) log Ik(mk(m, d)), (1)

where mk(m, d) is the mapping from the pixel coordinate

and depth of the reference view into the pixel coordinate

in the input view. We use the depth probability volume

p̂(d;m) instead of the final depth estimate d̂(m) so that we

can evaluate the consistency even if the depth probability

volume is multimodal. Similarly, we synthesize a warped

version of the rendered image as

logE′

k
(m) =

∑

d

p̂(d;m) logE(vk, n̂(d,m)), (2)

where E(v,n) is the radiometric image formation model

(Eq. (1) of the main paper), vk is the viewing direction of

the input view, and n̂(d,m) is the surface normal estimate

sampled from the normal volume.

A straightforward approach to compute errors between

these images would be pixel-wise intensity errors. Such

naive error computation, however, is too brittle as these im-

ages are noisy due to the reconstruction errors of the depths

and surface normals. We instead Gaussian blur the (warped)

input view images and the (warped) rendered images and

then compute the pixel-wise errors as

Lc(m) =
∑

k

∥

∥

∥
log I ′

k
(m)− logE′

k
(m)

∥

∥

∥

1

, (3)

where log I ′
k
(m) is the blurred input view image and

logE′

k
(m) is the blurred rendered image.

Although Eq. (3) ensures consistency between the esti-

mated reflectance and geometry, appearance details, such as

sharp specular highlights, can still be missed. For this, we

derive another metric to evaluate the consistency at a finer

level. The key idea is that the ground-truth surface normal

should exist around the estimated one which almost exactly

satisfies the radiometric consistency. For each pixel m and

each discretized depth hypothesis d, i.e., for each candidate

of the surface points, we find such orientation ñ(d,m), as

one that locally minimizes

∑

k

∥log Ik(mk(m, d))− logE (vk, ñ(d,m))∥
1
. (4)

By using this refined surface normal estimate ñ(d,m), we

synthesize a refined version of the (warped) rendered image

as

log Ẽk

′

(m) =
∑

d

p̂(d;m) logE(vk, ñ(d,m)) . (5)

We evaluate the finer-level consistency as pixel-wise errors

between this image and the warped image

Lf(m) =
∑

k

∥

∥

∥
log I ′

k
(m)− log Ẽ′

k
(m)

∥

∥

∥

1

, (6)

and use the sum of Eq. (3) and Eq. (6) as the loss functions

of reflectance estimation.

1.1. Occlusion Detection

Another challenge of the reflectance estimation is that

the loss functions may suffer from occlusions. Although

we empirically found that the proposed loss functions are
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Figure 1: (a) We update the reflectance parameters by minimizing errors between pixel values of the input view images

Ik(mk(m, d̂)) and those rendered using the current surface normal estimates, i.e., E(vk, n̂). (b) We can compute this

error for each pixel in the reference view by warping both the input and the rendered images into the reference view. As

straightforward pixel-wise intensity errors are too brittle due to reconstruction errors of geometry, we instead derive two loss

functions. First, we Gaussian blur both images and then compute pixel-wise errors. This ensures consistency at a coarse

level. Second, we find a (pseudo) ground-truth surface normal around the estimated one that almost exactly satisfies the

radiometric consistency and use it to refine the rendered image. This ensures consistency at a fine level, e.g., consistency of

sharp specular highlights.

robust enough to such deviations even if we simply use two

neighboring views for the error computation, we can also

explicitly handle occlusions when we recover the whole 3D

shape (Sec. 3.4 of the main paper), i.e., when we have depth

estimates for each input view. For this, inspired by reprojec-

tion loss of self-supervised binocular and multi-view stereo,

we compute visibility of the reference view’s pixels from

neighboring views using the depth estimates of these views.

Figure 2 depicts how we evaluate the visibility. We com-

pute a visibility score based on the error between the depth

in the k-th neighboring view (d̄k) computed from the refer-

ence view’s depth estimate (d̂0) and that sampled from the

neighboring view’s estimates (d̂k). As d̄k and d̂k are consis-

tent only if the surface point is visible from the neighboring

view, we compute the visibility score sk as

sk = exp(−|d̄k − d̂k|) , (7)

and use two neighboring views that maximize this score for

the error computation.

