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Figure 1: We introduce a novel MVS method that can jointly estimate per-pixel depths and surface normals together with the

complex reflectance (b) of a textureless object from five images around the view of interest captured under known but natural

illumination (a). The example results show that our method successfully recovers 3D shape consistent with ground truth

(d) from a sparse set of images from which existing MVS and neural view synthesis methods struggle to recover accurate

geometry (c). Please see, for example, the face and legs of the Stanford Bunny.

Abstract

We introduce a novel multi-view stereo (MVS) method

that can simultaneously recover not just per-pixel depth but

also surface normals, together with the reflectance of tex-

tureless, complex non-Lambertian surfaces captured under

known but natural illumination. Our key idea is to formulate

MVS as an end-to-end learnable network, which we refer to

as nLMVS-Net, that seamlessly integrates radiometric cues

to leverage surface normals as view-independent surface

features for learned cost volume construction and filtering.

It first estimates surface normals as pixel-wise probabil-

ity densities for each view with a novel shape-from-shading

network. These per-pixel surface normal densities and the

input multi-view images are then input to a novel cost vol-

ume filtering network that learns to recover per-pixel depth

and surface normal. The reflectance is also explicitly esti-

mated by alternating with geometry reconstruction. Exten-

sive quantitative evaluations on newly established synthetic

and real-world datasets show that nLMVS-Net can robustly

and accurately recover the shape and reflectance of com-

plex objects in natural settings.

1. Introduction

Three-dimensional reconstruction of real-world objects

of arbitrary reflectance is essential for many computer vi-

sion applications. In particular, a passive approach that can

recover the 3D geometry for a view from a handful of im-

ages would be preferable. For downstream tasks such as

scene navigation, object grasping, and augmented reality,

explicit recovery of the reflectance properties in addition to

the 3D geometry would be essential. As shown in Fig. 1(c),

these requirements are hard to fulfill with neural view syn-

thesis methods (e.g., neural radiance field (NeRF)) as ex-

plicit geometry reconstruction is not their primary goal (i.e.,

volume density only provides coarse view-dependent sur-

face geometry) and as they usually require dense view sam-

pling. Classic stereopsis and multi-view stereo (MVS) ap-

proaches [32], especially with recent integration of learned

features and filtering, still excel in their simplicity, accuracy,

and passive setup for explicit 3D geometry reconstruction.

Reconstruction of a textureless non-Lambertian surface

(e.g., a porcelain vase), however, still remains elusive to

stereo-based approaches as stereopsis is limited by its two

fundamental requirements: correspondence matching and

triangulation. Finding correspondences directly translates
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to making assumptions about the surface appearance, that

they can be matched across views, i.e., they are view-

independent and texture-rich. This has largely limited the

application of stereo-based methods to textured and Lam-

bertian surfaces. Geometry recovery by triangulation also

limits the output to surface depth which is often insufficient

for capturing details of surface geometry.

Surface geometry can instead be recovered as part of in-

verting the radiometric process of image formation. Various

methods have been proposed for single-view geometry re-

construction of non-Lambertian surfaces by jointly estimat-

ing its reflectance. The geometry recovered in such inverse

rendering approaches is, however, fundamentally limited to

surface normals. Although surface normals can expose finer

surface details, they do not directly represent the surface.

In this paper, we introduce a novel multi-view stereo

method that enables the simultaneous recovery of surface

normals and depth for textureless non-Lambertian surfaces.

At the same time, the method explicitly recovers the com-

plex reflectance of the target surface. Our method is purely

image-based. As we experimentally show in Sec. 4, it re-

quires only a handful of (i.e., 5) neighboring views for

reconstruction from one vantage point. Most important,

our method can be applied to objects with unknown com-

plex reflectance captured under known but natural illumi-

nation. Our key idea is to integrate stereopsis with radio-

metric analysis so that radiometrically recovered geomet-

ric properties, namely surface normals, can serve as view-

independent cues for multi-view stereopsis. We achieve this

integration with an end-to-end learnable network which we

refer to as nLMVS-Net.

Our nLMVS-Net consists of three key novel ideas. The

first is a single-view shape-from-shading network that fully

leverages radiometric likelihoods of surface normals. The

network enables the estimation of per-pixel surface nor-

mal as a directional probability density which collectively

serves as rich view-independent cues for subsequent multi-

view stereo. The second key idea is a novel cost volume fil-

tering network that leverages the recovered surface normal

probability densities. The network integrates radiometric

(i.e., surface normals) and geometric (i.e., correspondences)

cues with a novel feature extraction layer and a consis-

tency loss between the surface normal and depth estimates.

