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Abstract

In this paper, we introduce 3D-GMNet, a deep neural network for 3D object shape re-
construction from a single image. As the name suggests, 3D-GMNet recovers 3D shape
as a Gaussian mixture. In contrast to voxels, point clouds, or meshes, a Gaussian mixture
representation provides an analytical expression with a small memory footprint while
accurately representing the target 3D shape. At the same time, it offers a number of
additional advantages including instant pose estimation and controllable level-of-detail
reconstruction, while also enabling interpretation as a point cloud, volume, and a mesh
model. We train 3D-GMNet end-to-end with single input images and corresponding 3D
models by introducing two novel loss functions, a 3D Gaussian mixture loss and a 2D
multi-view loss, which collectively enable accurate shape reconstruction as kernel den-
sity estimation. We thoroughly evaluate the effectiveness of 3D-GMNet with synthetic
and real images of objects. The results show accurate reconstruction with a compact
representation that also realizes novel applications of single-image 3D reconstruction.

1 Introduction

Single-view 3D shape recovery finds many applications in a wide range of domains includ-
ing robotics, mixed reality, and graphics. Image-based 3D reconstruction is, however, a
fundamentally ill-posed problem due to the inherent loss of dimensionality through im-
age projection. Past methods have leveraged constraints arising from projective geome-
try [1, 26, 27, 35], radiometric surface properties [2, 3, 12], and optical imaging proper-
ties [8, 20] to arrive at unique 3D reconstructions. For the even more underconstrained
single-view 3D shape recovery, recent works have shown that convolutional neural net-
works (ConvNet) can be trained end-to-end to impose effective priors for accurate recon-
struction [6, 7, 14, 17, 31].

Past methods on single-view 3D shape reconstruction have chiefly employed conven-
tional representations of geometry: point clouds, volumes, and mesh models. Each of these
representations have their pros and cons. Point clouds are simple enough to learn their map-
ping from single images [7, 14, 17], but they lack topological (surface) information. Vol-
umes are straightforward to train and infer with 3D ConvNets [6, 34]. Their resolution is,
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Figure 1: We introduce 3D Gaussian Mixture Network (3D-GMNet) for single-view 3D
image-based reconstruction. From a single image, the network recovers object shape as
a 3D Gaussian mixture which is extremely compact, integrates properties of conventional
geometry presentations, and offers additional benefits for novel applications. In this figure,
the object shapes are represented with 256 Gaussians.

however, limited in practice due to the inherent cubic memory cost. Although, in contrast,
meshes efficiently represent object surfaces [7, 15], the non-parametric 2D representation
makes constraining and reconstructing occluded sides of general objects challenging.

In this paper, we derive a novel method for recovering 3D shape from a single image
as a Gaussian mixture. As depicted in Fig. 1, our key contribution lies in enabling the re-
construction of the whole 3D geometry of an object from its single-view observation as a
compact, analytical model that can be sampled as a point cloud, interpreted as a volume, and
distilled into a surface. We train a ConvNet to learn this mapping from an image to a Gaus-
sian mixture end-to-end by formulating 3D shape recovery as kernel density estimation. The
3D Gaussian mixture shape representation significantly reduces memory footprint compared
to volume-based occupancy estimation approaches [6, 34] while providing a straightforward
means for defining the surface unlike unstructured point cloud representations [7, 14]. Also
in sharp contrast to mesh-based shape representations, the Gaussian mixture model enables
the network to adaptively refine the shape topology.

Two recent works have demonstrated the advantages of representing 3D geometry as a
Gaussian mixture, purely as a generator [13] or from an input 3D mesh model [9]. Most
closely related to our work, Genova et al. also demonstrated its use for single-view 3D shape
recovery through network distillation [9]. Their representation is, however, inherently con-
strained to consist of axis-aligned 3D Gaussians, which fundamentally limits the ability to
approximate general objects that can have angled structures. Our method is not limited to
axis-aligned Gaussian mixtures, hence not bound to carefully axis-aligned objects. Further-
more, our 3D shape recovery is achieved in the viewer-centric coordinate system, i.e., the
output shape is in the camera coordinate frame, which greatly expands the general applica-
bility of the method, and also enables applications such as pose estimation.

