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We present a method to accomplish photorealistic rendering of real-world objects from their
sparsely sampled appearance variation. Using a 3D model and a small set of images of an object,
we recover all the necessary photometric information for subsequent rendering from arbitrary
viewpoints and under novel lighting conditions. We first extract the diffuse reflection component
from the input images as a texture map, and then use the residual images to simultaneously recover
the specular reflection parameter and the illumination distribution. The simultaneous estimation
of the specular reflection parameter and the illumination distribution is achieved by formulating
the specular reflection mechanism as a 2D convolution on the surface of a hemisphere. We then
run an iterative algorithm to deconvolve it. Rendering from novel viewpoints and under novel
illumination distributions can be accomplished using the estimated three components. Unlike
previous approaches, we require less input images and we do not assume anything to be known
about the three photometric attributes, namely the diffuse and specular reflection parameters and
the lighting condition.

Categories and Subject Descriptors: 1.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color,Shading,Shadowing and Texture

General Terms: Algorithms, Measurement

Additional Key Words and Phrases: Inverse rendering, BRDF estimation, illumination recovery

1. INTRODUCTION

Rendering real-world objects from the observation of their appearance variation,
which we will refer to as re-rendering, has been a major research topic in both com-
puter graphics and computer vision for a while. In order to achieve photorealism,
one can sample the appearance variation of real objects under various viewpoints
and lighting conditions and consider them as samples of the light field. Then,
those sampled points can be interpolated to obtain synthetic images from novel
viewpoints or under novel lighting conditions [Levoy and Hanrahan 1996; Gortler
et al. 1996; Shum and L-W.He 1999]. Furthermore, by knowing the geometry of the
object (say, by using a range scanner), we can consider the measured appearance
variation as samples in the surface light field, which yields better interpolation and
compression schemes to render novel images [Nishino et al. 1999; Chen et al. 2002;
Wood et al. 2000]. As both of these approaches are based on the principle of in-
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Fig. 1. From a small set of images (a) and a pre-acquired geometric model of the target object, we
are able to accomplish rendering from arbitrary novel view points (b) and under arbitrary novel
lighting conditions (c).

terpolation, essentially they require a large number of sample points: they require
the user to take hundreds or thousands of images. Especially when it comes to re-
rendering objects that have high frequency reflection properties, such as specular
reflection, the necessary number of images becomes enormous.

An alternative approach for re-rendering is to explicitly recover the necessary
set of parameters, which is commonly referred to as inverse rendering. In addi-
tion to the geometry of the object, one needs to know the material property of
the object and the illumination distribution to render novel images. The material
property can be described with the Bidirectional Reflectance Distribution Function
(BRDF), which can be further separated into diffuse reflection component and spec-
ular reflection component. Assuming the geometry of the object is known, many
approaches have been proposed to recover the parameters of one or two out of the
three components: diffuse and specular reflection and illumination distribution. If
the illumination distribution is fully provided by careful calibration or is perfectly
controlled, both components of the BRDF can be tabulated [Marschner et al. 2000;
Lu et al. 1998; Dana et al. 1999] or the parameters of specific reflection models
such as that of [Ward 1992; Torrance and Sparrow 1967|, which approximate the
components of the BRDF in a simple analytic form, can be recovered through func-
tional fitting [Marschner et al. 2000; Lu et al. 1998; Dana et al. 1999; Sato et al.
1997; Lensch et al. 2001; Nayar et al. 1990; Debevec et al. 2000; Boivin and Gaga-
lowicz 2001; Ikeuchi and Sato 1991]. If the BRDF does not contain any specular
components and the object is perfectly diffuse, the illumination distribution can
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Fig. 2. The pipeline of our method. We first (1) separate the reflection components
of the input images and store the diffuse reflection component as one texture map,
which we will refer to as the diffuse texture map. Next, by using the diffuse texture
map, we extract the specular images by simple subtraction, and we then (2) derive
a rough estimation of the illumination distribution as a set of point light sources
located on a surface of a hemisphere, which we will call the illumination hemisphere.
Finally, using this initial estimate of the illumination hemisphere, we (3) factor out
the specular reflection parameter and the true illumination distribution through
iterative deconvolution on the surface of the illumination hemisphere. The specular
reflection parameter is the roughness parameter of the Torrance-Sparrow reflection
model.

be estimated as a set of basis functions on a hemisphere exploiting the linearity of
illumination [Marschner and Greenberg 1997; Sato et al. 1999].

