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Figure 1: We derive a novel method for reconstructing a clothed human body shape that is consistent across frames from videos capturing
a repeatable action from a few viewpoints (a,b). We show the use of reconstructed human body shape for free-viewpoint rendering (c).

Abstract

We introduce a novel method for reconstructing the 3D
human body from a video of a person in action. Our method
recovers a single clothed body model that can explain all
frames in the input. Our method builds on two key ideas:
exploit the repeatability of human action and use the hu-
man body for camera calibration and anchoring. The input
is a set of image sequences captured with a single cam-
era at different viewpoints but of different instances of a
repeatable action (e.g., batting). Detected 2D joints are
used to calibrate the videos in space and time. The sparse
viewpoints of the input videos are significantly increased by
bone-anchored transformations into rest-pose. These vir-
tually expanded calibrated camera views let us reconstruct
surface points and free-form deform a mesh model to extract
the frame-consistent personalized clothed body surface. In
other words, we show how a casually taken video sequence
can be converted into a calibrated dense multiview image
set from which the 3D clothed body surface can be geomet-
rically measured. We introduce two new datasets to validate
the effectiveness of our method quantitatively and qualita-
tively and demonstrate free-viewpoint video playback.

1. Introduction

Image-based 3D human body reconstruction has a wide
variety of applications. For instance, it can enable person-
alization of avatars and product designs, health and fitness
monitoring, and visual media content creation such as free-
viewpoint replay. Deep methods, in particular, have demon-
strated remarkable progress by harnessing the power of
learned priors of the human body structure both in its shape
and articulation. Recent works (e.g., [43]) have shown that
detailed clothed body shape including its unseen side can be
recovered from a single image.

Recovering a person in action from a video is, however,
not as trivial as applying these single-image methods to
each frame as it would result in frame-varying, inconsistent
reconstructions. This shape consistency, i.e., that we ob-
tain a single shape that explains pose-varying body shapes
in all frames, is critical for video-based 3D human shape re-
construction. Without such a consistent 3D human model,
modified geometry (e.g., pose) in one frame will not match
that in another frame let alone what the person would actu-
ally look like.

Consistent 3D human body shape reconstruction from
video is, however, challenging, as it fundamentally requires
simultaneous reconstruction of shape and action. These



two need to be decoupled such that we arrive at a single
3D shape model that explains all articulations of it in all
frames of the video. Kanazawa et al. [24] take a princi-
pled step in this direction by using a statistical shape model
(SMPL [31]) and an adversarial posed-body loss to tame
the wide variability of human body shape and articulation
with learned priors. The results are convincing, but the re-
covered human bodies are inherently naked. Recovering
clothed human body shape with the same approach, how-
ever, is nontrivial as it would entail learning a statistical hu-
man clothed body model whose variation would unlikely
have strong enough structural regularities for even a com-
plex deep network to learn.

In this paper, we tackle the challenging problem of re-
covering a consistent 3D clothed human body model from
a casually taken video of a person in action. We ask, in-
stead of learning structural variations that seems infeasible
for clothed shapes, can we actually “measure” the clothed
body shape? Just from a short video of a person in tempo-
rally changing poses, can we recover one detailed clothed
surface of the person such that it can be posed into every
frame?

We realize this by exploiting the repeatability of actions.
Many actions are repeatable. For instance, sports actions
such as golf swings and baseball pitching can be repeated
with more or less the same body movements. Even if the
body action may not be repeatable as a whole, its atomic
parts such as gesticulation are often repeatable. In fact, the
repetition of body movements has been exploited for 3D
pose estimation in the past [4,30,41]. In contrast, our goal is
to simultaneously recover the dense 3D human body shape
in clothes as well as its frame-by-frame articulation.

The input to the method is a set of videos each capturing
a different instance of the repeated action from a distinct
viewpoint. Such input data can be captured with a single
camera, for instance, by having a friend capture one swing
at a time as she moves around you while you repeat your
batting swing. The video set collectively provides multi-
view data albeit an uncalibrated one. Each sequence is from
a different viewpoint but of a different action instance that
can have spatio-temporal variations in its execution.