The third is joint estimation of complex non-Lambertian re-

flectance by alternating with geometry estimation using a

neural BRDF model [8].

We also introduce two newly collected datasets, which

we refer to as nLMVS-Synth and nLMVS-Real. The syn-

thetic dataset (nLMVS-Synth) consists of 26850 rendered

images of 2685 objects with 94 and 2685 different real-

world reflectance and natural illumination, respectively. We

use nLMVS-Synth to train nLMVS-Net and thoroughly

evaluate its accuracy on unseen synthetic images. The new
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MVSNet [38] ✓ ✓ ✓ ✓

CVP-MVS [37] ✓ ✓ ✓ ✓

NAS [22] ✓ ✓ ✓ ✓ ✓

RC-MVS [6] ✓ ✓ ✓ ✓

Nam et al. [27] ✓ ✓ ✓ ✓

Kaya et al. [18] ✓ ✓ ✓

Cheng et al. [9] ✓ ✓ ✓ ✓ ✓

Bi et al. [3] ✓ ✓ ✓ ✓ ✓

ON [29] ✓ ✓ ✓ ✓ ✓

NeRFactor [46] ✓ ✓ ✓ ✓ ✓

PhySG [45] ✓ ✓ ✓ ✓ ✓

IDR [41] ✓ ✓ ✓ ✓

NeuS [34] ✓ ✓ ✓ ✓

NeRS [44] ✓ ✓ ✓ ✓ ✓

MVSNeRF [7] ✓ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Image-based 3D reconstruction methods that ex-

ploit multi-view observations. Our method can recover ge-

ometry and reflectance from sparse (5 views) observations

captured under known but natural illumination without any

category-specific shape prior, which remains challenging to

existing methods.

multi-view image dataset of real objects, namely nLMVS-

Real, consists of 2569 multi-view images of 5 objects each

with one of 4 different reflectances taken under 6 differ-

ent natural illuminations. Each of the 5 different objects is

replicated with a 3D printer so that accurate ground truth ge-

ometry is available for quantitative analysis. This dataset is

unprecedented in size for an accurately radiometrically and

geometrically calibrated multi-view image set for a variety

of surfaces and would undoubtedly serve as a useful plat-

form for a wide range of shape reconstruction and inverse

rendering research.

Experimental results on these datasets and others, to-

gether with direct comparisons with existing methods,

clearly demonstrate the effectiveness of our method. We

also show that the recovered depths and surface normals

can be used to reconstruct a whole object from as few as

10 images. Thanks to the passive setup and sparse inputs,

nLMVS-Net may prove useful for many 3D sensing ap-

plications including mobile sensing, XR immersion, and

robotic navigation. All the data and code are publicly dis-

seminated on our project web page.

2. Related Work

We review relevant works on imaged-based 3D geome-

try reconstruction, mainly those methods that exploit multi-

view observations. Table 1 summarizes the differences of

our method and others. Our method can recover geome-

try and reflectance of textureless, non-Lambertian surfaces

from a sparse set (i.e., 5) of multi-view images captured

under known but natural illumination without any category-

specific shape prior, which remains challenging for existing
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Figure 2: Overview of our novel multi-view stereo method, nLMVS-Net. The shape-from-shading sub-network learns to

recover per-pixel probability densities of surface normals for each view. The novel cost volume sub-network then learns

to reconstruct per-pixel depth and surface normals from those and the input sparse multi-view images. By alternating with

neural reflectance estimation, we jointly recover the complex surface reflectance of the object.

methods.

Multi-view stereo relies on cross-view correspondence

matching and triangulation. Traditional methods relied on

manually designed distance metrics for correspondence de-

tection and spatial aggregation [15, 11]. Recent works

leverage deep neural networks to learn the metric directly

from data. In particular, 3D convolutional neural networks

are often used for cost volume filtering [38, 16, 39, 37].

