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ABSTRACT

For some time, rendering photorealistic synthetic images from observations of

real objects has been a major research topic in the computer vision and com-

puter graphics communities. An extensive amount of work in this research area

has lead to a few representative schools: image-based rendering, inverse ren-

dering and 3D photography. However, each of these methods still suffers from

several drawbacks, such as massive data storage, constraints on applicable ob-

jects, restrictive scenarios on application, etc. To overcome these problems, we

propose two methods. The first method, Eigen-Texture Rendering, handles the ap-

pearance variation of the target object on its own 2D surface, enabling effective

compression and interpolation with PCA thereby resulting in a compact repre-

sentation of objects with arbitrary reflectance properties. The second method,

Rendering from a Sparse Set of Images, recovers both the illumination distribution

and reflection parameters simultaneously from input images, providing even

more compact representation for photorealistic image synthesis. With the lever-

age of assuming a specific reflection model and restricting the treatable objects,

the latter method provides more flexibility in application, i.e., fewer input im-

ages. In this dissertation, we present the theory of these methods, and report on

the results obtained by applying the methods to real world objects.





論文要旨

実物体の観察にもとづく仮想物体画像の合成は，コンピュータビジョン，コンピュー

タグラフィックスの分野にまたがり活発に研究がおこわれている研究課題である．現

在までに，Image-based Rendering, Inverse Rendering, 3D Photographyなどの

手法が提案されているが，非常に大きなデータ量を保存する必要があったり，適用

できる物体が限られていたりとそれぞれに制限が存在する．本論文では，これらの

問題に配慮し，新たに 2つの手法を提案する．ひとつめの手法であるEigen-Texture

Renderingは，物体の見えを物体表面上で扱うことにより主成分解析による効率の

良い圧縮と補間を可能し，あらゆる反射特性の物体に対して効率の良い見えの表現

を実現する．ふたつめの手法である Rendering from a Sparse Set of Imagesは，入力

画像から光源状況と物体の反射パラメタを同時に推定する手法であり，より効率の

良い見えの表現を実現する．また，前者の手法に比べ，特定の反射モデルを仮定す

ることにより適用できる物体に制限を設けるものの，非常に少ない入力画像から任

意視点画像の合成を実現するという利便性を兼ね備える．本論文では，これらの手

法の提案と実物体を用いた実験による有効性の評価をおこなう．　
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Chapter 1

Introduction

1.1 Background

With the rapid growth of the ubiquitous computational environment that sur-

rounds us, we now have greater needs as well as the ability to construct a hybrid

environment where reality and virtuality are seamlessly integrated. Many ap-

plications, including digital museums, tele-conferencing, e-commerce, medical

surgical assistance, etc. can be built into the framework of these hybrid envi-

ronments. Many exciting research topics and applications arise from this area.

Among these topics are: how do we construct a realistic virtual object/scene,

how do we superimpose that scene onto a real world environment, and how

can we immerse ourselves to that integrated environment.

We recently started a project to construct a digital archive of cultural heritage

objects [47, 74] as an application of these hybrid environments. The goal of our

project is to develop a scheme to digitally archive cultural heritage objects as

so called multimedia contents. We Japanese, are in a unique position in this re-

spect, because most of the Japanese cultural assets are made of wood and paper,

while most foreign assets are made of stone. Thus, at any moment, our heritage

objects can be destroyed due to natural disasters such as floods, fires, typhoons.

Therefore, it is very meaningful to digitally archive those cultural assets in order

to permanently preserve the great heritage objects bequeathed to us by our an-

cestors, so that they can be safely passed down to future generations. Also, this

digital archive will enable people to see and feel the great historical heritages

1



without spending time and money to visit their actual locations. Furthermore,

it will let us Japanese, introduce our outstanding cultural heritage to the world

through the digital network. While the project itself has not yet reached the

stage of appearance preservation, the demands are clear: an accurate and effi-

cient representation of both geometry and photometry of real objects.