Our key idea is to leverage the human body itself to cal-
ibrate this casually captured repeatable action video. We
use the joints and bones of the target person to spatio-
temporally localize the cameras and virtually transform
their frame instances into a dense calibrated multiview set-
ting. We first detect 2D joints in each frame and recover the
3D skeleton of the target while calibrating the cameras spa-
tially (i.e., extrinsic camera calibration) and temporally (i.e.,
temporal alignment of videos across viewpoints). Next, for
each bone of the 3D skeleton model, the camera location
of each frame of each sequence is associated with the bone
and rotated into the rest pose (i.e., T-pose) bone orienta-

tion. Finally, we use geometric contour intersection to ro-
bustly recover the 3D body shape, i.e., geometrically mea-
sure body surface points. To convert these 3D intersections
into a dense body surface, we free-form deform a generic
3D body model. Hands, feet, and face are out of the scope
of this work and are simply replaced with generic shapes.

We demonstrate the effectiveness of our method quan-
titatively on synthetic data and qualitatively on real data
and show comparisons with per-frame learning-based re-
construction as well as related video-based methods. The
results show that the method successfully reconstructs a
pose-consistent 3D surface model faithful to the clothing
and body shape of each target. We also demonstrate its ap-
plication to free-viewpoint video that enables better exami-
nation of, for instance, a sports action, which directly show-
cases practical use of the method. We believe our method,
particularly its ease of capture, opens new avenues of usage
and would find applications in a variety of domains includ-
ing entertainment, communication, and health.

2. Related Work
Multiview Reconstruction Starting from the pioneering
work by Kanade et al. [23], many studies have been pro-
posed for 3D human shape reconstruction from multiview
images. Inspired by early studies on representative recon-
struction cues such as photoconsistency [23] and silhouette
constraints [8,9,33], most past methods combine these cues
to leverage their complementary advantages, e.g., accurate
reconstruction by photoconsistency and robust initializa-
tion by silhouette constraints [11, 21, 29, 45, 49]. While
the majority of such approaches are tailored to indoor en-
vironments, Mustafa et al. [34] proposed an outdoor cap-
ture pipeline using synchronized and calibrated multiview
cameras. These methods realize frame-wise 3D reconstruc-
tion of arbitrary body shapes. Because of their bottom-up
and data-driven nature, they can reconstruct humans with
additional items [23] and humans wearing complex cloth-
ing [45]. In these approaches, up to 100 synchronized cam-
eras are used [45].

Single-Image Reconstruction Since estimating the 3D
shape from its single 2D projection is an ill-posed problem,
single-image reconstruction methods rely on prior knowl-
edge of the target 3D shape. The use of a dedicated 3D
shape model, i.e., a 3D scan of the target itself, is a sim-
ple but effective means to build such priors [13, 48]. These
methods deform a 3D shape of the target such that pho-
toconsistency and silhouette constraints from sparse mul-
tiview cameras are satisfied.

Owing to the proliferation of 3D scanners and RGB-D
sensors, various 3D human shape datasets and statistical
3D human models have been introduced [1, 3, 7, 14, 31, 37].
These statistical human 3D models allow single-image 3D
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Figure 2. Overview of our approach. From a set of videos each capturing a different instance of a repeated action from a distinct viewpoint
(a), we simultaneously recover human pose sequences, camera parameters, and temporal alignment (b). The 3D bones serve as anchors to
the (bone-relative) viewpoint of each frame in each of the videos of different camera locations (each cone in distinct color, respectively)
(c). These bone-anchored relative cameras are transformed into a common coordinate frame, which is used to construct a visual hull for
each body part (d). A generic body surface model is free-form deformed to fit these visual hulls, resulting in a consistent clothed 3D body
shape mesh model of the target person that can be rendered from a novel viewpoint with and without textures (e,f).

estimation, including silhouette-based [12, 18] and joint-
based [6] approaches. Recent advances in deep learning
also enabled single-image 3D shape estimation methods
[19, 22, 24, 26, 27, 36, 42, 43, 47, 51] that implicitly encode
the statistical knowledge on the 3D human shape and pose
in neural networks. For example, Xiang et al. [51] intro-
duced a method for monocular 3D human shape estimation
including face and hands, and Saito et al. [42, 43] intro-
duced a single-image clothed body estimation method and
its extension to multiview inputs. Garau et al. [17] utilized
this single-image approach for extrinsic camera calibration
by estimating the relative posture between 3D shapes re-
constructed at each view capturing the same target syn-
chronously.