Recently, [Ramamoorthi and Hanrahan 2001] have proposed a signal processing
framework for inverse rendering. They formulate the reflection mechanism as a con-
volution in the angular space and accomplish inverse rendering through a spherical
harmonic representation. They provide solutions for two scenarios, (a) where the
spatially varying diffuse reflection (texture) and the lighting location are known
but the spatially homogeneous specular reflection parameter and the radiance of
lighting are unknown, and (b) where the lighting is known but the texture and
the homogeneous specular reflection parameter are unknown. In all the approaches
mentioned above, the problem of recovering all three sets of unknowns from images
have not been tackled.

Ultimately, we would like to let users use their digital cameras to “casually” take
several snapshots of an object and turn those images into an efficient representation
of the object’s appearance which enables them not only to view it from any direction
but also to place it under new lighting conditions. We would like to lessen the
burden in capturing the input images; we would like to reduce the necessary number
of input images; and more importantly, we would not like to measure the material
property of the object surface and the lighting distribution of the environment. In
order to meet this goal, we present a method to recover the necessary parameters
to accomplish subsequent rendering of real-world objects from a small set of images
and a pre-acquired geometric model of the object.

Figure 2 depicts the flow of our method. We extract the necessary information for
re-rendering as the diffuse texture map, the specular reflection parameter (roughness
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parameter of the Torrance-Sparrow reflection model [Torrance and Sparrow 1967])
and the illumination hemisphere. Re-rendering from novel viewpoints and under
novel illumination conditions can be accomplished using these three final estimates
depicted by the yellow boxes in Figure 2.

The key insights are that (a) we do not try to explicitly estimate the diffuse reflec-
tion parameters, since a lighting dependent texture map is enough for subsequent
re-rendering, and (b) we represent the illumination distribution as a set of point
light sources on a hemisphere which enables us to formulate the specular reflec-
tion mechanism as a 2D convolution and successfully deconvolve it on its surface.
We are able to derive a very compact representation to accomplish view-dependent
rendering and relighting of the object and more importantly we recover all three of
the necessary components from a small set of images, typically about ten images,
making the whole system flexible and handy.

In the remainder of the paper, we first clarify the assumptions we make in Section
2. We explain how we separate the reflection components in Section 3. In Section 4,
we will formulate the specular reflection mechanism as a 2D convolution on a surface
of a hemisphere and solve a 2D deconvolution problem to estimate the illumination
distribution and the specular reflection parameter. In Section 5 we present our
results. We discuss limitations of our method in Section 6 and conclude in Section
7.

2. ASSUMPTIONS

In our framework, we make the following assumptions, while trying not to lose the
generality of the scenario that we are considering.

Static high frequency illumination environment, static object and mov-
ing camera

We consider a scenario where the user takes several snapshots of an object while
moving around the object. The object and the light sources do not move during the
image capturing period; only the camera moves. To enable stable recovery of both
the reflection parameters and the illumination distribution, we capture the input
images under high frequency lighting [Ramamoorthi and Hanrahan 2001]: under
point light sources. Also we assume all the light sources have the same color.
Pre-acquired geometry of the target object

We assume we know the precise geometry of the target object. By using a laser
range scanner, we acquire several range images of the target object and go through
the geometric modeling pipeline: 3D-3D registration [Turk and Levoy 1994], inte-
gration [Curless and Levoy 1996] and simplification [Garland and Heckbert 1997].
The final result is a 3D mesh model.

Known intrinsic camera parameters

The camera that is used to capture the input images can be pre-calibrated easily,
using techniques like [Zhang 1999].

Known extrinsic camera parameters

The motion of the camera can be pre-estimated by applying low-level computer
vision techniques: structure from motion, bundle adjustment, etc. In the exper-
iments we conduct, we simultaneously acquire a range image using a light stripe
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range finder [Sato and Inokuchi 1987] as well as capturing color images for each
viewpoint. We then use those range images to estimate the viewpoint via 3D-3D
registration against the mesh model we mentioned earlier.