2. Test set of nLMVS-Synth Dataset

As shown in Fig. 3, the test set of nLMVS-Synth dataset

consists of 4320 multi-view images of 216 different com-

binations of 6 shapes [10, 14, 1], 6 materials [11], and 6

illuminations [5, 9].
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Figure 2: When we recover the whole 3D shape from 10 (or

more) multi-view images (Sec. 3.4 of the main paper), i.e.,

when we have depth estimates for each input view, we com-

pute approximate visibility of a pixel in the reference view

from neighboring views. We compute the visibility based

on the error between the depth in the neighboring view (d̄k)

computed from the reference view’s depth estimate (d̂0) and

that sampled from the neighboring view’s estimates (d̂k).

3. Image Capture Flaws in Multiview Objects

Under Natural Illumination Database [12]

As shown in Fig. 4 and briefly described in the main

paper, the Multiview Objects Under Natural Illumination
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Figure 3: The test set of our novel synthetic image dataset, nLMVS-Synth, consists of 4320 rendered images of 216 combi-

nations of 6 shapes [10, 14, 1], 6 materials [11], and 6 illumination environments [5, 9].
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Figure 4: Image capture flaws in Multiview Objects Un-

der Natural Illumination database [12] including lens glare,

large saturations, and poor geometric calibration. (a) The

first image is much brighter than those of the neighboring

views due to lens glare. The numbers are median bright-

ness of the object. (b) RAW Images taken with the shortest

exposure time (provided by the authors of [12]). Specu-

lar highlights are completely saturated. (c) We overlay the

silhouette of the ground-truth 3D mesh model on an input

image. Due to poor geometric calibration, the ground-truth

3D mesh is not consistent with the input image.

Database [12] contains clear flaws in image capture includ-

ing saturation, glare, and poor geometric calibration. For

these reasons, although we run our method on this dataset

for qualitative comparison with Oxholm and Nishino [13],

experimental results on this dataset do not accurately reflect

superiority of any method.

4. Implementation Details

4.1. Network Architecture

Figure 5 and Tab. 1 show the architecture of the shape-

from-shading network. It consists of standard fully con-

nected and 2D convolutional layers. As described in the

main paper, we use this network recursively (3 times) to re-

fine the observed surface normal likelihood.

Figure 6 and Tab. 2 show details of “Pixel-Wise Encod-

ing,” “3D Conv,” and “3D UNet” inside the cost volume

filtering network (Fig. 4 of the main paper). The architec-

ture of “2D UNet” is the same as “ImageFeaNet” inside the

shape-from-shading network except the numbers of input

and output channels. The numbers of the input and output

channels of “2D UNet” are 22 and 32, respectively.

4.2. Training

We train our networks on the training set of the nLMVS-

Synth dataset. As described in the main paper, we train the

shape-from-shading network and the cost volume filtering

network separately. We use the Adam optimizer with de-

fault parameters of PyTorch 1.8.1 for both training.

For training of the shape-from-shading network, we set

the batch size and the number of epochs as 2 and 40, respec-

tively. We run the training on a single NVIDIA RTX A6000



Sampled

Surface

Normals

Surface 
Normal

Likelihoods

Sample-Wise

Encoding

Sample-Wise

Features 𝐟
Max

Pooling

Radiometric

Feature

Image-

FeaNet

RGB
Image

Image
Feature

Aggregation
Net

Aggregated

Feature 𝛂
: Concatenation

(a) Feature Extraction and Aggregation

𝑝(𝐼|𝐧)

64 64 64 64 64

3

1

𝐧 𝐟

(b) Sample-Wise Encoding

64 64 64

32

3𝐧
32

64 64 64 64

32

𝜶
1 𝑔(𝐧; 𝜶)

𝑝(𝐼|𝐧)
: FC layer

: Product

Ƹ𝑝(𝐧)

(c) Decoder

Figure 5: Architecture of the shape-from-shading network. Please also refer to Tab. 1 for details of the “ImageFeaNet”

and the “AggregationNet”. (a) We extract and aggregate features from an input RGB image, sampled surface normals, and

their observation likelihoods. (b) We use an MLP to extract features from a sampled surface normal n and its observation

likelihood p(I|n). Each fully connected (FC) layer except the final layer is followed by a leaky ReLU activation function. (c)