In this dissertation, we focus on one of the fundamental research topics to

construct these real and virtual hybrid environments: how do we construct a

photorealistic virtual object from the observation of a real world object? As we

aim to construct a “photometrically real looking” object, we will refer to this

research topic as photometric object modeling.

The goal of photometric object modeling is to digitally represent a real world

object so that its appearance, when displayed on a computer, looks realistic. As

a measurement of the reality we find in the displayed virtual object, we com-

monly use the term “photorealistic”. Although the precise definition of “pho-

torealism” remains quite fuzzy, an extensive amount of research has been con-

ducted in mainly the computer vision and computer graphics communities to

make the virtual objects look as if they were a photograph of real objects. As we

will review in the next section, the current trend of photometric object modeling

is based on the observation of real objects. Since we try to make the synthetic

virtual objects photorealistic, it is quite natural to start from photographs of real

objects. In addition to the images (photographs), the leverage of knowing the

geometry of the target object brings about a lot of information on analyzing the

appearance of objects. This is also natural, since people see real world objects

as a mixture of geometry and photometry, not as 2D images. Thus, while we

propose two new methods to render synthetic virtual object images from the

observation of real objects, the basic underlying philosophy is to take full ad-

vantage of the geometry we assume to have been obtained a priori. Also, for

geometric modeling, where we reconstruct a geometric model to be used as the

basis of our appearance analysis and synthesis, we propose two new methods

to register and integrate range images robustly and adaptively, while assuming

that we can obtain range images using existing techniques such as laser range

finders, stereo systems etc.
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1.2 Related Work

The ultimate goal of computer vision and computer graphics research is to vi-

sually bring the whole real world into the digital world as it is; with “realism”.

As a natural result, although the approaches are from opposite directions, where

computer vision studies are concerned with how we see, while computer graph-

ics studies are concerned with how to display those images, both literatures con-

verge at a middle point on several research topics. Photometric object modeling,

whose aim is to construct a photorealistic virtual object inside the computer, is

one of the typical research topics that lie on the overlapping boundaries of vi-

sion and graphics. We will overview past work on photometric object modeling

with regard to the methods we will present in Chapter 3 and Chapter 4. Related

work of the geometrical modeling part of our work will be presented in Chapter

2.

1.2.1 Rendering from a Dense Set of Images

An extensive amount of research has been conducted in both the computer vi-

sion and the computer graphics communities with the goal of efficiently repre-

senting a real object on the computer to synthesize photorealistic images from

arbitrary viewpoints and novel lighting environments (relighting). This research

consitutes three schools: image-based rendering, inverse rendering and 3D pho-

tography. Most of these methods rely on a dense sampling of the appearance

variation, requiring a large number of images of the target object.

Image-based rendering is a rendering method that basically does not assume

any geometry. Taking only 2D images as the input, image-based methods set

their basis on the fact that light rays can be parameterized as a 7D function called

the plenoptic function [1]. Considering each pixel in real images as a sample of this

plenoptic function, image-based methods synthesize virtual images by selecting

the most appropriate sample of rays, or by interpolating between the sampled

rays [78]. Levoy and Hanrahan [63] represent the light rays in free space (space

free of occluders) in 4D by using two 2D planes, thereby enabling the plenop-

tic function to be described in a compact manner. Gortler et al. [39] adopt a

similar two 2D plane representation, but additionally they use rough geometric

information, in a volumetric representation, derived from images, to correct the

3



basis function of the rays. Shum et al. [112] proposed a 3D representation of the

plenoptic function. The method is especially suited to rendering scenes with the

viewing direction inside-out, which is the case when modeling real world scenes

rather than objects. Since these plenoptic function-based methods require only

real images as the input, they provide high generality, i.e., they can be applied

to a wide variety of objects and scenes. Because of the principle of interpolation,

these approaches tend to require a large amount of input images: a very dense

sampling of the appearance variation of objects under a static illumination envi-

ronment. Even though compression techniques such as vector quantization- or

discrete cosine transformation (DCT)-based approaches can significantly reduce

the total amount of information that has to be stored on the computer, they still

require the user to take hundreds of images as the input.