Homogeneous specular reflectance property

We assume the specular reflectance property of the object surface is the same for all
points on it. Specifically, we assume (Kg, o) and the Fresnel reflectance coefficient
in the Torrance-Sparrow reflection model that we describe in Section 3.1 are the
same for the object surface.

3. REFLECTION SEPARATION

We begin by separating the reflection components in the input images (Figure 2
(1)): the diffuse reflection and the specular reflection.

3.1 Reflection Model

We consider real world objects whose reflection mechanism at their surfaces can be
approximated by a dichromatic reflection model [Shafer 1985; Klinker et al. 1990],
where the reflected light at a surface point is explained as a linear combination of
two reflection components: diffuse reflection and specular reflection. As the image
irradiance (pixel value) can be considered to be proportional to scene radiance [Horn
1986], we will forget about the constant multiplier that relates scene radiance to im-
age irradiance; instead, we will consider that pixel values in the images are directly
associated to scene radiance. Under this assumption, the dichromatic reflection
model tells us:

I=1Ip+1g (1)

where I is the pixel value corresponding to a particular object surface point, and
Ip and Ig denote the diffuse and specular reflection radiance, respectively. Bold
characters denote three-dimensional color vectors, such that I=[Ig I¢ T B]T.
Diffuse reflection can be explained as the result of the light that penetrated into
the object medium and radiated back to the air after internal scattering due to
the small particles in the object surface layer. Because of this internal scattering,
diffuse reflection can be approximated with the Lambertian model [Lambert 1760].
If we consider a local spherical coordinate system with its origin set to the object
surface point in interest, the radiance of diffuse reflection can be described as:

ID = maX[O, KD / L7 (9“ Qﬁl) COS Gldwl} (2)
Q

where K is a three band color vector which is determined by both the light source
color and the surface color. Also, 8; and ¢; denote the altitude and azimuth coordi-
nate of the light source with radiance L;, respectively, and w; denotes the solid angle
of the light source L;. Although recent studies on the diffuse reflection mechanism
have revealed that, when the object surface has a high macroscopic roughness, the
diffuse reflection becomes view-dependent [Nayar and Oren 1995], we assume that
the objects we handle have a diffuse reflection that can be approximated with a
Lambertian reflection model.
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Specular reflection is the light directly reflected at the interface between the air
and the object surface. We use the Torrance-Sparrow reflection model [Torrance
and Sparrow 1967] which is well known to describe the physical mechanism of
specular reflection well with a simple numerical expression [Nayar et al. 1991].
The Torrance-Sparrow reflection model expresses the “lobe” of specular reflection
as light reflected at object surface with microscopic roughness; small V-shaped
grooves which are lined with flat mirrors called micro-facets. The distribution of
the orientations of micro-facets is approximated with a Gaussian distribution as
follows:

KgF 2

Is = [ TS Ll 60 el 55l 3
where K is the color vector of the reflection which accounts for the normalization
factor of the exponential function and the reflectivity of the surface, F' is the Fresnel
reflectance coefficient which depends on the incident angle of the light and the
refraction index of the object, G is the geometrical attenuation factor, @, is the
angle between the viewing direction and the surface normal, « is the angle between
the surface normal and the bisector of the viewing direction and the light source
direction, and o represents the surface roughness.

3.2 Diffuse Texture Map

As we vary the viewpoint with fixed object position and lighting, (8;, ¢;) in Equation
(2) does not vary in the input image sequence. Therefore, it can be easily observed
that the diffuse reflection component at each surface point has a constant value
for all images in the input image sequence and that the pixel value is equal to or
larger than the diffuse reflection color. Hence, we are able to represent the diffuse
reflection with a single RGB color vector for each surface point.

To extract this diffuse reflection vector for each object surface point, we examine
the scene radiance (image irradiance) variation of each surface point throughout
the image sequence, and use the pixel value with minimum magnitude (norm of
the color vector) as the diffuse reflection color. As we have only a few images, and
because the object surface point may be occluded in some of those images, taking
the minimum brightness pixel value is the best strategy we can employ to obtain
the constant diffuse reflection vector. If we do have more images as the input, more
sophisticated strategies may work better, for instance, taking the median value like
Wood et al. [Wood et al. 2000] or fitting a Gaussian distribution to the histogram
of pixel values.