Using an aggregated feature α and a decoder MLP, we compute the output (unnormalized) probability density distribution

p̂(n). In the final layer of the MLP, we use a SoftPlus activation so that the output g(n;α) is positive. For the other layers,

we use leaky ReLU activation.
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Figure 6: Details of “Pixel-Wise Encoding” inside the cost

volume filtering network. The “Sample-Wise Encoding”

is similar to the one in the shape-from-shading network

(Fig. 5b), but the number of hidden layers is 3 and the out-

put is 16-dimensional. For each pixel, the “ArgMax” out-

puts a surface normal orientation that maximizes the esti-

mated probability. We empirically found that the combina-

tion of the “PDF” (probability density function) feature and

the “ArgMax Normal” is effective to recover accurate ge-

ometry.

GPU (48GB). It takes approximately 100 hours.

For training of the cost volume filtering network, we set

the batch size and the number of epochs as 4 and 30, respec-

tively. We run the training on two NVIDIA RTX A6000

GPUs (48GB×2). It takes approximately 100 hours. We

use images of three views (a reference view and its two

neighboring views) as inputs of the network during this

training. Please note that, at inference time, the network can

take an arbitrary number of images as inputs. At inference

time (i.e., for the joint shape and reflectance estimation), we

use five view images to construct a cost volume.

4.3. Joint Shape and Reflectance Estimation

We start the alternating estimation of the geometry and

reflectance from an initial estimate of the reflectance. As the

conditional iBRDF model is trained so that its latent vector

is always within the unit hypersphere, we use a zero vector

as an initial estimate of the latent vector z. We initialize

the channel-wise scale factor c so that the mean irradiance

E(ωo,n) (Eq. (1) of the main paper) of a sphere with the



Layer k s chns input

CBR2D0 3 1 3/64 RGB image

AP0 - 2 64/64 CBR2D0

CBR2D1 3 1 64/128 AP0

CBR2D2 3 1 128/128 CBR2D1

AP1 - 2 128/128 CBR2D2

CBR2D3 3 1 128/256 AP1

CBR2D4 3 1 256/256 CBR2D3

AP2 - 2 256/256 CBR2D4

CBR2D5 3 1 256/512 AP2

CBR2D6 3 1 512/512 CBR2D5

CBR2D7 3 1 512/256 CBR2D6

UP0 - - 256/256 CBR2D7

CBR2D8 3 1 (256+256)/128 CBR2D4, UP0

UP1 - - 128/128 CBR2D8

CBR2D9 3 1 (128+128)/64 CBR2D2, UP1

UP2 - - 64/64 CBR2D9

Conv2D 3 1 (64+64)/16 CBR2D0, UP2

Table 1: Architecture of “ImageFeaNet” inside the shape-

from-shading network. “CBR2D” is a sequence consisting

of 2D convolution (“Conv2D”), batch normalization, and

ReLU activation. “AP” and “UP” are average pooling and

bilinear upsampling, respectively, that double or halve the

size of an input feature map. “k”, “s”, and “chns” denote the

kernel size, the stride, and the numbers of input and output

channels, respectively. The architecture of “Aggregation-

Net” is the same as “ImageFeaNet” except the numbers of

input and output channels. The number of the output chan-

nels of ”AggregationNet” is 32.

estimated BRDF under the same environment corresponds

to one of the observed images. We repeat the alternating

estimation 40 times.

We run the alternating estimation on a NVIDIA Tesla

V100 (16GB). The update of geometry and reflectance takes

approximately 5.5 minutes for each iteration. Thus the run-

ning time is approximately 4 hours in total. Note that most

of the time is spent on the reflectance estimation and in-

ference by the two deep neural networks (i.e., the shape-

from-shading network and the cost volume filtering net-

work) takes milliseconds.