We derive a deep neural network which we refer to as the 3D-GMNet that learns to
output a set of parameters of a Gaussian mixture shape model that explains the input image
and associated 3D model at training time. We propose two novel loss functions to train 3D-
GMNet end-to-end. The first is the 3D Gaussian mixture loss, which evaluates the accuracy
of the estimated Gaussian mixture shape model with regards to the target 3D shape. This is
achieved by maximizing the likelihood of the Gaussian mixture which in turn is evaluated
by considering the target 3D points as samples from the true distribution. The second is the
2D multi-view loss that evaluates the accuracy of the 2D projections of the Gaussian mixture


Citation
Citation
{Fan, Su, and Guibas} 2017

Citation
Citation
{Kato, Ushiku, and Harada} 2018

Citation
Citation
{Choy, Xu, Gwak, Chen, and Savarese} 2016

Citation
Citation
{Wu, Wang, Xue, Sun, Freeman, and Tenenbaum} 2017

Citation
Citation
{Fan, Su, and Guibas} 2017

Citation
Citation
{Jiang, Shi, Qi, and Jia} 2018

Citation
Citation
{Hertz, Hanocka, Giryes, and Cohen-Or} 2020

Citation
Citation
{Genova, Cole, Vlasic, Sarna, Freeman, and Funkhouser} 2019

Citation
Citation
{Genova, Cole, Vlasic, Sarna, Freeman, and Funkhouser} 2019


K. YAMASHITA, S. NOBUHARA, K. NISHINO: 3D-GMNET 3

to random viewpoints against the true silhouettes, i.e., the projections of the ground truth 3D
shape to the same viewpoints. We show that these 3D and 2D losses work hand-in-hand to
estimate accurate and effective Gaussian mixtures for general objects.

We conduct extensive experimental validation of the effectiveness of 3D-GMNet using
images of both synthetic and real objects. We also demonstrate the advantages of the esti-
mated 3D Gaussian mixture shape model over conventional geometry representations both
qualitatively and quantitatively. Most important, we show that the reconstructed shape model
is compact as it only requires the 3D mean and covariance for each mixture component. In
addition, it admits a number of direct favorable applications, including controlled level-of-
detail reconstruction via Gaussian mixture reduction, pose estimation, and distance mea-
surement. The results show that 3D-GMNet achieves accurate single-image shape estima-
tion with a representation that opens a new avenue of applications of image-based geometry
reconstruction.

2 Related Work

Shape Representation Learning-based 3D shape estimation studies can be categorized by
their shape representations: voxels [6, 34], point clouds [7, 14, 19], patches [10], mesh mod-
els [15, 31], primitive sets [9, 13, 21, 23, 29], and learned functions [18, 22]. Wu et al. [34]
discretize the target 3D shape into a 128 x128x 128 voxel grid and their neural network es-
timates the occupancy of each voxel. This is a memory-intensive approach, although it can
handle 3D shapes of different topology in a unified manner. Lin et al. [17] propose a network
that estimates multi-view depth-maps from a single image. Groueix et al. [10] represents the
target 3D shape by a collection of 3D patches. Although memory efficient, fusing multi-
ple depth-maps or multiple patches into a single watertight 3D shape remains challenging.
Mesh-based approaches [15, 31] can make use of local connectivity of the 3D shape. Han-
dling different topologies, however, becomes an inherently challenging task with meshes.
Primitive-based approaches [21, 23, 29] represent the target 3D shape as a collection of sim-
ple objects such as cuboids or superquadrics. They can realize a compact representation of
the target volume, but cannot represent smooth and fine structures by definition. Mescheder
et al. [18] train the network as a nonlinear function representing the occupancy probability
of 3D object shape. Although highly scalable in resolution, it is a computation-intensive
approach since the network should infer the probability for each and every sample. Saito et
al. [25] use Pixel-aligned Implicit Function to improve memory efficiency albeit specifically
for human body shape recovery. Unlike these methods that recover a sampled volume of
an implicit function, we recover the parameters of an analytical implicit function, which is
much more memory and computation efficient.