To estimate the lower bound of the number of images necessary for image-

based rendering, Chai et al. [10] have proposed a framework to analytically com-

pute the minimum sampling rate from spectral analysis with the use of sam-

pling theorem. However, since they assume diffuse surfaces, view-dependent

variance such as specularity that plays an important role in photorealistic syn-

thesis of images is not taken into consideration. These view-dependent com-

ponents occur in a high frequency domain compared with diffuse components,

so that it excessively increases the sampling rate. Recently, several propositions

have been made to incorporate rough geometrical structure in the framework of

image-based rendering. The underlying geometry can be constant depth, lay-

ers, sprites etc. [9, 40, 51], and the geometry is basically used to provide a better

strategy to pick up the closest ray sample [8].

“Inverse rendering” is another major approach in this area. Taking a dense

set of images and a 3D model of the target object model reconstructed a priori,

inverse rendering methods estimate an approximation of the full bidirectional

reflectance distribution function (BRDF) [85] of the object surface by fitting a

particular reflection model to the pixel values observed in input images [105] or

by solving the inverse radiosity problem [131]. As these methods estimate the

BRDF parameters of the object surface, view-dependent rendering and relight-

ing can be accomplished with a very compact representation of the object. In

these methods the radiance and positions of the light sources need to be known

to compute the BRDF, and direct information of lighting environment has to be
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provided in some way, e.g., with high dynamic range images [24, 73] of the light

sources, making the method less attractive for practical use. A detailed review

of inverse rendering methods will be described in the next section, since it will

be closely related to our work presented in Chapter 4.

Recent research in the so-called “3D photography” domain have proposed

methods that lie somewhere between these two major research streams of image-

based rendering and inverse rendering. By taking advantage of the latest ad-

vances in 3D sensing equipments, such as laser range scanners [20, 19, 72] and

structured light scanners [102], these approaches try to make full use of the 3D

geometry as well as the images. The method presented in Chapter 3, Wood

et al. [127] and W-C. Chen et al. [14] (both after the first publication of Chap-

ter 3 [90]) can be considered as setting one of the 2D planes in the light field

approaches attached to the object surface, in concrete, on the coarse triangular

patches or dense surface points, respectively. By deriving information from the

geometry in this way, these approaches succeed in achieving higher compres-

sion ratio without losing smooth view-dependent variation such as the move-

ment of highlights.

Several other methods, such as “Voxel Coloring”, take intermediate approaches

between purely image-based and model-based approaches. Voxel Coloring/Space

Carving methods [107, 17, 58] represent the scene with a colored voxel model.

By using the fact that surface points in a scene and voxels that represent them

project to consistent colors in the input images, the volume containing the scene

is iteratively carved out generating a volumetric representation of the scene with

its texture color attached on each surface voxel. However, since these methods

rely on the color consistency assumption that holds only on object surfaces that

have Lambertian reflection property, it has difficulty in handling objects that

have reflection properties that are not just diffusive.

The method we present in Chapter 3 for rendering from a dense set of im-

ages can be considered as a variant of view-dependent texture mapping. View-

dependent texture mapping is a technique to combine multiple textures cor-

responding to each triangular patch of the geometric model, so that it can be

rendered from viewpoints that do not exist in the sampled images. On com-

bining textures, weights are multiplied to the textures, e.g., weights depending

on the angle between the triangular patch’s surface normal and viewing an-
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gle [95, 26, 25], and blending is accomplished between the weighted textures.

Our approach in Chapter 3 is different from these approaches in the respect that

we derive the principle components of the textures and synthesize new textures

by combining those principle components, thereby providing an intuitive inter-

polation method to render textures from new viewpoints.