Instead of keeping these diffuse reflection color vectors for each object surface
point, we extract them in a triangular patch-based manner. By considering grids in
each triangular patch of the geometric mesh model, and projecting those grids onto
each input image and extracting the minimum brightness pixel value for each grid
point, we are able to construct a texture map that represents the constant diffuse
reflection. We will refer to this texture map as the diffuse texture map. Note this
diffuse texture map captures the diffuse reflection under the lighting condition of
the input images and is different from an albedo map. We do not try to obtain
an lighting-independent texture map, not only because it cannot be done without
knowing the illumination distribution, but also because we can relight the diffuse
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Fig. 3. Separation of reflection components. (a) original input image, (b) diffuse reflection image
(diffuse-texture-mapped image), (c) specular reflection image.

reflection component without accomplishing this factorization once we recover the
illumination distribution as described latter.

3.3 lllumination Hemisphere

By texture mapping the diffuse texture map for each viewpoint in the input image
sequence (Figure 3(b)) and by subtracting those diffuse-texture-mapped images
from each input image (Figure 3(a)) one by one, we obtain a set of residual images
(Figure 3(c)). These residual images mainly consist of scene radiance resulting
from specular reflection at the object surface and some interreflection and noise
inherited from the diffuse texture map extraction procedure. In our work, we
ignore interreflection and simply consider it as noise. We will refer to these residual
images as specular images.

As described in Section 3.1, the specular reflection approximated with the Torrance-
Sparrow reflection model has an intensity peak slightly off from the perfect mirror
direction: the direction where the surface normal becomes the bisector of the inci-
dent light vector and viewing direction vector. To obtain a rough approximation of
the illumination distribution to be used as an initial estimate for subsequent finer
estimation (Figure 2 (2)), we shoot back each pixel value in each specular image in
the perfect mirror direction and map those values to a hemisphere covering the 3D
object model (Figure 4). The radius of the hemisphere will be pre-determined (We
will discuss on this later). We call this representation of the illumination distri-
bution the illumination hemisphere'. Although we should use a sphere to account
for all the possible illumination directions in general, we use this hemispherical
representation for simplicity in this paper.

The illumination hemisphere generated from each specular image covers only par-
tial regions of the true illumination environment. This is because all light sources
will not necessarily contribute to highlights in each image. Hence, we need to com-

n the figures, the illumination hemisphere is depicted with its projection to its base.
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Fig. 4. We shoot back each specular pixel with regards to its perfect mirror direction to construct
each partial illumination hemisphere.

bine these partial illumination hemispheres to make a full illumination hemisphere
that approximates the real lighting environment. To deal with noise, we make a
separate mask hemisphere that counts how many times each point on the illumi-
nation hemisphere was taken into account while making each partial illumination
hemisphere. We then adopt hemisphere points that have counts close to the total
number of images. Since some light sources may be occluded in some partial illu-
mination hemispheres, we set the threshold less than the total number of images.
Only those points that pass this check will be mapped onto the final illumination
hemisphere; in this case, we take the mean of the intensity values from the partial
illumination hemispheres as the intensity value. This means of consistency checking
also reduces errors in estimating the illumination, e.g., those introduced by 3D-3D
misalignment for viewpoint estimation. These errors are not view-dependent and
would not stay in a particular region on the illumination hemisphere. Interreflec-
tion will also be faded out, since it can be considered to be the reflected light of
moving light sources.

4. ILLUMINATION AND SPECULAR REFLECTION PARAMETER ESTIMATION

Next, using the combined illumination hemisphere and the Torrance-Sparrow re-
flection model, we will decouple the surface specular reflectance property from the
illumination distribution in the specular images (Figure 2 (3)).

4.1 Problem Formulation

First we assume that the object has a specular reflection property that obeys the
Torrance-Sparrow reflection model, except that we assume the refraction index is
constant (1.5 for the later experiments) and use that value to compute Fresnel
reflectance coefficient F'. As we represent the illumination distribution with the
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illumination hemisphere described in Section 3.3, and each point light source’s
position on the nodes of the illumination hemisphere can be parameterized with its
altitude #; and azimuth angle ¢;, the pixel value of surface point v will be,

2
KS v o

Ls(v) = szFlle oLa(Or, é1) expl— o

e 257] (4)

where L; stands for the radiance of each point light source. Also, 6, and « are
still the angle between the viewing direction and the surface normal and the angle
between the surface normal and the bisector of the viewing direction and the light
source direction, respectively, however computed in the global coordinate system
of the illumination hemisphere. w; is the solid angle for each point light source
and becomes equally i,—’; where Ny, stands for the number of nodes in the geodesic
hemisphere.