Repeating Motion As well known for static shape recon-
struction, a moving camera orbiting around the target or a
stationary camera capturing the target rotating in front of
it can also provide multiview data for stereo or silhouette-
based 3D reconstruction [2, 38, 44, 50]. Alldieck et al. [2]
introduced 3D human body shape estimation from a single-
view video by capturing a person in a static pose rotating in
front of a camera. The method, however, cannot be applied
to dynamic objects as the target would change its shape and
pose.

If the target repeats a periodic motion, e.g., walking,
while being captured, for each frame in a period, we can
find corresponding frames in different periods that capture
the same 3D shape from different viewpoints effectively.
Belongie and Wills used this temporal periodicity for trian-
gulating 3D human joints [4]. Ribnick and Papanikolopou-
los reconstructed 3D trajectory of points of interest by ex-
ploiting the periodicity in 3D [41]. Li et al. proposed an
algorithm that handles moving camera calibration and a-
periodic target motions [30]. Dong et al. synchronize videos
of repeated action using 3D pose estimates from a single

camera, and improves the 3D poses with iterative optimiza-
tion [15]. We show that dense clothed body surface can be
recovered from the repetition of an action as a whole.

3. Repeatable Action

One key idea of our method is to exploit the repeatabil-
ity of human actions. Many actions performed by people,
especially those that may benefit from close examination
afterwards, can be repeated with more or less spatially and
temporally similar body movements. Examples include golf
swings, skateboard tricks, baseball pitches, and soccer shots
for sports, greeting a person, opening and entering a door,
rising from bed, and sitting down on a chair for daily ac-
tions. We call these repeatable actions.

If we capture a repeated repeatable action one instance
at a time from a fixed viewpoint, but from a distinct one
for each instance, we already have sparse multivew data.
We typically use 4 viewpoints. This multivew data is, how-
ever, very sparse and uncalibrated both in terms of the cam-
era locations as well as the actual action of the person as
each repeatable action instance is not exactly the same. We
later show that this sparse multivew uncalibrated data can
be turned into a dense calibrated multivew dataset. If we
capture K instances of a repeatable action each with, on
average, N frames of video, we show that we can obtain
K × N views for each part of the body. That is, we show
how the actual sparse views can be multiplied by tens com-
ing from the number of frames in each video (e.g., 4 views
turned into 360 views with 3 seconds 30fps videos).

Capturing such repeatable action is easy and can be done
in a casual setting as it does not require synchronized simul-
taneous image capture. It can be done with a single camera
moved to different vantage points around a person for each
instance. That can be done by a friend with a phone camera
or even alone with access to a tripod.

We make only two mild assumptions for capturing re-
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Figure 3. (a) We temporally calibrate repeatable action videos by
evaluating and searching for the maximum inlier number of Samp-
son Distance [20] between pose sequences, which is used as the
confidence of hypothesized temporal linear stretch and offset, and
essential matrix (Eq. 1). (b) These confidence values show a clear
global optimum corresponding to the correct spatio-temporal cali-
bration of the videos.

peatable actions. First, we assume that the instances of a
repeatable action vary in temporal duration but not in their
local speeds. That is, we assume that the action can be re-
peated with linear stretches in their overall duration (i.e.,
change in global speed), in addition to of course their start
(i.e., temporal offsets). This is a reasonable assumption as
we capture the same person repeating the same action. Sec-
ond, we assume that the camera intrinsics are known, which
can be easily satisfied by pre-calibrating the camera.

4. Calibration with The Human Body
Given the repeatable action videos, our first step is to es-

timate the camera viewpoints while temporally aligning the
sequences. We achieve this spatio-temporal calibration by
leveraging the human body, in particular, its joints as cali-
bration targets. The human body is unique in that its joints
and bones form a rigid structure that can be articulated. That
is, the relative distances between the joints do not vary as
they move in coordination. We exploit this fact to spatially
calibrate the multiple views and also estimate the temporal
stretch and offsets of the videos.

Spatio-Temporal Camera Calibration We first detect
2D human joints using OpenPose [10]. For each camera
pair that captures, for instance, N frames of J 2D joints,
we have J×N potential correspondences if the frames are
temporally aligned. From these potential correspondences,
we estimate the relative viewpoint of one camera to another
by using the 5-point algorithm [35] on the 2D joints be-
tween the two sequences. We use random sampling con-
sensus (RANSAC) [16] when computing the essential ma-
trix, which implicitly takes care of the spatial variation of
the repeated action across the two sequences.