Our Gaussian mixture-based representation has the advantages of these conventional
shape representations. It models not only the surface points but also the interior of the vol-
ume, with an efficient parameterization, i.e., a set of Gaussian parameters, and can generate
a watertight 3D surface of arbitrary resolution as its isosurface. It can be considered as a
probability density approach with Gaussian distributions, and also as a primitive-based ap-
proach with Gaussians as primitives. Additionally, in contrast to cuboid-based approaches,
our shape representation can realize 3D registration with a simple canonical algorithm.

Neural Networks for Mixture Density Estimation Mixture density network [4] is a method
to predict a target multimodal distribution as a mixture density distribution. Bishop [4] in-
troduced this network architecture with isotropic Gaussian basis functions. Williams [32]
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Figure 2: 3D-GMNet is trained end-to-end by finding a Gaussian mixture that best repre-
sents the volume point cloud associated with the input image while also minimizing the
discrepancy in their multi-view projections.

extended it to utilize a general multivariate Gaussian distribution as the basis function. As
described in Sec. 3.2, our density estimation network is inspired by these works.

3 3D Gaussian Mixture Network

Figure 2 shows an overview of our 3D Gaussian Mixture Network (3D-GMNet). Given a
2D image of an object, our 3D-GMNet estimates a set of parameters that defines a Gaussian
mixture that best represents the 3D shape of the object in the input image.

3.1 3D Shape as A Gaussian Mixture

Our key idea is to consider the target 3D volume as a collection of observations of a random
variable with a Gaussian mixture distribution. Suppose a ground-truth 3D shape is given as a
volumetric 3D point cloud. We assume that this 3D point cloud samples the object volume,
which can easily be computed from the 3D models from the training data. As such, we may
regard them as voxels, too. Each one of the voxels is a sample of the random variable, and
our goal when training the network is to estimate a 3D Gaussian mixture distribution that
describes these samples best.
A 3D Gaussian mixture distribution is defined as

fom(x Zm (x[p;, %), (1)

where K is the number of mixture components and {7;} are the mixing coefficients that sum
to 1, and each component ¢ (x|, Y ) is a 3D Gaussian with mean p and covariance ¥. Note
that the covariance matrix is not limited to be diagonal. Gaussian mixtures can approximate
various kinds of distributions with an appropriate K. 3D-GMNet is trained to output the
parameters of fgu from a single input image.

Once the density function fgm(x) is obtained, in addition to sampling a 3D point cloud
or viewing it as a volume, we can extract the 3D object surface. Assume that we knew the
volume of the object V, though it is not available in reality. The object surface is given as the
isosurface of the density at T = ¢/V, where ¢ decides the level of thresholding. We approx-
imate the unknown 1/V by the expectation of the density that can be computed analytically
in closed-form

fGM /fGM de Zzﬂlﬁj X—ﬂl“l./,z +Z ) @

i=1j=1



K. YAMASHITA, S. NOBUHARA, K. NISHINO: 3D-GMNET 5

since E[fom(x)] = % holds if fgm(x) is identical to the true distribution f(x). The parameter
¢ is determined experimentally in the evaluations in Sec. 4. By thresholding the target space
with this value, we obtain the volumetric representation of the 3D shape, which can then be
converted to a surface model using the marching cubes algorithm [16].

3.2 Network Architecture

3D-GMNet outputs a set of parameters of a Gaussian mixture {7;, [Ji,Z,-}lK . As depicted
in Fig. 2, the network has an encoder module to predict these parameters and a projection
module to render multi-view 2D silhouettes. The encoder consists of 5 convolutional layers,
5 max pooling layers of kernel size 2, and 3 fully-connected layers. Each of the convolution
layers is followed by a batch normalization layer and a leaky ReLU activation layer. Each
fully-connected layer except the last one is followed also by a leaky ReLU layer.