The color vector direction of the specular reflection is the same as that of the
light source. Thus, if we assume that all light sources in the scene have the same
color, we can concentrate on the relationship between the radiance of the light
sources L; and the image irradiance Is(v). Therefore, we use the average color, L,
of the initial illumination hemisphere as the color of the point light sources. Also,
we assume that the target object has a homogeneous specular reflection property,
so that o, can be represented with one value o. Similarly K, will be represented
with one value Kg. With these assumptions, we can rewrite Equation (4) as,

Is(v) = Is(v)L (5)
21 Kg <& o2
j— S —_— —

Ls(v) = Ny, cosb, ZZ FroGo L expl 202]' (6)

Note that all parameters in Equation (6) are scalar values, and L; is now the
magnitude of the color vector of each point light source placed on the illumination
hemisphere.

Now, we will write the intersection of the line connecting the surface point v and
the viewpoint E with the illumination hemisphere as (0, ¢g), and the intersection
of the vector stemming from the surface point v pointing to the perfect mirror
direction with respect to the surface normal at v with the illumination hemisphere
as (g, ®E.v) (Figure 5). Then, we can rewrite Equation (6) as follows.

4 — (0 v v
Is(v) = NL 0039 Z lleleg (”( D) (2Ev o5, )”) )

where g, is a Gaussian function:

9+(¢) = exp[—7¢?] (8)

From Equation (7), we can clearly see that given a viewpoint E and a surface
point v with its known surface normal, a unique point on the surface of the illu-
mination hemisphere (0 ,, ¢5 ) is determined, and a skewed? Gaussian weighted

2Because of the foreshortening factor etc. in front of the summation. Note, however, this defor-
mation factor is known (can be computed).
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Fig. 5. The angles in Equation (7).

integration on the point light sources surrounding that point is accomplished to
determine the intensity of that surface point v. Note Equation (7) is an approxi-
mation since the relationship between angles in the rectangle of Figure 5 does not
hold when (6;, ¢;) is not coplanar to (0g,¢r) and (0g., dE.»). Hence, in reality,
the Gaussian applied to each point on the surface of the illumination hemisphere
changes its shape from point to point. However, note that we have all the infor-
mation to compute the shape of this filter. Hence, it is worthwhile illustrating the
specular reflection as a convolution on the illumination hemisphere surface which
leads us to the deconvolution algorithm described in the next section. Since K
works as a scaling factor to the result of the integral, we are not able to recover
its actual value. Nevertheless, we can relight the object specifying the new lighting
distribution with intensity values relative to the original. Therefore, we simply set
K, to 1.0. Note, as a result, everything that deforms the pure Gaussian shape is
known, and hence recovering the specular reflection parameter (o) and the lighting
distribution (L; : [ =0,..., N1) simultaneously becomes a 2D blind deconvolution
problem?. The advantage of treating specular reflection as a 2D convolution on
the surface of a hemisphere instead of convolution in angular space [Ramamoor-
thi and Hanrahan 2001] is that we can apply powerful blind image deconvolution
algorithms as we will see in the next section.

4.2 Alternating Minimization

If we view the surface of the illumination hemisphere as an image of point light
sources, we can consider the problem of estimating the lighting distribution and the
specular reflection parameter as an blind image deconvolution problem. To make
the following argument simple, we will describe the surface of the illumination hemi-

3This deconvolution is blind in a sense that we have to estimate the variance of the Gaussian
kernel o as well as the true illumination hemisphere.
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sphere as u(x,y), the convolution filter as h(z,y) and the specular image z(x,y)*.
Then, the task of estimating the reflectance parameters and the true illumination
distribution becomes finding u, h that best describes the following equation,

z=hxu+n (9)

where 7 is the noise mainly added while observing through an imaging system. This
problem is typically referred to as a blind image deconvolution problem, restoring
both the image u and the blurring function h while given only the observed image
z and probably some statistics of the noise 7. The problem is well studied in the
image processing community. The difficulty of solving this blind deconvolution is
that it is ill-posed with respect to the image (the illumination hemisphere) and the
blurring function (the Gaussian of the Torrance-Sparrow reflection model).