Analyzing real-world textures to derive their essential characteristics is an

on-going research topic in the computer vision community. Especially for recog-

nition tasks, several methods have been proposed to derive the basic compo-

nents of real-world textures sampled under different illumination conditions

and viewing directions. For instance, Leung et al. [62] represent textures with

3D textons extracted by applying filter banks, and Suen et al. [115] derive the ba-

sis textures by applying orthonormal basis expansion and define a dimensionality

surface which represents the number of basis textures necessary to represent the

texture. We apply principle component analysis on sampled textures to repre-

sent the appearance variation of textures under varying illumination and view-

ing conditions. While our objective is image synthesis, recognition of real-world

texture can be a straightforward application of our approach.

1.2.2 Rendering from a Sparse Set of Images

Although the method we present in Chapter 3 provides an efficient represen-

tation of real objects for view-dependent rendering and relighting, and enables

the user to drastically reduce the number of input images through interpola-

tion in eigenspace, the method still requires a relatively dense set of images; for

instance, thirty images for changing viewpoints on a circle surrounding the ob-

ject. To further cut down on the necessary number of images for another order,

we will have to compensate for the information that will be lost from the input

images. Hence, we will take an approach similar to inverse rendering.

Forward rendering, or simply rendering, is a process for creating photore-

alistic synthetic images given the geometry of the scene, including the viewing

conditions, the spatial distribution of the light sources, the radiance of the light

sources and the 3D model of the target object, and a specific reflection model

that approximates the reflection mechanism on the target object surface. Inverse

rendering is the exact opposite of this procedure. Given a set of images of a
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real world object and a 3D model of the object, inverse rendering extracts the

information necessary to synthesize images of the target object from arbitrary

viewpoints and under novel lighting environments. The information, in addi-

tion to the geometry of the objects and the viewpoints necessary to accomplish

the forward rendering, is about the lighting environment, including their spatial

and radiance distribution, the texture and the BRDF (Bidirectional Reflectance

Distribution Function) [85] of the object. Several approaches have been taken

to accomplish inverse rendering under the circumstances where one or two of

these three components are unknown.

A number of approaches have been demonstrated for recovering one of the

three components when the other two are unknown. When the illumination dis-

tribution and the BRDF of the object surface is fully provided, the texture of the

object surface can be estimated at each surface point by computing the total ir-

radiance and then dividing the diffuse reflection intensity by that value [67, 64].

(Our method in Chapter 4 does the same thing for relighting diffuse reflection;

however, the lighting environment and the BRDF approximation is estimated

from images.)

Methods that directly measure the unknown lighting and synthesis of images

with known texture and BRDF have been proposed, including methods that use

mirror balls [22] and fish-eye stereo systems [100]. As an indirect method, Tomi-

naga and Wandell [117] recover the color of a single point light source by finding

the intersection of the specular reflection direction in RGB space.

Recovering the BRDF or its approximation has been a very active research

topic. The full BRDF can be represented by dense samples of it. Image-based

measurements of the BRDF [69, 66] and the 2D maps of BRDFs called Bidirec-

tional Texture Function (BTF) [21] have been proposed to tabulate the BRDF

under controlled lighting. An alternative approach to sampling the BRDF and

using their values, is to approximate the BRDF as a parametric reflection model.

From the forward rendering point of view, low-parameter reflection models that

capture the reflection mechanism of real object surfaces become convenient.

Hence, reflection models such as that of Ward [122] and Torrance and Spar-

row [118] have been widely accepted. Several approaches have been proposed

to recover the parameters of these reflection models by estimating the texture

and the BRDF simultaneously, under a known lighting environment: typically a
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single point light source. Nayar et al. [79] estimate the parameters of a hybrid re-

flection model, consisting of diffuse and specular reflection, and the geometry of

the target object from an image sequence captured under a controlled extended

light source. Sato et al. [105] take a dense set of images under a single point

light source as the input with its position and radiance calibrated. Then they

decouple the diffuse reflection and specular reflection for each object surface

point via SVD and fit the Lambertian and Torrance-Sparrow reflection model to

the diffuse and specular reflection values. Lensch et al. [61] also estimate the

spatially varying BRDF by estimating the parameters of the Lafortune reflection

model [59], taking a sparser set of images, however still on the order of tens,

of the target object under a known lighting condition. Yu et al. [131] take an

inverse radiosity approach to recover the diffuse texture and specular reflection

model parameters successfully, taking interreflection into account. Sato [103]

and Yu and Malik [132] recover reflection model parameters that account for

both diffuse and specular reflection of buildings in outdoor scenes, assuming a

parametric model for a naural lighting illumination condition.