4.4. Data Augmentation of Measured BRDFs

As we explained in Sec. 4 of the main paper, we use mea-

sured BRDFs of the MERL BRDF database [11] to render

synthetic training and test images. As the number of the

BRDFs is small (94 for training), we augmented them by

leveraging the conditional iBRDF model [4] as a generative

model. We trained the conditional iBRDF model with the

94 measured BRDFs and sampled 2685 BRDFs from its la-

tent space. We use the sampled BRDFs along with 2685

synthetic shapes [16] and 2685 captured illumination maps

[6, 19] to synthesize the training set of the nLMVS-Synth

Layer k s chns input

CLR3D0 1 1 64/64 Input Feature

CLR3D1 1 1 64/64 CLR3D0

CLR3D2 1 1 64/64 CLR3D1

Conv3D3 1 1 64/32 CLR3D2

(a) “3D Conv”

Layer k s chns input

CBR3D0 3 1 32/8 Input Feature

AP0 - 2 8/8 CBR3D0

CBR3D1 3 1 8/16 AP0

CBR3D2 3 1 16/16 CBR3D1

AP1 - 2 16/16 CBR3D2

CBR3D3 3 1 16/32 AP1

CBR3D4 3 1 32/32 CBR3D3

AP2 - 2 32/32 CBR3D4

CBR3D5 3 1 32/64 AP2

CBR3D6 3 1 64/64 CBR3D5

CBR3D7 3 1 64/32 CBR3D6

UP0 - - 32/32 CBR3D7

CBR3D8 3 1 32/16 CBR3D4 + UP0

UP1 - - 16/16 CBR3D8

CBR3D9 3 1 16/8 CBR3D2+UP1

UP2 - - 8/8 CBR3D9

Conv3D 3 1 8/1 CBR3D0 + UP2

(b) “3D UNet”

Table 2: Architecture of “3D Conv” and “3D UNet” inside

the cost volume filtering network. “CBR3D” is a 3D version

of “CBR2D” and “CLR3D” is a sequence consisting of 3D

convolution (“Conv3D”) and leaky ReLU activation.

dataset.

4.5. Evaluation

Evaluation of Recovered Mesh Models As described in

Sec. 4.1 of the main paper, Tab. 2(b) of the main paper

shows root-mean-square (RMS) of the distance from a point

on the reconstructed mesh to the nearest point on the ground

truth mesh. Since it is meaningless to compute errors for

points that are invisible from the input views, we only used

points on the recovered surface that are visible from at least

three viewpoints to compute the RMS errors.

Comparison with Existing Methods For the qualitative

and quantitative comparisons with the existing methods

[17, 3, 18, 20, 21] reported in the main paper, we used the

official implementations by the authors. As CVP-MVSNet

[17], MVSNeRF [3], IDR [18], and NeRS [20] take stan-

dard dynamic range (SDR) images as inputs, we convert the

high dynamic range (HDR) images of the nLMVS-Synth

dataset into SDR images by applying gamma correction and

clipping. We adjust a threshold of the clipping so that the

total number of saturated and dark pixels is minimized.



Input Estimated Observed Likelihood Estimated

Figure 7: Results of the shape-from-shading network. The

network successfully recovers a well-defined probability

density of surface normals for each pixel and view.

3D Visualization In Fig. 1 of the main paper, for di-

rect comparison with the results of IDR [18], we visualize

the 3D reconstruction results of CVP-MVSNet [17], MVS-

NeRF [3], and our method as (partial) 3D mesh models.

Similar to the whole 3D shape recovery (Sec. 3.4 of the

main paper), we reconstruct the mesh models from the es-

timated depth and surface normals by converting them into

oriented points and applying Poisson surface reconstruction

[8]. As CVP-MVSNet [17] and MVSNeRF [3] do not re-

cover surface normals, we compute surface normal for each

3D point using its ten neighboring points.

5. Results on Synthetic Data

5.1. Accuracy of the Shape­from­Shading network

Figure 7 shows example estimation results of the shape-

from-shading network. Surface normals are successfully

recovered for different shapes and materials and the fun-

damental ambiguity of single-view recovery is represented

well with the probability densities. Table 3a shows quanti-

tative accuracy for each shape. The results are comparable

to those of Johnson and Adelson [7] and the single-view

method of Oxholm and Nishino [13]. Table 3b shows quan-

titative accuracy for each stage of the coarse-to-fine esti-

mation. The results clearly show the effectiveness of the

coarse-to-fine estimation. Table 3c shows how the grid size

for the coarse-to-fine estimation affects the estimation ac-

curacy and GPU memory size required for training. The

results show that increasing the grid size improves the esti-

mation accuracy, but also significantly increases the mem-

ory footprint.