Kusupati et al. [22] trained a deep neural network with a

consistency loss to jointly estimate per-pixel depth and sur-

face normal. The architecture of the cost volume filtering

network of nLMVS-Net is inspired by this work, but funda-

mentally differs in that it handles not only textureless sur-

faces, but also non-Lambertian reflectance and even explic-

itly estimates it. Chang et al. [6] introduced a view synthe-

sis loss that can implicitly handle non-Lambertian appear-

ance. Their method, however, still relies on a photometric

consistency loss which cannot handle large deviations from

Lambertian reflectance.

Inverse rendering methods invert radiometric image

formation to reconstruct object geometry [14, 17, 2, 13, 27].

Multi-view methods have exploited proxy geometry (e.g.,

a 3D mesh model) to recover surface geometry by itera-

tive, nonlinear optimization [29, 35, 27, 45, 18, 19]. Ox-

holm and Nishino [29] alternated between updating a 3D

mesh and BRDF parameters so that they are consistent with

the input multi-view images and a known illumination map.

These approaches struggle to recover high-frequency details

of surface geometry as nonlinear optimization of geometry

is unstable due to the large number of free parameters, es-

pecially when the number of input images is small (e.g.,

20). A few methods handle sparse-view inputs [3, 9]. They,

however, require collocated point lighting. In contrast, our

method works with sparse inputs (5 images and an illumi-

nation map) under complex natural illumination.

Neural image synthesis methods recover a volumet-

ric representation of a scene from a large number (typi-

cally on the order of tens to 100) of multi-view images

[46, 45, 4, 41, 34]. Chen et al. [7] handled sparse (i.e., 3)

views by conditioning the volume representation with in-

put images. This method relies on volume rendering and

the recovered volume density only provides view-dependent

coarse depths. Zhang et al. [44] achieved explicit recon-

struction of surface geometry and reflectance from sparse

(i.e., 7) views by leveraging category-specific shape tem-

plates. They also recovered 3D shapes for arbitrary object

categories by exploiting cuboids as templates. As we show

in the supplementary material, this method struggles to gen-

eralize to objects with complex geometry that cannot be ap-

proximated with cuboids.

Multi-view stereo datasets have been proposed for

benchmarking [1, 33, 21, 40]. They, however, are not ra-

diometrically calibrated as they focus on Lambertian or tex-

tured surfaces rather than non-Lambertian objects. For the

evaluation of non-Lambertian MVS, linear high dynamic

range images that accurately capture the appearance of non-

Lambertian objects are essential. Although the Multiview

Objects under Natural Illumination database [28] provides

high dynamic range images along with ground truth geom-

etry and illumination maps, the number of instances is lim-

ited (4 objects under 3 environments). We also found that

the images of this dataset contain flaws (please see Sec. 4).

We introduce a novel real-world dataset that is accurate and

extensive which can serve as a new platform for further

studies on shape and reflectance recovery.

3. Deep Non-Lambertian Multi-View Stereo

Figure 2 depicts the overall structure of our model

nLMVS-Net. The inputs are five multi-view images of

an object and an illumination map of the surrounding en-

vironment. We assume the latter can be captured with a

light probe, or can be estimated with a separate method

[25, 12, 43]. Our nLMVS-Net consists of a single-view

shape-from-shading network and a cost volume filtering



network. Since the appearance of non-Lambertian objects

(e.g., gloss) changes according to the viewing direction, we

cannot directly achieve correspondence matching on the in-

put images, especially for textureless surfaces. Instead, we

explicitly extract view-independent features, namely sur-

face normals, but while canonically accounting for uncer-

tainty by encoding them as directional distributions with the

shape-from-shading network. The recovered per-pixel sur-

face normal distributions add rich information in addition

to the regular appearance for multi-view correspondence

matching and shape reconstruction. We derive a novel cost-

volume filtering network that achieves seamless integration

of these rich geometric and visual cues. We also derive a

joint estimation framework that explicitly estimates the sur-

face reflectance expressed by an invertible network together

with the normals and depth.

3.1. Non­Lambertian Shape­from­Shading

The first step of nLMVS-Net is to recover the surface

normals with associated uncertainties for each view. Sur-

face normals naturally lie in a plausible range of directions

for a given intensity as neither the illumination nor the re-

flectance is angularly unique [28]. As such, it is essential to

model their uncertainties. For this, as depicted in Fig. 3a,

we derive a novel deep neural network that estimates the

per-pixel probability density distribution of surface normals

for each view of the multi-view input images.