After these layers, we introduce an output layer tailored for Gaussian mixture parameters
to enforce constraints to make it a valid probability density function [4, 32]. The mean {u;}
should be a 3D position in Euclidean space g; € R?, and we use an identity mapping for
W; as u; = ay,, where ay is the corresponding output of the last layer. To ensure that the
coefficient {m;} sum to 1, the output layer applies softmax activation.

The precision matrix Zf' of a Gaussian component should be a symmetric positive def-
inite matrix, and can be decomposed as Zi_l = LL" using Cholesky decomposition where L
is a lower triangular matrix. Thus our network predicts L = {/;;} instead of ¥, ! where

alij i> j7
lij = explay;) i=j, 3)
0 otherwise,

where a;;; is the corresponding output of the last layer. Notice that this enforces /;; to be

positive so that the mapping from L to Zf] is bijective.

3.3 3D Gaussian Mixture Loss

We provide 3D shape supervision at training time as voxels. To quantitatively evaluate the fit
of the estimated Gaussian mixture to these voxels, we use the Kullback-Leibler (KL) diver-
gence, which amounts to minimizing the cross entropy — [ p(x)logg(x)dx. By considering
the target voxels as observations from the true distribution, we can compute this efficiently
with Monte Carlo sampling

Lip =~ ¥ log fom(x), )
|P | xeP
where fom(x) is the output of our network, x € P is a sample from the target density f(x)
and |P| is the number of sampled points. For training, we randomly sample a fixed number
of 3D voxels from the original target voxels for each mini batch.
We also introduce a loss that encourages Gaussian components to be distributed within a
distance T from the object center

K

1
Laise = + Y {ReLU(|,| - T)}* . o)
i=1

In our experiments, we use 7 = 0.85 to cover the entire object space.
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3.4 2D Multi-view Loss

The 3D loss is not sufficient to recover accurate geometric shape, especially for general
objects that can have thin, angled structures. For this, we also leverage 2D projections of
the 3D shape and derive a differentiable 2D multi-view loss that evaluates the consistency of
object silhouettes.

To generate a silhouette of a 3D Gaussian mixture of Eq. (1), we use para-perspective
projection[ 1 1] for each mixture component since it projects a 3D Gaussian as a 2D Gaussian.
As a result, we obtain a 2D Gaussian mixture as a projection of our 3D Gaussian mixture
shape representation. Note that perspective projection does not result in a Gaussian due to its
nonlinearity. We can derive the para-perspective projection of a 3D Gaussian mixture (see
supplementary material for details)

K
d(x) =Y mop(x|u, %), (©6)
i=1

where ¢,p(-) denotes a 2D Gaussian of the form

1 1

bl ) = — L exp (—g<x|u’,z’>) , @
2m|E|2 2

Sl D) = (x— 1) S (x— ). ®)

This para-perspective projection is differentiable and denoted as the projection module in
Fig. 2. Thanks to this analytical expression of the 2D projection we can directly evaluate
the discrepancy with the projection of the predicted shape, unlike methods that rely on 2D
kernel density estimation of projected point clouds [19].

We generate a pseudo soft silhouette §(x) from Eq. (6) to evaluate the consistency of
the projected 2D Gaussian mixture with the ground-truth silhouette s(x) € [0,1]. Given a
random sampling of Q points from the 2D probability density function d(x) of Eq. (6), the
probability of observing at least a point out of the Q points at a pixel position x is given by

§(x)=1—{1—d(x)}2. )

By approximating the silhouette generated from the probability density function by this §(x),
we can define an L2 loss

La(3(x),5(x)) = ¥ 506) s}, (10)

as our silhouette loss. In the experiments, we determined Q using validation data. In training,
we use 4 random viewpoints to evaluate the 2D multi-view loss.