In Tab. 3d, we show the effectiveness of modeling the

observation likelihood as the Laplace distribution (Eq. (2)

in the main text). We evaluate its effectiveness by compar-

ing our method with its variant that models the likelihood

as the Gaussian distribution. The results show the impor-

tance of modeling the observation likelihood as the Laplace

distribution.

5.2. Joint Shape and Reflectance Estimation

Figures 8 to 10 show qualitative results of the joint es-

timation of geometry (depths and surface normals) and re-

flectance from images of five views. While existing meth-

ods struggle to recover accurate geometry for textureless,

non-Lambertian objects, our method successfully recovers

geometry and reflectance for different shapes, materials,

and illumination environments.

Figure 11 shows two failure cases. As we can see in the

first row, the“Golfball” object is relatively challenging for

multi-view stereo as its geometry is repetitive, i.e., difficult

to find correspondences across views. As we can see in the

second row, we also found that the BRDF estimation ac-

curacy with the “Beige-Fabric” material is relatively poor.

This is because the specular components of the estimated

BRDF cannot be eliminated when it does not cause signif-

icant changes to the radiance of most of the surface points

(i.e., different surface normals). Evaluating such subtle dif-

ference between the rendered and the actual radiance with-

out accurate geometry is a challenging problem.

5.2.1 Ablation Study

Effectiveness of The Probabilistic Representation of

Surface Normals We show the effectiveness of the proba-

bilistic representation of surface normals by comparing our

method with that without the probability density function

(“w/o PDF”) which only uses the surface normals with the

highest probability (i.e., “ArgMax Normal” in Fig. 6) as

inputs to the cost volume filtering network. Ground-truth

BRDFs were used to ablate just the probabilistic represen-

tation. Table 4 shows quantitative results. The results show

that the probabilistic representation improves the accuracy,

especially for the most complex shape, Armadillo (“A”). As

we have discussed in Sec. 3.1 of the main paper, the proba-

bilistic representation is vital to resolve the ambiguity aris-

ing in shape-from-shading under natural illumination.

Effectiveness of The Loss functions for Training We

show the effectiveness of the depth supervision (Eq. (8)),

the normal supervision (Eq. (9)), and the consistency loss

(Eq. (7)) by ablating them during the training of the cost

volume filtering network. Similar to the ablation study

on the probabilistic representation of surface normals, we

used ground-truth BRDFs as inputs to the network. Table 5

shows quantitative results. The results clearly show the ef-

fectiveness of each loss function.

Number of Input Views As the cost volume filtering net-

work inside our nLMVS-Net can take images of an arbi-

trary number of input views, we evaluate how the number

of input views affects the estimation accuracy. For 6 com-

binations of shapes, materials, and illuminations, we varied



Mat. Shape ≤ 10 deg Median

nL

S 99.7% 3.1 deg

T 91.3% 3.7 deg

G 84.7% 7.3 deg
Ours

P 85.8% 7.2 deg

B 75.6% 12.4 deg

A 40.7% 24.2 deg

JA [7] L blobs 90% N/A

ON [13] nL blobs N/A 15 deg

(a) Accuracy for each shape

≤ 10 deg Median Mean

Likelihood 56.6% 49.4 deg 19.8 deg

1st 75.9% 26.9 deg 9.4 deg

2nd 80.3% 26.5 deg 8.4 deg

Final (Ours) 83.4% 24.2 deg 7.7 deg

(b) Accuracy for each stage

Grid Size Mem. ≤ 10 deg Median Mean

2×2 6.6 GB 74.2% 31.5 deg 10.0 deg

4×4 16.6 GB 79.7% 41.3 deg 8.9 deg

8×8 (ours) 43.5 GB 83.4% 24.2 deg 7.7 deg

(c) Effectiveness of the grid size

Likelihood

Distribution
≤ 10 deg Median Mean

Gaussian 77.7% 30.2 deg 9.0 deg

Laplace (Ours) 83.4% 24.2 deg 7.7 deg

(d) Effectiveness of using the Laplace distribution

Table 3: Accuracy of the shape-from-shading network. “≤ 10 deg” is the ratio of pixels whose surface normal estimation

error is lower than 10 degrees. “Median” and “Mean” are median and mean errors of the estimated surface normals. Note

that, for direct comparison with the single-view method of Oxholm and Nishino [13], we computed the median error for each

image and report the worst case. (a) Accuracy for each shape. We also show the results of Johnson and Adelson (JA) [7] and

the single-view method by Oxholm and Nishino (ON) [13]. The second and the third columns denote the reflectance (“nL”

for non-Lambertian and “L” for Lambertian) and shape used in the evaluations. The results are comparable to these existing

methods. (b) Accuracy for each stage of the coarse-to-fine estimation. “Likelihood” is the accuracy of surface normals with

the highest observation likelihood. The results clearly show the effectiveness of the proposed coarse-to-fine architecture. (c)