We assume an opaque, homogeneous reflectance for the

object whose BRDF can be expressed as ρ(ωi,ωo,n),
where ωi is the incident direction, ωo is the viewing di-

rection, and n is the surface normal. We also assume that

the cameras and the illumination environment are distant

from the object, i.e., they can be approximated with an or-

thographic camera and an illumination map Li(ωo). Under

these assumptions, the observed irradiance E(ωo,n) is

E(ωo,n) =

∫

Li(ωi)ρ(ωi,ωo,n)max(0,ωi · n)dωi .

(1)

We leave global light transport including shadows and inter-

reflections for future work, and focus on object appearance

by direct lighting which is dominant for single objects.

Let us assume that we are given a current estimate of the

reflectance. This reflectance will be updated later in an al-

ternating outer loop. For a given hypothesized surface nor-

mal and known illumination, its likelihood can be defined

as the similarity of the irradiance E(ωo,n) computed from

the given normal and the actual pixel value I:

p(I|n) =
∏

k

f(log I(k); logE(k)(ωo,n), b) , (2)

where f(x;µ, b) is the Laplace distribution and k is index

of color channels. We use the Laplace distribution as its
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Figure 3: (a) The shape-from-shading (SfS) network of

nLMVS-Net learns to estimate pixel-wise probability den-

sities of surface normals by aggregating local and global

contextual information from the input view and observed

pixel-wise likelihoods computed from the radiometric im-

age formation model. (b) We use the SfS network recur-

sively to refine the observed likelihoods in a coarse-to-fine

manner. The red circles on the probability densities are the

sampled surface normal orientations, which are used as in-

puts to the network in subsequent iterations.

long tail is suitable for modeling deviations from the im-

age formation model caused, for instance, by shadows and

interreflections. We optimize the parameter b with training

data. The surface normal directions are discretized with a

2D hemispherical grid and the likelihoods are computed for

each direction.

The observed surface normal likelihoods Eq. (2) are too

noisy and unreliable to use for cost volume filtering. We

train the shape-from-shading network to refine and convert

them into probability density distributions by aggregating

local and global contextual information across the surface.

As depicted in Fig. 3b, for computational efficiency, we

achieve this in a coarse-to-fine manner. We first divide the

possible surface normal orientations into a 8×8 grid and, for

each grid, find the orientation that maximizes the observed

likelihood p (I|n) with brute-force search. We use the set

of sampled surface normals and their observed likelihoods

as inputs for each pixel. In the subsequent iterations, we

double the resolution of the grid and sample surface nor-

mals around those that have high probability in the previous

iteration. We use the same network with the same weights

for all stages.

Since the inputs of the network (i.e., sets of surface nor-
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Figure 4: The architecture of the cost volume filtering network of nLMVS-Net. A latent cost volume is constructed from the

multi-view surface normal densities and color appearance which is then filtered with 3D convolutional layers. The network

outputs two 3D volumes: depth probability volume and surface normal volume that encode the per-pixel depth and surface

normal estimates as probability densities.

mals and their observed likelihoods) are unstructured, con-

volutions are not suitable for processing them. Instead, in-

spired by PointNet [30], we extract a 64 dimensional feature

vector for each sampled surface normal and then fuse the

sample-wise features by using max-pooling. The fused fea-

tures are concatenated with features extracted from the in-

put image and filtered by 2D convolutional layers. We use

the pixel-wise filtered feature a, a decoder MLP g(n;a)
that outputs a scalar value, and the observed likelihood

distribution p(I|n) to compute the output (unnormalized)

probability density distribution p̂(n)

p̂(n) = p(I|n)g(n;a) . (3)

We train the network with images of synthetic objects

whose BRDF and surface normals are known. In training,

we compute the observed surface normal likelihoods by us-

ing the ground-truth BRDF and evaluate the network output

with cross entropy loss

LSfS = −
∑

i

M(ni) log

(

p̂i(ni)
∑

j p̂j(nj)

)

, (4)

where {ni} is the sampled (input) surface normal direc-

tion and M is a binary mask (1 iff the ground-truth and the

sampled surface normal are in the same grid). The loss is

evaluated for every stage of the coarse-to-fine estimation.

As shown in Figure 3a, the network significantly reduces

the ambiguity of the observed likelihood distribution and

extracts a well-defined probability density for each pixel.

3.2. Cost Volume Filtering

From the recovered per-pixel surface normal probability

densities for each view as well as the original input images,

nLMVS-Net learns to filter a cost volume to recover the

object 3D shape as depth and surface normals. Figure 4

shows the architecture of the cost-volume filtering network.