Ikeuchi and Sato [46] recover the reflectance parameters of a reflection model

consisting of the Lambertian model for diffuse reflection and the Torrance-Sparrow

model for the specular reflection (the same reflection model we use in Chapter

4) from a single brightness (intensity) image and its corresponding range image

taken under a single point light source. They directly fit a linearized version of

the two term reflection model by iteratively solving a least square minimization

problem and segmenting the image into regions: diffuse, specular, interreflec-

tion and shadow regions. Boivin and Gagalowicz [7] take a similar approach to

recover the texture and parameters of the Ward reflection model from a single

color image captured under a known complex lighting environment. Debevec

et al. [23] recover the reflectance parameters of a reflection model specific to hu-

man skin from a dense sampling of its appearance variation under controlled

lighting captured with a polarizer to separate diffuse and specular reflections.

Marschner and Greenberg [68] solve an inverse lighting problem: given the

3D model and a set of images with their corresponding viewpoints, estimate

the lighting environment. They consider the illumination distribution to be a

linear combination of basis lightings that corresponds to regions on an imagi-

nary sphere covering the object, and solve a linear system with a regularization
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factor imposed on the basis lights, without explicitly estimating the BRDF. With

the assumption that the object surface has a Lambertian reflectance property,

to relight the target object, the ratio of the forward rendered images under the

original lighting and the new lighting is used. In the same spirit, except that we

explicitly factor out the illumination distribution and the reflectance property,

we use ratios of the incoming irradiance between the original and new illumi-

nation distributions to obtain relit diffuse reflection images. In a similar manner,

except for using shadows as the cue, Sato et al. [101] recover the illumination dis-

tribution of the scene and also the BRDF of the surface on which shadows are

cast.

Recently, most closely related to our work in Chapter 4, Ramamoorthi and

Hanrahan [96] have proposed a signal processing framework to provide a sound

mathematical background to solve many of the problems in the field of inverse

rendering. By assuming that the light sources are far enough apart so that they

can be parameterized by angles, and that the object surface has a homogeneous

reflectance property, they formulate the reflection mechanism as a convolution

in the angular space and accomplish inverse rendering through a spherical har-

monic representation. While we also assume that the object surface has a homo-

geneous reflectance property for specular reflection, in terms of the applicable

object surfaces, their framework is more general than ours, since they can handle

both matte surfaces that have Lambertian reflection [97] and also surfaces with

addtional specular reflection of micro facet reflection models [96]; we, however,

focus only on shiny objects that exhibit specular reflection which can be approx-

imated with a micro facet reflection model. They assume that one out of three

components is known while the other two are unknown, specifically the two

cases where the texture is known and the lighting and BRDF are unknown and

the case where the lighting is known and the texture and BRDF are unknown;

we, on the other hand, consider the situation where all three of them are un-

known.

1.3 Overview

In this dissertation, we propose two methods to render photorealistic images of

an virtual object from observation of real objects. Both methods assume that the
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geometry of the target object is known.

Before going into the photometric part of photometric object modeling, we

present two new methods for the geometric modeling pipeline in Chapter 2.

First,we describe a robust simultaneous registration method to align multiple

range images. The proposed method minimizes an error function that is con-

structed to be global against all range images, providing the ability to diffusively

distribute errors instead of accumulating them. The minimization strategy is de-

signed to be efficient and robust against outliers by using a conjugate gradient

search that utilizes M-estimator. Also, for “better” point correspondence search,

additional attributes of 3D points, such as laser reflectance strength and inten-

sity, are used. For robustness against data noise, the framework is designed

not to use secondary information, i.e., surface normals, in its error metric. We

describe the details of the proposed method, and present experimental results

obtained by applying the proposed method to real data. Also, as an applica-

tion for digital preservation of cultural heritage objects, we show the results of

applying our framework to register a large ancestral object.