We show how the grid size for the coarse-to-fine estimation affects estimation accuracy and GPU memory size (“Mem.”)

required for training. Increasing the grid size improves the estimation accuracy, but also significantly increases the memory

footprint. Note that we couldn’t increase the grid size beyond 8×8 due to limitation of GPU memory. (d) Effectiveness

of modeling the observation likelihood as the Laplace distribution (Eq. (2) in the main text). We evaluate its effectiveness

by comparing our method with its variant that models the likelihood as the Gaussian distribution. The results show the

importance of modeling the observation likelihood as the Laplace distribution.

the number of input views from 3 to 9 and computed esti-

mation errors of depths, surface normals, and reflectance.

Table 6 shows quantitative results. While our method can

recover geometry even from 3 view inputs, using 5 view

input images improves the estimation accuracy. Although

it is possible to use images of more than five views as in-

puts, it didn’t improve the estimation accuracy. This could

be due to the gap between the numbers of input views used

for training (3) and inference (7 or 9).

5.3. Whole 3D Shape Recovery

Figure 12 shows 3D mesh models recovered from 10

view images of the nLMVS-Synth dataset. As we recover

the mesh models by simply applying Poisson surface re-

construction (PSR) [8], silhouettes of our results are some-

times inconsistent with the input views. For this reason,

our method with PSR [8] does not quantitatively outperform

IDR [18] that explicitly imposes consistency of silhouettes.

Our results for non-Lambertian objects, however, are quali-

tatively more plausible than those of other existing methods.

Please see, for instance, the legs of the Stanford bunny in

Fig. 12. This shows the advantage of our method in recover-

ing surface details for textureless, non-Lambertian surfaces.

In Fig. 12, we also compare our results with those

of NeuS [15], a state-of-the-art neural image synthesis

method. Although this method can work without input sil-

houette images, it often fails to recover surface geometry

from the sparse (i.e., 10 view) inputs as the optimization of

geometry and appearance without silhouette images is un-

stable.

6. Results on The Multiview Objects Under

Natural Illumination Database [12]

Figure 13 shows whole 3D shape and appearance recov-

ered from our estimation results on the Multiview Objects

Under Natural Illumination Database [12]. We compare our

results with those of Oxholm and Nishino [13]. Our results
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Figure 8: Estimated geometry (depths and surface normals) and reflectance from five view images of the nLMVS-Synth

dataset. The initials on the left side of the images correspond to names of the environment, the material, and the shape.

While existing methods struggle to handle textureless, non-Lambertian objects, our method can successfully recover surface

normals and depth for objects with different shapes and materials.
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Figure 9: Estimated geometry (depths and surface normals) and reflectance from five view images of the nLMVS-Synth

dataset. The initials on the left side of the images correspond to names of the environment, the material, and the shape.

While existing methods struggle to handle textureless, non-Lambertian objects, our method can successfully recover surface

normals and depth for objects with different shapes and materials.
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Figure 10: Qualitative comparison with Chang et al. [2] (RC-MVSNet). While RC-MVSNet does not require any ground-

truth 3D information during training (i.e., it is an unsupervised method), it fundamentally relies on a photometric consistency

loss based on the Lambertian assumption. For this, although they improved the robustness to non-Lambertian surfaces by

introducing a view synthesis loss, their method fails on textureless objects whose appearance is completely different from

Lambertian.