As depicted in Fig. 4(a), the network takes in the multi-

view input images as well as the outputs of the single-view

shape-from-shading network, i.e., per-pixel surface normal

probability densities for each view. The latter are repre-

sented as sets of surface normals and their probabilities,

from which we extract pixel-wise features. Since the sur-

face normals are estimated in the camera coordinate system

of each view, we first consolidate the coordinate system by

rotating them using the known camera extrinsic parameters.

We apply a feature extraction layer similar to the one in the

shape-from-shading network (see Sec. 3.1) to convert the

unstructured set of surface normals and their probabilities

into a latent feature vector. The latent vector is concatenated

with the input image and further filtered by a 2D UNet.

As illustrated in Fig. 4(b), the surface normal and image

features are then used to construct a 3D latent cost volume

which is then filtered with 3D convolutional layers. The

final outputs are per-pixel depths and surface normals in the

reference view. The outputs of the 3D convolutional layers

become a depth probability volume p̂(d;m) and a surface

normal volume n̂(d,m) where d is a discretized hypothesis

of depth. From these volumes, we compute the estimated

depth d̂(m) and surface normal n̂(m) as

d̂(m) =
∑

d

p̂(d;m)d , (5)

n̂(m) =

∑

d p̂(d;m)n̂(d,m)

∥
∑

d p̂(d;m)n̂(d,m)∥
. (6)

We ensure that the estimated depth and surface normals

mostly agree with each other with a loss that aggregates

the discrepancy in the directions of the surface normals and

depth derivatives

Ldn =
∑

m

arccos (n̂(m) · n̄(m)) , (7)

where n̄(m) is the surface normal computed from the esti-

mated depths d̂(m) with cross product of tangent vectors on

the surface. As shown in Fig. 5, this consistency holds only

in C0 and C1 continuous regions and we do not use n̄(m)
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Figure 5: Advantage of estimating surface normals and

depth as separate quantities. Our surface normal estimates

are mostly consistent with the true surface normals (GT)

in both continuous regions and also at surface discontinu-

ities. In contrast, if depth derivatives (differentiation) are

used as surface normals (i.e., nLMVS-Net without normal

volume–“w/o NV”), surface normals become erroneous at

even continuous regions and high-frequency details of sur-

face discontinuities are also lost or exaggerated.

as surface normal estimates. The summation in Eq. (7) en-

sures that strict consistency is only mildly imposed and sur-

face normals are allowed to deviate from the depth deriva-

tives at surface discontinuities. This is possible as we re-

cover depths and surface normals as separate quantities.

We also impose individual depth and surface normal su-

pervisions

Ld =
∑

m

∥d̂(m)− dgt(m)∥1 , (8)

Ln =
∑

m

arccos (n̂ (m) · ngt(m)) , (9)

where dgt(m) and ngt(m) are the ground-truth depth and

surface normal. The overall training loss is the weighted

sum of these loss functions. We train this network sepa-

rately from the shape-from-shading network.

3.3. Joint Shape and Reflectance Estimation

As Fig. 2 depicts, we alternate between estimating the

object geometry and estimating the reflectance (BRDF). We

represent the surface BRDF with the conditional invertible

neural BRDF model (conditional iBRDF model) [8]. We

update parameters of this model so that the difference be-

tween the input view images and the rendered images for

each view is minimized. A challenge here is that pixel-wise

intensity errors are too brittle as they suffer from geome-

try reconstruction errors. For this, we derive two objective

functions that explicitly handle the reconstruction errors.

The key ideas are that 1) we blur the images to evaluate

the consistency in a coarse level, and that 2) we can find the

ground truth surface normal around the estimated one that

almost exactly satisfies the radiometric consistency and use

it for rendering. Please see the supplementary material for

further details.