We temporally calibrate the video sequences by estimat-
ing the offset and linear stretch of each video. As depicted
in Fig. 3, we achieve this by explicitly evaluating the con-

fidence defined as the number of inliers of the estimated
essential matrix for each possible combination of temporal
stretch a and offset b

argmax
a,b

N∑
n

J∑
j

C(xn,k1,j ,xan+b,k2,j , c) , (1)

where xn,k,j is the 2D position of the j-th joint in the n-
th frame n of the k-th video, and C denotes the number of
2D joint pairs whose Sampson distance [20] is lower than a
threshold c for the essential matrix estimated with temporal
stretch a and offset b. By evaluating the temporal align-
ment with sequence-to-sequence scores, we have far more
correspondence points than frame-to-frame scores. In the
experiments, we search for a from 0.7 to 1.3 and b from
−1.5 seconds to 1.5 seconds.

The 2D search in temporal parameter space gives us the
temporal calibration and initialization of the camera pose
and the 3D joints. These frame-wise 3D joints have tempo-
ral noise, and the bone lengths are not necessarily tempo-
rally consistent. We refine 3D joints and camera poses with
bundle adjustment [46]. To account for the spatial varia-
tion (i.e., slight difference of each repetition), inconsistent
bone length, and noisy 3D pose, we formulate bundle ad-
justment with additional regularization. Our objective func-
tion consists of a weighted sum of four terms: reprojection
errors of the 3D jointEreproj, temporal variancesEbone and
left-right symmetry Esym of the bone lengths, and temporal
smoothness of the joint motions Esmooth

Epose =Ereproj + λboneEbone+

λsymEsym + λsmoothEsmooth .
(2)

We define the reprojection error term Ereproj as the sum
of the reprojection error of each of the J joints at all N
frames in K viewpoints:

Ereproj =

N∑
n=1

K∑
k=1

J∑
j=1

‖Πk(Xj,n)− xn,k,j‖2 , (3)

whereXj,n denotes the 3D position of the jth joint at frame
n, Πk(·) projects a 3D point to the kth viewpoint, andxn,k,j

is the 2D position of the jth joint at frame n detected in the
image of the kth viewpoint.

We define the variance of the bone length term Ebone as

Ebone =
∑
b∈B

Varn(Lb), Lb =
∥∥∥Xjb,n −Xj′b,n

∥∥∥2 , (4)

where b ∈ B denotes each bone in the skeleton model, Lb

denotes the length of bone b whose endpoints are jb and j′b,
and Varn(·) denotes the variance over time, i.e., n ∈ [1 :
N ]. Similarly, we define the bone symmetry term Esym as

Esym =

N∑
n

∑
〈b,b′〉∈S

‖Lb − Lb′‖2 , (5)



where 〈b, b′〉 ∈ S denotes each of the symmetric bone pairs
in the model such as, for example, the left and right fore-
arms. The smoothness term evaluates the temporal conti-
nuity of the joint motion by the magnitude of its second
derivative

Esmooth =

N−1∑
n=2

J∑
j

‖−Xj,n−1+2Xj,n−Xj,n+1‖2 . (6)

Consistent 3D Skeleton Once the videos are spatially and
temporally calibrated, we fit a 3D skeleton model (i.e., rep-
resentation of bone length and rotation) to the 3D joints in
each frame to extract a consistent structural model of the
human body across all videos and their frames. We employ
an inverse kinetics model with a penalty term that prevents
impossible joint angles. That is, we optimize the joints of
the 3D skeleton X̂j,n(θ, τ ) parameterized by the joint angle
vector θ of the whole body and global translation parameter
τ by minimizing

EIK,n(θ, τ ) = E3D,n(θ, τ ) + λpriorEprior(θ) , (7)

where E3D,n(θ, τ ) denotes the sum of the distances be-
tween the skeleton joint X̂j,n(θ, τ ) and the corresponding
jointXj,n obtained from Eq. (2) for the n-th frame

E3D,n(θ, τ ) =

J∑
j

‖X̂j,n(θ, τ )−Xj,n‖2 . (8)

Eprior(θ) is the reconstruction loss of a variational au-
toencoder pretrained on the AMASS dataset [32] and λprior
weights its contribution. The reconstruction loss is eval-
uated with the poses inside a temporal window (5 frame)
around the n-th frame. We initialize θ and τ by matching
three joints, the neck and the left and right hip joints, which
we experimentally found to always result in fast and stable
convergence.