4 Experimental Results

We first describe data and metrics used for our experiments and then detail quantitative eval-
uation on synthetic and real images. In addition, we demonstrate 3D pose alignment and
automatic level-of-detail shape recovery using 3D-GMNet.
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Data For quantitative evaluation, we use 3D models in ShapeNet[5]. Each 3D model in
ShapeNet has a polygon CAD model and its volume data. For each polygon model, multi-
view RGB images are rendered from random 100 viewpoints at a unit distance from the
model using a tessellated icosahedron. To normalize the apparent size of the model in the
rendered images, the distance is adjusted on a per-model basis as the diagonal size of the
object bounding box. The virtual camera is configured as 128 x 128 resolution and 68°
field-of-view. We train and evaluate our network for 4 object categories, namely Chair,
Car, Airplane and Table. For real images, we evaluate our method using real chair images in
Pix3D Dataset[28]. We remove images in which the object is partly in the image or occluded
by other objects for simplicity. Occlusion handling will be addressed in future work. We
resize and crop images using manually annotated 2D masks.

Following [28], we use three metrics for evaluation: intersection of union (IoU), earth
mover’s distance (EMD), and chamfer distance (CD). IoU evaluates the coverage of the es-
timated volume w.r.t. the ground truth volume, using voxelized Gaussian mixture. Higher
IoU means better reconstruction results. EMD and CD evaluate geodesic and shortest dis-
tances between two surfaces via point clouds sampled on them, respectively. As described in
[28], we uniformly sampled points on the estimated and the ground truth surface to generate
a dense point cloud, and then randomly sampled 1024 points from the point cloud. They
are scaled to fit a unit cube for normalization for EMD and CD calculation. We used the
implementation by Sun et al. [28].

Training Parameters We use the Adam optimizer with learning rate of 10~*. The mini
batch size is set to 64. Training loss is averaged in each mini batch. We use 80% of the 3D
models in ShapeNet for training, 10% for validation, and the rest for testing.

4.1 Single-Image 3D Reconstruction

Fig. 3 shows predicted 3D models. Given the single input image 3D-GMNet estimates the
object shape as a 3D Gaussian mixture, which is rendered from two novel views as a mesh
model. The renderings from the novel views demonstrate qualitatively that the proposed
3D-GMNet can estimate the full 3D shape including thin, angled structures accurately.

Contribution of 2D Multi-View Loss Table 1(a) shows shape reconstruction accuracy
using only the 3D Gaussian mixture loss (3D) and also with the 2D multi-view loss (MV).
Fig. 4 shows silhouettes of reconstructed 3D shapes with and without the 2D multi-view loss.

3D-

3D- Marr Atlas .
PSGN  VAE- DRC Pix3D
3D 3D+MV R2N2 7] GAN [30] Net Net [28] Ours
[6] [33] [34] [10]

CD |0.0866 0.0842||0.239 0.200 0.182 0.160 0.144 0.125 0.119 |0.130
EMD | 0.0923 0.0889 || 0.211 0.216 0.176 0.144 0.136 0.128 0.120 |0.129
IoU 0466 0.482(|0.136 N/A 0.171 0.265 0.231 N/A 0.287 |0.259

(@ (b)
Table 1: (a) Reconstruction accuracy only using the 3D Gaussian mixture loss (3D) and also
with the 2D multi-view loss (3D+MV). The 2D multi-view loss increases reconstruction ac-
curacy. (b) Accuracy of single image 3D reconstructions using real images in Pix3D dataset
as reported in [28]. 3D-GMNet (Ours) achieves accuracy comparable to state-of-the-art but
with significantly smaller memory footprint and flexible representation.
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Figure 3: Class-specific single-image 3D reconstruction for 4 object categories with K =256
Gaussian mixture shown as surface meshes from two novel views. 3D-GMNet accurately
recovers complex shape including angled and thin structures.

These results clearly show that the silhouette loss reduces 3D shape reconstruction errors and
enables recovery of complex geometric structures.