Recently, [You and Kaveh 1996] proposed a joint regularization technique to
regularize both u and h to solve this problem:

min f (u, h) = min [|h v - 2|72y + P1R(u) + p2R(h) (10)
where 2 is the domain of v and h, R is the regularization function.

The objective function f(u, h) in Equation (10) as a two-variables function is not
convex and hence can have multiple solutions. [You and Kaveh 1996] observed that,
for a fixed h (respectively u), f( - ,h) (respectively f(u, - )) is a convex function of
u (respectively h) and they proposed the Alternating Minimization (AM) algorithm
which can be run in the following steps.

Given u?:

1. Find minimizer h* of f(u*~!, h) by solving Vj f(uF~1,
2. Find minimizer u* of f(u, h*) by solving V, f(u, h*~1)
3. If not converged, go to 1.

h) =0

0

As for the regularization function, we adopt the Total Variation (TV) norm [Chan
and Wong 1998] which is known to provide faster convergence compared to other
regularization terms such as the H' and preserves edges better. Convergence of AM
algorithm with TV regularization is proved [Chan and Wong 1998|. Furthermore,
it is not necessary to explicitly impose the numerical conditions that v and h has
to satisfy, e.g., u > 0. These conditions can be embedded in the minimization steps
of the AM algorithm, for instance, by simply setting u(x,y) = 0 when its estimate
is negative. Hence, by enforcing negative light sources to have zero values at each
step of updating light source intensities in the iteration, we can safely constrain the
point light source on the illumination hemisphere to have positive values.

When setting up a joint regularization minimization formula to solve the blind
deconvolution problem of our case, we do not have to impose a regularization term
for the blurring function, since we already know that the blurring function is a
one dimensional Gaussian and because it is smooth with respect to its parameter.
Thus, the minimization problem to estimate the reflectance parameter o and the
illumination distribution represented as a discretized hemisphere can be formulated

4The convolved result gets mapped back to the 3D surface points on the object and then gets
projected on to the image plane
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as follows.

min f(L,0) =

,0

Nik Ns,Nt Nrp Nr

mind " Y 3 (Ms(s.t.k) = (s, k)32 +p Y (VL 60)| (1)
Tk st l

l

where (s,t) are the image coordinates and k is the image number. To solve Equation
(11), we apply the AM algorithm, starting with the initial illumination hemisphere
(u®)which we derived in Section 3.3, with two special considerations described in
the following sections.

4.2.1 M-estimator for Robustness. As we have obtained the observed values
of specular reflection, I(s,t, k), by subtracting the diffuse-texture-mapped images
(estimated diffuse images) from the original input images, we have inherited errors
generated in the diffuse reflection estimation. Thus, when estimating both the
illumination distribution and the reflectance parameters from the specular images,
we will have to ensure that the estimation procedure is robust against noise. For
this purpose, we adopt the robust estimation technique based on M-estimator [Press
et al. 1992; Gill et al. 1981]. Consequently, we minimize Equation (11) for each step
in the AM algorithm through conjugate gradient with Lorentzian function [Press
et al. 1992; Gill et al. 1981] as the M-estimator and golden section search for line
minimization.

4.2.2  Initial Estimate. As observed in [Chan and Wong 1998] with numerical
results, estimating blurring functions without edges, e.g., Gaussian, with the AM
algorithm happens to converge slowly as compared with estimating point spread
functions with edges, e.g., out-of-focus blur. One way to speed up this convergence
rate is to give a good initial estimate of the blurring function. In our case, we
would like to utilize a good initial estimation of o, instead of setting o® very small
to simulate a delta function. Then, the question is what is o447 Fortunately,
we know that most shiny objects that can be modeled with the micro-facet BRDF
reflection model have a o around the order of 0.1. So it is fair to start with ¢ = 0.1.

Also, p in Equation (11) is set to a small value (1.0 x 107!2), not to impose
too much smoothness on the illumination distribution because we are recovering
spatially high frequency light sources. Note, as we used small lamps with shades
as the light sources in our experiments (Figure 9), imposing smoothness terms on
the illumination distribution itself does make sense.