Finally, we reduce the remaining spatial discrepancies
between reprojected 3D joints of the 3D skeleton model
and the detected 2D joints in each viewpoint. Using the
fit skeleton model, we absorb the reprojection errors by ad-
justing the skeleton pose for each viewpoint at each frame
by evaluating a reprojection loss specific to the viewpoint k
in addition to the inverse kinematics loss

EIK,n,k(θ, τ ) =E3D,n(θ, τ ) + λreprojEreproj,n,k(θ, τ )

+ λpriorEprior(θ) ,
(9)

where, using camera projection Π,

Ereproj,n,k(θ, τ ) =

J∑
j

‖Πk(X̂j,n(θ, τ ))− xn,k,j‖2 .

(10)
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Figure 4. Bone-anchored camera transformation. A static camera
capturing a bone in motion (a) can be transformed into a bone-
anchored coordinate frame and collectively form a multiview sys-
tem for each body part (b). These bone-anchored camera trans-
forms virtually create a dense multview image capture for each
body part (c) as shown in Fig. 2.

5. Clothed 3D Body Reconstruction
Given the spatially and temporally calibrated repeatable

action videos and the consistent 3D skeleton model that ex-
plains the articulations in each frame of every video, we are
now ready to recover the clothed body surface of the target
person. We achieve this by virtually transforming the sparse
viewpoints of each frame into a common coordinate frame
with a rest-pose body by attaching and rotating each of the
camera viewpoints to each of the bones. This effectively
turns the original sparse multiview data into a dense cali-
brated multiview image set that can be used for conventional
3D geometric measurements. Note that due to the move-
ments of the body, color consistency cannot be assumed and
matching-based multiview methods are not applicable.

Bone-Anchored Camera Transformation Our key in-
sight is to reinterpret an articulated 3D human body in front
of a fixed camera view (Fig. 4 (a)) as virtual cameras an-
chored to static bones of a 3D human body in rest shape
rotating around the body (Fig. 4 (b)). We anchor cam-
eras to the 3D bones and independently transform the 3D
bone into the rest pose along with the cameras that capture
the bone. Virtually duplicated and transformed cameras are
now capturing a single static 3D body in rest pose, just like
in a multiview studio (Fig. 4 (c)).

This means that if we have K repeatable action videos
each with N frames, each of the M body parts will have a
maximum of K×N viewpoints observing its shape in the
common coordinate frame of the rest pose. In other words,
we will have a virtual multiview capture with K×N cam-
eras for each of the M parts. The camera transformation
can be easily computed as the inverse transformation of the
3D bone transformation matrix computed from 3D skeleton
kinematics.

Body Part Visual Hulls Given the cameras transformed
into a common coordinate frame, we can “measure” the
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Figure 5. Sample images in S-RAD, a dataset consists of clothed
3D shapes of human performing repeatable actions. We use S-
RAD for quantitative evaluations of our method.

body shape with well-established multiview methods. We
adopt visual hull reconstruction, known as Shape from Sil-
houette, as it is robust to the appearance changes inherent to
a body in action. Although the majority of the spatial and
temporal variations have already been absorbed, visual hull
reconstruction can result in over-carving by even one frame
of incorrect virtual camera position that can arise from re-
maining pose errors or 2D joint detection errors. To combat
this sensitivity, we automatically select the views used for
visual hull reconstruction. We use the reprojection error be-
tween the 3D joints of the posed skeleton model as well as
the confidence values returned by the 2D joint detector to
select the views.

For each body part, we create a visual hull. Using se-
lected images from transformed virtual cameras as depicted
in Fig. 4 (c), we take an intersection volume of the body part
silhouettes of the images. The visual hull is constructed
based on a grid volume (50×50×50) defined around the
body part of interest, and then converted into a mesh surface
representation [28]. We first create a 3D point grid around
the body part and project the points into each of the selected
images of transformed cameras. 3D points that fall outside
the silhouettes in any of the images are eliminated from the
grid. By limiting the point grid to each body part region
and also by only using selected images of each camera dra-
matically reduces the computation while ensuring detailed
reconstruction of the body surface. Note that this multiview
reconstruction has more or comparable number of cameras
(K×N ) to existing multiview studios with actual cameras
(e.g., 3 to 100 cameras, according to [45]).