Input
Estimated

(Depth, Normal, Reflectance)

Ground Truth

(Depth, Normal, Reflectance)

Figure 11: Failure cases. In this figure, we visualize the estimated and the ground truth BRDFs as images of spheres

rendered under the same illumination environment. The “Golfball” (the first row) object is challenging for multi-view stereo

as its geometry is repetitive, i.e., difficult to find correspondences across views. We can also see that the BRDF estimation

accuracy for the objects with the “Beige-Fabric” material (the second row) is also relatively poor. This is because the specular

components of the estimated BRDF cannot be eliminated when it does not cause significant changes to the radiance of most

of the surface points (i.e., different surface normals). Evaluating such subtle difference between the rendered and the actual

radiance without accurate geometry is a challenging problem.

have fewer artifacts and more surface details (e.g., ears of

the “Horse”) are recovered. Note that, although ground-

truth 3D mesh models are provided by the authors of the

dataset [12], quantitative evaluation that accurately reflects

superiority of each method is difficult due to the poor geo-

metric calibration of the dataset.

Figure 14 shows estimated BRDFs. The results are con-

sistent across two different environments. Note that we

couldn’t run our method on images of the mirror “Pig” ob-

ject under the “main” environment and those captured under

the “Outdoor” environment as they are strongly affected by

the flaws of the dataset, namely the saturation of specular

highlights. Note also that the “Pig” object was painted after

the image capture under the “Hall” environment and looks

different in the images captured under the “Indoor” environ-

ment.

7. Results on the nLMVS-Real Dataset

Comparison with IDR [18] We compare our method

with IDR [18] on several of the real-world images of
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Figure 12: Recovered mesh models from 10 view images of the nLMVS-Synth dataset. Although our method with Pois-

son surface reconstruction (PSR) [8] does not quantitatively outperform IDR [18], our results for objects with complex,

non-Lambertian materials have fewer artifacts. This shows the advantage of our method in recovering surface details for

textureless, non-Lambertian objects.

Depth Error Normal Error

Ours w/o PDF Ours w/o PDF

S 0.29% 0.29% 1.9 deg 1.8 deg

T 0.38% 0.38% 4.3 deg 4.3 deg

G 0.21% 0.20% 5.1 deg 5.2 deg

P 0.25% 0.26% 4.9 deg 5.0 deg

B 0.36% 0.38% 6.7 deg 6.9 deg

A 0.55% 0.61% 14.6 deg 15.4 deg

Ave. 0.34% 0.35% 6.3 deg 6.4 deg

Table 4: Ablation study on the probabilistic surface normal

representation. Ours “w/o PDF” (without probability den-

sity function) only uses the surface normals with highest

probability as inputs to the cost volume filtering network.

Each row shows reconstruction errors for each shape. The

results show that the probabilistic representation improves

the accuracy, especially for the most complex shape, Ar-

madillo (“A”). Note that ground-truth BRDFs were used to

ablate just the probabilistic representation.

our nLMVS-Real dataset. Similar to comparisons on the

Depth Normal

w/o Depth Supervision 27.74 % 7.1 deg

w/o Normal Supervision 0.49 % 9.0 deg

w/o Consistency Loss 0.35 % 6.3 deg

Ours 0.34 % 6.3 deg

Table 5: Ablation study on the loss functions for the training

of the cost volume filtering network. The results clearly

show the effectiveness of each loss function.

nLMVS-Synth dataset, we used images of five views (a

reference view and four neighboring views) as inputs for

this evaluation. Figure 15 shows qualitative and quanti-

tative results. As we assume that the illumination is dis-

tant and shadows and interreflections are negligible, our

results are relatively poor in regions where these assump-

tions do not hold, e.g., the lower jaw and the bottom of the

“Horse” object. Our results for the top half of the objects

are, however, quantitatively and qualitatively more accurate

than IDR [18]. This demonstrates the effectiveness of our

method. Note also that, different from IDR [18], we esti-



# of Views

3 5 7 9

E-T-G 0.54 0.47 0.46 0.48

G-H-P 0.44 0.37 0.33 0.32

F-W-A 0.31 0.28 0.25 0.26

S-H-B 0.37 0.31 0.32 0.31

G-T-T 0.41 0.31 0.40 0.37

U-G-S 0.95 0.59 0.67 0.93

Avg. 0.50 0.39 0.41 0.44

(a) Depth Errors (%)

# of Views

3 5 7 9

E-T-G 6.7 6.7 6.8 6.8

G-H-P 6.2 5.9 5.7 5.7

F-W-A 10.4 10.2 10.1 10.3

S-H-B 7.3 6.9 7.3 7.5

G-T-T 4.9 4.2 4.1 4.2

U-G-S 2.7 2.3 2.3 2.4

Avg. 6.4 6.0 6.1 6.2

(b) Normal Errors (degree)