4.3  Simulation Result

We ran a simulation test on the simultaneous estimation of the specular reflection
parameter and the illumination distribution. We rendered six images of a sphere
without any texture under the light sources depicted in Figure 6(a) with o = 0.06,
and ran the estimation algorithm with ¢® = 0.1 and with the initial illumination
hemisphere (Figure 6(b)) derived in the way mentioned in Section 3.3. After eight
iterations, the illumination distribution converged to Figure 6(c) and o = 0.0586.
From Figure 6, we can see that the method can handle area light sources to some
extent. As regularization is applied on the illumination distribution, the estimate
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(b) (©)

Fig. 6. Simulation result. (a) Ground truth illumination distribution. (b) Initial estimate. (c)
Estimated illumination distribution. Each point light source is splatted for better visualization.

becomes a smoothed version of the ground truth lighting, where the intensity grad-
ually falls off in the edge regions. Nevertheless, the shape of the illumination
distribution is recovered quite well, and the roughness parameter (o) is estimated
accurately with only 2% difference.

5. RESULTS

We applied our framework to model the appearance of real objects from a sparse
set of images, and rendered new views from novel viewpoints and under novel
illumination conditions.

5.1 Inputs

The objects we used in our experiment are a mask made in Bali and a ceramic or-
nament of a woman. For each object, several range images were scanned with Vivid
900 [Minolta 2001]. They were registered and fused to produce a 3D mesh model.
Additionally, we took six and twelve high dynamic range (HDR) images [Debevec
and Malik 1997; Mitsunaga and Nayar 1999] for each object respectively, and used
them as the input image sequence. For each image sequence, three light bulbs were
placed above the object, albeit in different locations. A HDR image is obtained
by combining several photographs taken with different shutter speeds. Figure 1(a)

and Figure 7 shows the input images with the shutter speed approximately set to
1
% .

To estimate the viewpoint of each input image, we captured a range image at the
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Fig. 7. Four out of twelve input HDR images for the woman object.

same viewpoint with a light-stripe range finder, and carried out 3D-3D alignment
between the range data and the 3D mesh model.

5.2 Estimated parameters

Figure 8 shows a diffuse-texture-mapped image for each object viewed from one
of the viewpoints in each image sequence. Note that the specular reflection is
successfully removed, except slightly remaining on the tip of the woman’s nose.
This is because the nose of the woman object has high curvature, and thus the
specular tends to remain at the same location in many input images.

Figure 9 depicts the initial and estimated final illumination hemisphere for the
mask object. Note that it is impossible to manually specify the locations of the
light sources from the initial estimation of the lighting environment (Figure 9:Left).
To compare the estimated illumination distribution with the true illumination dis-
tribution, we captured the lighting condition using a CCD camera with fish-eye
lens mounted, as shown in Figure 9. Note even if we neglect the glow around the
light sources, because of the shades, the point light sources span a small area rather

Fig. 8. Diffuse-texture-mapped images.
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SO

Fig. 9. Estimated illumination distribution for the mask sequence. Left: Initial illumination
hemisphere. Middle: Estimated illumination hemisphere (splatted), Right: A photograph of the
true illumination distribution captured through a fish-eye lens.

than being a real point. As we did not do any geometric calibration to enable direct
comparison between the two images of the illumination distribution, we cannot see
whether they match exactly. However, it is obvious that the estimated illumina-
tion hemisphere has an illumination distribution very close to the positions of the
three point light sources. The intensity of the brightest point light source in the
illumination hemisphere was 1370.83 and that of the darkest was 0.65. Note that
these values are a combination of K, and L;.

By starting with 0.1 for o, we obtained 0.0668 as its final estimated value. For
the woman object, final estimate of o was 0.0731.

5.3 View-dependent Rendering

With the estimated illumination hemisphere, the specular reflection parameter and
the diffuse texture map, we are able to accomplish photorealistic view-dependent
rendering from arbitrary viewpoints. Figure 10 shows the result of rendering the
mask from a novel viewpoint. The left image in Figure 10 is a real photograph
taken from the same viewpoint but not used in the input image sequence. As
can be seen, the result is almost indistinguishable from the real photograph. The
slight difference is mainly due to lack of perfection in the 3D model and consequent
difference in computed normals. Figure 1(b) and Figure 11 show other examples of
rendering from novel viewpoints.