3D Body Surface Model We extract a dense body sur-
face model from the visual hulls each representing a set of
point samples of the body part surface in rest pose. For
this, we fit a body surface model to the point samples. Un-
like learned statistical models that can only represent body
shapes within the range of training data, we can freely de-
form the surface model to fit the reconstructed visual hulls
so that they capture the detailed clothed body shape. We di-
rectly optimize mesh vertex positions v ∈ V of the SMPL
model [31] by minimizing the Chamfer loss, the edge loss,
the normal loss, and the Laplacian loss implemented in Py-

Torch3D [40]. The crucial point here is that we have actu-
ally measured the clothed body surface to which we fit the
3D body surface model.

6. Experimental Results

We introduce two new datasets to thoroughly evaluate
the effectiveness of our method: the Real Repeatable Ac-
tion Dataset (R-RAD) and the Synthetic Repeatable Action
Dataset (S-RAD). These two datasets are complementary
in that results on R-RAD demonstrate our method’s perfor-
mance in real-world settings, and S-RAD lets us quantita-
tively evaluate our method and compare with related meth-
ods on ground truth data.

Real Repeatable Action Dataset R-RAD consists of
videos of people repeating natural repeatable actions cap-
tured with tripod-mounted 7 Sony DSC-RX0 cameras run-
ning at 120Hz in a studio (4 for reconstruction and 3 for
testing). The original videos are temporally cut roughly into
individual instances of repeated actions. To produce the ran-
domness of this rough cut, we manually align the offset of
the videos and shift the alignment by uniformly sampled
random values from [−0.5, 0.5] second. Randomness of the
temporal stretch is introduced naturally from the repeated
action. Silhouette is extracted with an existing background
removal method [39]. The simultaneous multiview capture
provides different variations of repeatable action videos and
enables evaluation of reconstruction accuracy on views not
used in the input set. In the following experiments, our
method only uses one distinct view for each repeated in-
stance.

Synthetic Repeatable Action Dataset Fig. 5 shows S-
RAD, a dataset of repeatable action videos of synthetic
humans. As it is nearly impossible to obtain accurate
ground truth 3D surface of a person in action, such synthetic
dataset becomes crucial for rigorous quantitative evaluation.
We combine motion capture data with the MG-dataset [5]
which contains textured mesh and its SMPL registration of
clothed human. Our motion capture data were created from
videos of people performing various repeatable actions cap-
tured from 7 viewpoints. We manually synchronized the
videos and triangulate and optimize joints with a temporal
smoothness term, and fit a 3D skeleton to each frame. This
motion capture data provide 3 repeatable actions each with
8 repetitions. Each instance is spatially and temporally dif-
ferent as the action is performed by a human. We picked 3
models from the MG-dataset and rendered them with these
repeated actions from a different viewpoint. The resulting
dataset allows us to compare reconstructions with ground
truth body surface geometry.
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Figure 6. Qualitative reconstruction results of different subjects performing different actions on R-RAD. We show example frames from
the input videos (left column), the reconstructed mesh (middle column), and the textured mesh (right column). In the middle column, left-
and right-most images are rendered from the viewpoints in the input and overlaid on the input images. The other images are rendered from
novel viewpoints. At the right column, we excluded head reconstruction, which is not articulate and out of the scope of our paper. Since
our reconstruction is registered to the SMPL model, we can substitute these parts with the results estimated by another specialized method.
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Figure 7. Ablation study of the number of views. The more views
we have, the more accurate the reconstruction becomes. In prac-
tice, four viewpoints are sufficient for reasonable accuracy.

Metrics We evaluate the reconstructed 3D pose with the
Procrustes-Analysis Mean Per Joint Position Error in cen-
timeters (PA-MPJPE). We evaluate the reconstructed shape
with the Bidirectional Chamfer Distance (Chamfer) of the
ground truth shape and result in centimeters.

Qualitative Evaluation We qualitatively evaluate the ef-
fectiveness of our method with R-RAD. Fig. 6 shows that
our method successfully reconstructs body shapes in vari-
ous actions and of different subjects. Our reconstructions
accurately overlap the input images and are consistent with
other views. Even though every action is a challenging
pose sequence, the reconstruction result explains the input
frames well.

Ablation Studies We evaluate the effect of varying the
number of viewpoints for repeatable action video capture.