3.4. Whole 3D shape Recovery

Our nLMVS-Net can recover per-pixel surface normal

and depth of a reference view image from 5 input view im-
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Figure 6: Our new multi-view real object image dataset,

nLMVS-Real, consists of radiometrically and geometrically

accurately calibrated 2569 multi-view images of 120 com-

binations of 5 shapes, 4 materials, and 6 illumination envi-

ronments.

ages. If we have a set of such multi-view images that col-

lectively cover the entire object (typically 10 images) taken

while moving around an object on a plane, we can recover

the whole 3D object geometry by applying nLMVS-Net to 5

images each while each image becomes the reference view,

after which we integrate all depth and surface normals. Dur-

ing the alternating estimation of geometry and reflectance,

we can use all the images together to update a single re-

flectance estimate. In the geometry estimation, for each

view, we select four neighboring views (2 to the left and 2 to

the right for a typical 360◦ capture on a plane) as inputs to

nLMVS-Net. In the reflectance estimation, we compute the

objective function introduced in Sec. 3.3 for each view and

minimize the sum of them. We then reconstruct a 3D mesh

from the estimated depth and surface normals by convert-

ing them into oriented points and applying Poisson surface

reconstruction [20].

4. Experimental Results

We evaluate the effectiveness of nLMVS-Net through

extensive experiments using both synthetic and real images

of objects of different shapes and reflectances taken in a va-

riety of illumination environments. For this, we introduce

novel large-scale synthetic and real datasets, which we refer

to as nLMVS-Synth and nLMVS-Real, respectively.

We first report that the Multiview Objects Under Natu-

ral Illumination Database [28] contains clear flaws in image

capture including saturation, glare, and poor geometric cal-

ibration (please see the supplementary material for details).

For this reason, numerical results on this dataset do not ac-
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Figure 7: Ablation study on our shape-from-shading sub-network (“w/o SfS”) which constructs a cost volume from multi-

view image features without leveraging radiometric cues as per-pixel probabilistic surface normal likelihoods. For each

result, we show the estimation errors as a color map. The results clearly show that the shape-from-shading sub-network is

essential to handle textureless, non-Lambertian objects.

Depth Normal

RC-MVS [6] 5.76 % -

MVSNeRF [7] 5.59 % -

CVP-MVS [37] 4.16 % -

IDR [41] 1.11% 11.0 deg

w/o SfS 1.12 % 11.2 deg

Ours 0.94 % 9.8 deg

(a) From 5 Views.

Mesh

NeRS [44] 0.63 %

PhySG [45] 0.61 %

IDR [41] 0.25 %

Ours + PSR [20] 0.38 %

(b) From 10 Views.

Table 2: (a) Mean errors of the estimated depths and surface

normals on the nLMVS-Synth dataset. The results clearly

show the effectiveness of our method. (b) Mean error of 3D

mesh models recovered from 10 view images. Even though

we recover the mesh models by simply applying Poisson

surface reconstruction (PSR) [20], our results are quantita-

tively comparable to the state-of-the-art methods.

curately reflect superiority of any method. This problem has

been communicated with the authors of [28] and confirmed

by them. In fact, one key contribution of our paper is the

introduction of a new and a more extensive and accurate

dataset that can replace this dataset. Radiometrically and

geometrically accurate image capture for such dataset re-

quires meticulous calibration and painstaking efforts in ac-

tual capture. Our new dataset (nLMVS-Real) would likely

serve the community for a broad range of research on ap-

pearance modeling.

nLMVS-Synth Dataset We rendered a large number of

training and test images of synthetic shapes [36, 24, 31, 5],

measured BRDFs [26], and captured illumination maps

[42, 12, 10, 23]. For training, we synthesized images of

2685 combinations of different shapes, materials, and illu-

minations. For each combination, we rendered images of

randomly sampled 10 views. In total, the training set con-

sists of 26,850 images. We also rendered a separate set of

images for testing which consists of 4320 multi-view im-

ages of 216 different combinations of 6 shapes, 6 materials,

and 6 illuminations. For each combination, we sampled 20

views on the horizontal line at equal intervals and added

perturbations to them in the horizontal and vertical direc-

tions.

nLMVS-Real Dataset Figure 6 shows example images

from our new nLMVS-Real dataset. We captured approxi-

mately 20 HDR images at three different heights for each of

all combinations of 5 shapes, 4 materials, and 6 illumination

environments. We also captured illumination maps using

RICOH THETA Z1. The objects are replicated using a 3D

printer and painted with different materials. Ground-truth

3D mesh models are available for quantitative evaluations.