Next, we present a robust and adaptive integration method to merge multi-

ple pre-aligned range images. Unlike other volume-based integration methods,

our method adaptively subdivides voxels depending on the curvature of the

surface to be reconstructed, thereby providing efficient representation of the un-

derlying geometry and efficient use of computational resources. In our range

image merging framework, additional attributes, e.g., color, laser reflectance

strength, etc., can be taken into account as well as 3D geometric information.

This ability allows us to generate 3D models preserving sharp edges around

texture boundaries, thereby providing a good basis for efficient rendering and

texture mapping. The overall framework is designed to be robust against noise,

taking consensus carefully in both geometry and color, which could be suitable

for 3D model reconstruction from noisy range images. After describing the sys-

tem, we present several results of applying our framework to real data.

With regard to the core part of photometric object modeling, we propose

two new methods to render photorealistic synthetic images from a set of im-

ages and a 3D model. In Chapter 3, we present a new rendering framework to

render photorealistic view-dependent and relighted images from a dense set of

images with the pre-acquired geometric model constructed through the geomet-
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ric pipeline described in Chapter 2. The method aligns and pastes color images

of the object onto the 3D surface of the object model, and then compresses those

appearances in the 2D coordinate system defined on the 3D model surface. This

compression is accomplished in an eigenstructure decomposition framework.

The synthesis process is achieved by using the inverse transformation of the

eigenstructure decomposition. Thanks to the linearity of image brightness, vir-

tual images under a complicated illumination condition can be generated by

summation of component virtual images sampled under single illuminations.

When superimposing virtual objects onto real scenes, the geometric consistency

between the virtual object and the lighting distribution has to be maintained

precisely. As we employ a geometric model to represent the virtual object, if we

know the real illumination condition, we can precisely render the cast shadows

and also the appearance by decomposing the real illumination distribution into

a set of point light sources. As well as the framework, experimental results will

be presented.

In Chapter 4, we present a framework to accomplish view-dependent render-

ing and relighting from a sparse set of images, with the leverage of geometric

information. Our goal is to accomplish photorealistic rendering, with an effi-

cient representation of the data, from a casually acquired image sequence as the

input. By casual acquisition we mean a relatively sparse set of images. In this

case, the input images are not enough to enable us to simply apply either image-

based rendering methods or the framework we present in Chapter 3. As well as

the geometric model of the target object, we assume that the 3D model and the

camera parameters are known, while we do not rely on any direct information of

the light sources, i.e., the radiance and the positions. To solve this problem, we

first separate the view-dependent (speclular reflection) and view-independent

components (diffuse reflection) of the surface reflectance. The result of diffuse

reflection on the object surface is stored as one texture map for the whole object.

Then we use the specular reflection images to derive an efficient representa-

tion of the lighting environment. We accomplish this by initially shooting back

the pixels in the specular reflection images along the perfect mirror direction to

form an illumination hemisphere. Using this illumination hemisphere as the initial

estimation of the lighting environment, we estimate both the lighting environ-

ment and the surface properties using a reflection model to approximate the
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specular reflectance mechanism. The estimation procedure can be considered

as a blind deconvolution problem, factoring out the lighting and the reflectance

from observation. As a result, we can represent a virtual object efficiently with

reflectance parameters, a 3D model and an illumination hemisphere, providing

the ability to accomplish rendering from arbitrary viewpoints and under differ-

ent lighting environment from the original scene. As well as the framework, we

present experimental results of applying the method to real world objects.