Number of Gaussian Components Fig. 5(a) shows recovery 3D Gaussian-mixture shape
models using 3D-GMNet with different numbers of mixture components K. We can observe
that though reconstructions with higher K results in a detailed reconstruction, those with
lower K also approximates the 3D shape accurately.

Comparison to Genova et al. Fig. 6(a) shows qualitative comparison of reconstructed 3D
shape of a chair from a single using 3D-GMNet and from its mesh model as shown in Genova
et al. Our reconstruction is not limited to axis-aligned Gaussians, which results in superior
reconstruction even from a single image.

3D Reconstruction from Real Images Fig. 6(b) and Table 1(b) show single-image 3D
reconstruction results with real images in the Pix3D dataset[28]. Note that the training
scheme (trained for a single category or multiple categories, in object-centered manner or
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HEEDOND

Figure 4: Effectiveness of 2D multi-view loss (from left to right, input image, ground truth
silhouette, silhouette of reconstruction without and with the 2D multi-view loss). The 2D
multi-view loss is essential for recovering complex structures such as thin chair legs.
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Figure 5: (a) 3D shapes estimated with different numbers of Gaussian components. Different
color indicates a distinct Gaussian component. (b) Controlled level-of-detail reconstruction.
Results of Gaussian mixture reduction from K = 512 to K = 16,32,...,256. The results
show that we can control the level-of-detail of the reconstruction without altering the network
while maintaining accuracy.

viewer-centered manner) differs for each method. For this, the quantitative comparison is
not necessarily fair. In addition to the several advantages of our shape representation, the
reconstruction accuracy of 3D-GMNet is comparable to the state-of-the-art methods.

4.2 3D Pose Estimation

3D-GMNet recovers the shape in the local camera coordinate system of the input image.
Given two images of a single object from different viewpoints, 3D-GMNet can recover the
3D object shape in two different coordinate systems, which means that we can estimate the
relative pose of the cameras by aligning the estimated 3D shapes. The key challenge for
achieving this pose estimation is the view-dependent assignment of Gaussian components in
the recovered 3D Gaussian mixture. We solve this by aligning the covariance matrices of
Gaussian mixtures from different viewpoints. In the supplemental material, we show that
this can be computed analytically. Fig. 7 shows the alignment results. The results show that
our method can provide reasonable pose alignments without explicit point cloud generation.

4.3 Controlled Level-of-Detail Reconstruction

Fig. 5(b) demonstrates controlling the level-of-detail of shape reconstruction by automati-
cally varying the number of components of the Gaussian mixture shape model. Given an in-
put image (the leftmost column), our network with K = 512 infers a Gaussian mixture repre-
sentation of its 3D shape (the second column). By applying Gaussian mixture reduction[24],
we can obtain different level-of-details of the underlying 3D shape as shown in the second
and the fourth rows. When compared with the 3D shapes estimated by 3D-GMNet origi-
nally trained with the corresponding number of components (the first and the third rows), the
controlled level-of-detail reconstruction yield similar accuracy.
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Figure 6: (a) Left : Input image and output isosurface of our method. Right : Input mesh
and reconstruction result reported in Genova et al. [9]. (b) Reconstructions from real images
in the Pix3D dataset[28] shown as surface mesh models rendered from two novel views.
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Figure 7: 3D pose estimation results. 3D-GMNet enables estimation of relative camera pose
between input images (input2 to inputl).

5 Conclusion

We proposed 3D-GMNet for recovering the 3D shape of an object from its single-view ob-
servation as a Gaussian mixture. We introduced a 3D Gaussian mixture loss and a 2D multi-
view loss to accurate reconstruct the 3D shape from a single image. Experimental results
show that our 3D-GMNet successfully estimates the object 3D shape as a compact Gaussian
mixture that can be sampled and viewed as conventional geometry representations including
point cloud, volume, and mesh model. Extensive experimental validation showed that the
method can recover 3D shape accurately even with a lower number of components, while
maintaining comparable performance with state-of-the-art methods, but with the additional
benefits of this unique shape representation including pose estimation and level-of-detail
control.
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