5.4 Relighting

In addition to rendering from arbitrary viewpoints, we can render images under
arbitrary novel illumination conditions. As we have estimated the original illumi-
nation distribution, we can compute the ratio of irradiance between the original
and novel illumination distribution for each surface point. Hence, we can relight
the diffuse texture without explicitly estimating Kp , in Equation (2) [Marschner
1998; Levoy et al. 2000].

For instance, we can easily obtain illumination hemispheres corresponding to
each original light bulb by masking the estimated illumination hemisphere. Figure
12 shows a real photograph and a rendered synthetic image of the woman with one
of the three point light bulbs turned on. Despite the fact that we have some errors
in the geometry which leads to slight differences in the two images, nevertheless, we
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Fig. 10. Comparison between a synthetic image from a novel viewpoint and a real photograph.
Left: real photograph, Right: synthetic image.

Fig. 11. Synthetic images rendered from novel viewpoints.

can see the diffuse texture is relighted accurately and the highlights are correct in
shape and location. Figure 1(c) and Figure 13 show other example images rendered
under novel lighting conditions.
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Fig. 12. Comparison between a photograph and a synthetic image of the woman object cap-
tured /rendered under one light bulb. Left: real photograph, Right: synthetic image.

Fig. 13. Synthetic images rendered under novel lighting conditions.

6. DISCUSSION

In this section, we briefly discuss the limitations of our method.
The number of input images and the illumination color
As we construct the diffuse texture by extracting the minimum intensity value for
each surface point, the necessary number of input images is determined by whether
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at least one of the input images contain diffuse only reflection for each surface point.
This, in fact, depends not only on the illumination distribution and the roughness
of the object surface but also on the surface geometry. In other words, the conse-
quent diffuse texture map will contain specular reflection where the illumination is
fairly diffusive, or when the surface has a large o value or where the object surface
is extremely sharp. To overcome these problems, we are currently investigating
a color-based reflection component separation approach. This will not only help
extracting diffuse texture maps in difficult scenarios but also to recover illumina-
tion distributions containing different colored light sources which will let us relight
the target object with different colors. The remaining problem, however, is that
it is difficult to apply color-based (or color-constancy) methods to highly textured
surfaces such as the object of a woman we used.
Radius of the illumination hemisphere
Currently we estimate the illumination distribution as point light sources mapped
on a hemisphere with fixed radius. However, the light sources in place when cap-
turing the input images were not necessarily placed in a uniform distance from the
object. We empirically found the final illumination distribution estimate on the
hemisphere represents cross sections of cones having their apex at the actual point
light source position and holds the object inside tightly. As a result, estimates of a
far point light source dominates a smaller region on the hemisphere compared to a
closer point light sources. We are currently investigating a formal explanation for
this.

Furthermore, by incorporating the fall off effects of lighting (the d—12 effect where
d is the distance between a surface point and a light source) we might be able
to recover the spatial distribution of light sources with different distances. This
remains as our future work.
Diffuse light sources
We have shown that we are able to recover area light sources as well. However, it is
obvious that we would not be able to recover area light sources that do not produce
highlights. For instance, ambient and diffuse light will be embedded in the diffuse
texture map and subsequent relighting of those lights would not be possible.

7. CONCLUSION

We have shown a method to accomplish photorealistic view-dependent rendering
and relighting from a sparse set of images and a pre-acquired geometric model of
the target object. We take an approach similar to inverse rendering, however, in
a significantly different manner: we estimate all three components necessary for
rendering in a representation that is compact but contains enough information,
which includes the diffuse texture map, the specular reflectance parameter and the
illumination hemisphere. The key idea is to first separate the reflection components
to obtain a texture map that represents the diffuse reflection and images whose pixel
values’ dominant factor is specular reflection. The latter images are then used to
recover the illumination distribution and reflectance parameters of the Torrance-
Sparrow reflection model via 2D blind deconvolution with special care taken for the
inherent ambiguity of lighting and reflectance. We described the method in theory,
and showed its effectiveness through simulation and experiments with real-world
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objects. As discussed in Section 6, future work includes recovery of the spatio-
spectral illumination distribution and the distances to light sources.
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