Table 1. Ablation study of pose and shape evaluated on all frames
and all subjects in S-RAD. ↓ means smaller is better. The results
show that the reconstruction improved with our method includ-
ing temporal alignment in the spatio-temporal calibration and view
adapted 3D pose optimization (Eq. 9).

Method PA-MPJPE↓ Chamfer ↓
w/o temporal calibration 4.50 9.82

w/o view adaptation 2.54 6.14
Ours 2.48 5.40

As the number of viewpoints increases, the reconstruction
error decreases. Fig. 7 shows the results. The results show
that 4 viewpoints are sufficient, which is a very small num-
ber for multiview geometry reconstruction. Thanks to the
bone-anchored camera transforms, the effective number of
viewpoints are substantially increased by the number of
frames of each instance sequence, enabling this reduction
in physical viewpoints and thus practical and casual image
capture.

We also conducted ablation studies to evaluate the im-
portance of each step of our method. Table 1 shows the
results. These results clearly show that the temporal and
spatial variations in the repeatable actions are properly ac-
counted for with our spatio-temporal calibration using the
human body and all steps are important for recovering ac-
curate body shape.
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Figure 8. Qualitative comparison with other methods. We render
the resulting shape from a novel view that does not exist in the
input (test view). Our result is geometrically more consistent than
other methods in that one shape matches the image from another
viewpoint. Unlike single-image methods, our method does not
suffer from inherent depth ambiguity.

Table 2. Quantitative comparison of reconstructed pose and shape
(see text for metrics) on sparsely sampled 5 frames of all subjects
in S-RAD. We compare our method with single image and single
video methods. * indicates that the method uses their own clothed
3D shape as training data. Our method outperforms existing meth-
ods, while it does not require any training data of human body
shape.

Method Input Chamfer ↓
PIFu* [42] single image 7.48

DeepHuman* [52] 8.10
HMMR [25] video 7.83

Ours video (repeated action) 4.77
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Figure 9. Evaluation of temporal consistency of the reconstructed
clothed 3D human body shape. We compute the Bidirectional
Chamfer Distance for sparsely sampled 5 frames of pitching ac-
tion in S-RAD, to compare per-frame execution of single-image
methods (PIFu [42], DeepHuman [52]), a video-based method
(HMMR [25]), and our method (Ours). Single-image methods can
reconstruct the shape when the person is in standing-like poses
as they have less ambiguity and are likely closer to poses in their
learning data (first frame). Our method reconstructs a consistent
shape over time.

Comparison with Other Methods Fig. 8 shows qualita-
tive comparison of our method with other methods. Our
method exhibits geometrically accurate shape even from a
different view that does not exist in the input videos. In
contrast, other methods fail to infer or reconstruct the body

shape that explains those in unseen views. Table 2 shows
quantitative comparison of our method with other meth-
ods. Since there is no other method for shape reconstruc-
tion from repeatable action captured with a single camera,
we compare our method with single-image methods. The
results show that our method can accurately reconstruct the
shape. Furthermore, our method does not rely on 3D ground
truth clothed body shape data.

Evaluation on Temporal Consistency Fig. 9 shows the
temporal change of the evaluation score of the estimated
shape. Unlike single-image methods applied separately to
every frame, our method can reconstruct a temporally con-
sistent shape (i.e., a single surface model) that matches the
ground truth articulated shape of every frame.

Outdoor Capture We apply our method to repeatable ac-
tion videos of a person pitching a ball outdoors. As shown
in Fig. 1, our method works with a single camera in an out-
door setting.

7. Conclusion
In this paper, we tackled the challenging problem of con-

sistent 3D clothed human body shape recovery from casu-
ally taken images by fully leveraging the repeatability of
actions and the human articulated body for spatio-temporal
calibration and multivew view expansion. The experimen-
tal results show that the proposed method successfully re-
constructs a consistent clothed body shape that matches all
frames in the video. Each of the key steps builds on well-
established multiview geometry concepts. The main contri-
bution of our framework lies in the very idea of turning a
casually taken video sequence into a fully calibrated mul-
tiview data to achieve body part-based reconstruction so
that these established geometric methods can be exploited
to arrive at an actual measurement of the unique clothed
body shape of the person in the video. Unlike learning-
based methods, our method produces a clothed, consistent
3D human model based on geometric measurements. We
believe our method complements learning-based methods
and clearly demonstrates what purely geometric approaches
can still offer.
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