Table 6: Relationship between the number of input views and estimation errors. The initials in the first column correspond

to names of the environment, the material, and the shape. While our method can recover geometry even from 3 view inputs,

using 5 view input images improves the estimation accuracy. Although it is possible to use images of more than five views

as inputs, it didn’t improve the estimation accuracy. This could be due to the gap between the numbers of input views used

for training (3) and inference (7 or 9).
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Figure 13: 3D mesh models and their appearance recovered

from our estimation results on the Multiview Objects Un-

der Natural Illumination Database [12]. Compared to the

results of Oxholm and Nishino (ON) [13], our results have

fewer artifacts and surface details are successfully recov-

ered.

mate not only surface geometry but also reflectance of the

objects, which can be used for applications such as relight-

ing.

Qualitative Results and Discussions Figure 16 and

Fig. 17 show estimated BRDFs. Figure 18, Fig. 19, Fig. 20,

Fig. 21, Fig. 22, and Fig. 23 show recovered geometry from

the nLMVS-Real dataset. For this experiment, we used all

views (roughly 20 views) of the nLMVS-Real dataset as

inputs to recover depths surface normals, reflectance, and

mesh models. The results demonstrate the robustness of our

Indoor Hall
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Figure 14: BRDF estimation results on the Multiview Ob-

jects Under Natural Illumination Database [12]. The results

are consistent across two different environments.

method. As we reported in the main text, our method fails

on approximately 30% of all input images. There are two

factors that cause these failure cases. The first is that the as-

sumption of distant and static illumination is sometimes not

the case in real-world environments. If the intensity of sun-

light drastically changes during the image capture due to

movement of clouds, our method fails to recover accurate

geometry and reflectance. Note, however, that our method

successfully works with many real-world images captured

under outdoor scenes. This shows the robustness of our

method to small changes in the illumination environment.

The second is that several combinations of materials and il-

lumination environments are challenging. As we can see in

Fig. 21, our method fails on the combination of the “Lab-
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Figure 15: Comparison with IDR [18] on real-world images of nLMVS-Real dataset. The numbers are mean estimation

errors. Please see the text for discussions.

oratory” environment and the “Duralumin” or the “White-

Primer” material. These combinations are challenging as

specular highlights from each light cannot be distinguished

and diffuse shading does not exist (for the “Duralumin” ma-

terial) or has the same color as the specular reflection (for

the “White-Primer” material).
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(a) Results for “Blue-Metallic” material.
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(b) Results for “Duralumin” material.

Figure 16: Estimated BRDFs from the nLMVS-Real dataset.
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(a) Results for “Bright-Red” material.

C
o

Sphere Horse Shell
Shapes

Planck Bunny

B
E

Ill
um

in
at
io
ns

L
M

C
h

(b) Results for “White-Primer” material.

Figure 17: Estimated BRDFs from the nLMVS-Real dataset.



Input Estimated Ground Truth Input Estimated Ground Truth

Figure 18: Estimated geometry from the nLMVS-Real dataset (Results under “Court” environment). Please see the text for

discussions about failure cases.



Input Estimated Ground Truth Input Estimated Ground Truth

Figure 19: Estimated geometry from the nLMVS-Real dataset (Results under “Buildings” environment). Please see the text

for discussions about failure cases.



Input Estimated Ground Truth Input Estimated Ground Truth

Figure 20: Estimated geometry from the nLMVS-Real dataset (Results under “Entrance” environment). Please see the text

for discussions about failure cases.



Input Estimated Ground Truth Input Estimated Ground Truth

Figure 21: Estimated geometry from the nLMVS-Real dataset (Results under “Laboratory” environment). Please see the text

for discussions about failure cases.



Input Estimated Ground Truth Input Estimated Ground Truth

Figure 22: Estimated geometry from the nLMVS-Real dataset (Results under “Manor House” environment). Please see the

text for discussions about failure cases.



Input Estimated Ground Truth Input Estimated Ground Truth

Figure 23: Estimated geometry from the nLMVS-Real dataset (Results under “Chapel” environment). Please see the text for

discussions about failure cases.