Baseline Methods We compare our method with CVP-

MVSNet [37], MVSNeRF [7], and RC-MVSNet [6] which

also handle sparse (i.e., 3 or 5 view) inputs. We could not

directly compare our method with Kusupati et al. [22] as

their network is trained to recover depths and normals for

the entire scene rather than a single object. Instead, we com-

pare our method with ours “w/o SfS” (without shape-from-

shading) that constructs a cost volume only from multi-view

image features similar to Kusupati et al. [22]. We also com-

pare our method with IDR [41], a neural image synthe-

sis method that recovers surface geometry from relatively

sparse (i.e., typically 50 and 11 at minimum) view inputs.

Evaluation Metrics We measure the accuracy of the re-

covered depth and surface normals with mean absolute er-

rors. For depth error, the scale of the object is normalized

such that the diagonal length of its bounding box is 1.

4.1. Results on Synthetic Data

Accuracy of the Shape-from-Shading Network We first

evaluate the accuracy of the proposed shape-from-shading

network. Ground-truth BRDF was used to compute the in-

put surface normal likelihood; i.e., we assume that the ob-

ject’s reflectance is known. The error between the ground-

truth surface normals and those estimated to have the high-

est probability was lower than 10 degrees for 83% of all pix-

els. This is comparable to the accuracy of existing shape-

from-shading methods such as Johnson and Adelson [17]

and the single-view method of Oxholm and Nishino [29].
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Figure 8: (a) Recovered depths, surface normals, and whole 3D shape (mesh models) from our nLMVS-Real dataset. Please

see supp. material for more results. Letters on the left denote different illumination environments. Our method successfully

recovers accurate geometry for a wide variety of real-world objects. (b) Estimated BRDFs under “Court” illumination.

Please see supp. material for all results. The results are consistent across estimation from images of different shapes, which

demonstrates the accuracy of our method.

Joint Shape and Reflectance Estimation Results Fig-

ures 1 and 7, and Tab. 2a show qualitative and quantita-

tive results. While existing methods and our method with-

out the shape-from-shading cues (i.e., “w/o SfS”) fail on

non-Lambertian and textureless objects, our method suc-

cessfully recovers both depths and surface normal for these

challenging objects. For 93 % of all input images, mean

depth and surface normal errors were lower than 2 % and

19 degrees, respectively. These clearly show the effective-

ness of our method. Please see the supplementary material

for more results and ablation studies.

Accuracy of the Whole 3D Shape Recovery We can also

recover 3D mesh models from our depth and surface normal

estimates of 10 views (Sec. 3.4) and compare the results

with those of neural image synthesis methods [44, 45, 41].

For this experiment, we used 10 views uniformly sampled

from the original 20 views of the nLMVS-Synth dataset.

We evaluate the reconstruction accuracy with root-mean-

square (RMS) of the distance from a point on the recon-

structed mesh to the nearest point on the ground truth mesh.

Table 2b shows quantitative results. Even though we re-

cover the mesh models by simply applying Poisson surface

reconstruction [20], our results are quantitatively compara-

ble to the state-of-the-art methods. Please see the supple-

mentary material for qualitative results.

4.2. Results on Real Data

Figure 8a shows qualitative results of the recovered ge-

ometry on our nLMVS-Real Dataset. The results are of high

quality even for complex shapes. Mean depth and surface

normal errors were 2.01 % and 13.6 degrees, respectively.

For 70 % of all input images, depth error was lower than

2 % and surface normal error was lower than 17 degrees.

Figure 8b shows several of the estimated BRDFs. The es-

timates are consistent across different shapes. Note that

ground truth BRDF of the real materials cannot be easily

acquired.

As we make several assumptions about the objects and

the capturing setup (e.g., homogeneous material and dis-

tant illumination), the estimation accuracy would decrease

for large deviations from these assumptions. Nevertheless,

as the experimental results show, our method successfully

recovers geometry and reflectance from real-world images

that do not strictly satisfy them, which demonstrates the ro-

bustness of our method.

5. Conclusion

In this paper, we introduced nLMVS-Net, a neural multi-

view stereo network that can recover both depth and surface

normal at each pixel in the reference view for objects with

complex reflectance taken under known but natural illumi-

nation. The method integrates radiometric cues in the form

of view-independent surface normals recovered with a ded-

icated network into depth and surface normal cost volume

filtering. By canonically modeling uncertainties of the sur-

face normals, they provide rich cues for accurate geome-

try recovery. Experimental results clearly demonstrate the

effectiveness of nLMVS-Net including its accuracy in re-

covering the complex reflectance of real-world objects. We

believe nLMVS-Net can serve as a useful practical means

for passive geometry recovery in the wild.
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