Finally, in Chapter 5, we summarize our contributions and discuss several

future works.
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Chapter 2

Geometric Modeling

2.1 Introduction

Geometric modeling of real world objects is fundamental for many applications

that rely on accurate shape data, e.g., object recognition, localization, tracking,

metamorphism and so on. Also, when analyzing the appearance of real world

objects, knowledge of the geometry of the target object provides us a great deal

of information. Although pure image-based rendering techniques that do not

assume any a priori information of the scene geometry enables feasible view-

dependent rendering of a real world scene, it is still advantageous to have the

geometric information on hand. For instance, integrating synthetic objects into

real world scenes with correct geometrical visuality, e.g., attaching cast shad-

ows, can be achieved much easier with the help of geometric information. More

importantly, the geometric information brings about a compact representation

of the target object for view-dependent rendering and relighting, as we will de-

scribe in the next chapter.

The geometric modeling pipeline of real world objects can be depicted as in

Figure 2.1. The pipeline consists of three steps, namely range image acquisi-

tion, registration (alignment) and integration (merging). We will not consider

other post-processing such as hole-filling that may follow the pipeline or may

be embedded in one of those components.

There are many methods to capture the three-dimensional information of a

real object; these may be roughly categorized by their approaches: active or pas-

sive. Active methods directly interact with the target object or scene to obtain

13



Acquisition Registration Integration

Range Images

Figure 2.1: Geometric modeling pipeline.

its geometric information. The interaction can be based on casting laser ray,

laser stripes, light stripe patterns, multiple lights, etc. The actual distance mea-

surement can be accomplished by the time-of-flight of laser, triangulation be-

tween the casted laser stripes or the spatially coded scene (time-line based pat-

terns [102], moire patterns and so on), and its observation through an ordinary

camera, shading due to multiple light sources, etc. On the other hand, passive

methods recover the three-dimensional information from raw observation of the

scene. Shape-from-X, where X can be shading, texture, highlights, etc., stereo in-

cluding binocular, trinocular and multi-baseline stereos and depth-from-focus

are representative passive range scanning methods. Whichever method we use,

unless the target object is geometrically simple enough to be captured from one

viewpoint, we need to range scan from multiple viewpoints. This creates the

necessity for range image registration and integration.

Registration of multiple range images is a procedure for gathering range im-

ages scattered in different coordinate systems, each defined by the viewpoint of

the range finder when scanned, to sit in one common coordinate system. Many

approaches to conduct this have been proposed in the computer vision and com-

puter graphics literature; most of them are designed to solve a least-square min-

imization problem set up to minimize the distance of correspondences in differ-

ent range images. The correspondences can be between raw 3D points in point
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cloud range images or feature points with characteristics of the local surface as-

signed to them. The most important problem in registration is how to deal with

the noise embedded in the range images. Whichever range scanner we use, the

range image obtained from it includes some noise due to, for instance, specu-

lar reflection with laser range scanners, folding effects on occluding boundaries

with light stripe range scanner. Thus, to obtain accurate geometric models, it

becomes crucial to make the registration procedure as robust as possible against

noise.

Integration of multiple range images refers to the process of merging pre-

registered range images to compose one complete geometric model, usually a

polygonal mesh model. The procedure can be considered as extracting one sur-

face from multiple overlapped surfaces. As in the registration procedure, it is

important to make the integration framework robust against noise, which can

be in the scanned range images and can also be inherited from the registration

procedure. Also, depending on the use of the resulting mesh model, additional

constraints such as mesh simplification and de-noising can be imposed when

outputting the final complete mesh model, rather than just stitching together

pre-aligned multiple range images.

In the next two sections, we propose a robust simultaneous registration method

to accurately align multiple range images obtained through a range scanner,

and a robust and adaptive range image integration method that can produce a

complete mesh model in adaptive resolution depending on its local geometric

or/and photometric characteristics.

With regard to registration, we propose a framework to register multiple

range images with emphasis placed on robustness against noise. Taking the

point cloud images obtained through a range sensor, e.g., a laser range scan-

ner [20, 19, 72], or a light-stripe range finder [102], as the input, we simulta-

neously register all range images to sit in one common coordinate system. We

highly prioritize our efforts to make the resulting registered geometric model ac-

curate as opposed to making the whole procedure computationally fast. For this

reason, we design our registration procedure to be a simultaneous registration

method based on an error metric computed from point-point distance including

additional attributes in its metric. Also for robustness and efficiency, we adopt

a conjugate gradient framework utilizing M-estimator to solve the least-square
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problem of minimizing the total errors through registration. To accomplish the

point-point correspondence search efficiently, we employ a k-d tree data struc-

ture to store the range images. The robustness and effectiveness are demon-

strated by experimental results. Also, as an application for digital preservation

of cultural heritage objects, we show results of applying our framework to reg-

ister a large ancestral object.

For integration of multiple pre-registered range images, we propose a new

method based on volumetric representation. Unlike other volume-based inte-

gration methods, ours adaptively subdivides voxels, depending on the curva-

ture of the surface to be reconstructed, thereby providing efficient representation

of the underlying geometry as well as efficient use of computational resources.

In our range image merging framework, additional attributes such as color or

laser reflectance strength can be taken into account as well as 3D geometric in-

formation. This ability allows us to generate 3D models while preserving sharp

edges around texture boundaries, thereby providing a good basis for efficient

rendering and texture mapping. The overall framework is designed to be robust

against noise, taking consensus carefully in both geometry and color; it is suit-

able for 3D model reconstruction from noisy range image sequences. As well as

describing the system, we present several results of applying our framework to

real data.

2.2 Robust Simultaneous Registration of Multiple Range Im-

ages

2.2.1 Related Work

Past work on range image registration can be roughly classified with respect to

the following three aspects.

Strategy: simultaneous1 or sequential The basic strategy of registering mul-

tiple range images can be classified into two different approaches. The straight-

forward strategy is to focus on only two range images at a time and to register

one range image to another [5, 120, 133]. After one range image pair is regis-

1Commonly referred to as “global registration” and “multi-view registration”, especially in

the graphics community
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tered, a new pair including either range image in the former pair, positioned in

the resulting coordinate, is registered. This process is repeated until all range

images are used. Since this sequential strategy requires only two range images

for each registration stage, it can be implemented with less memory and the

overall computational cost tends to be cheap. Also, the computational cost for

each registration stage is not affected by the total number of range images to be

registered consequently.

However, this straightforward strategy is well known to be less accurate. In

each range image pair registration stage, some error is introduced due to data

noise, etc. Since each range image is fixed in the resulting position for each

registration stage, this unavoidable error will be propagated to later registration

stages and will result in an intolerable error accumulation in the last range image

position. Although the “gap” developed by this error accumulation can be small

enough depending on the use of the resulting geometric model, it is much more

preferable to avoid this theoretically, especially when the geometric model will

be used as a basis for texture-mapping or appearance analysis and so on.

Simultaneous registration solves this error accumulation problem by align-

ing all range images at once [2, 3, 6, 15, 28, 52, 70, 84, 94]. This can be accom-

plished by defining an error minimization problem using an error metric com-

mon among all range images. This approach can diffusively distribute the reg-

istration error over all overlaps of each range image. The drawback is its large

computational cost as compared with that of sequential approaches.

Matching unit: features or points On registering range images, usually the

problem is redesigned as an error (distance) minimization problem. The basis

of the error to be measured may be features derived from the range images or

points consisting of the range data. Feature-based methods extract some sig-

natures around 3D points, invariant to Euclidean transformation, in each target

range image and make correspondences among those features [15, 53, 54]. Based

on the assumption that all correspondences are matched correctly, the transfor-

mation for registration can be computed in a closed form manner. On the other

hand, if the signatures computed from the range images do not provide enough

information and the matching of them cannot be done correctly, the registra-

tion stage can fail miserably. Point-based methods directly use the 3D points

in an iterative manner. The point mates, the point correspondences to compute
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the error metric, are dynamically updated and several iterative steps are used

to minimize the total error. One drawback of this point-based approach is that

it requires an initial estimation of the rough transformation between the target

range images, which is generally provided by human hand or interaction, while

most feature-based approaches do not have this requirement.

Error metric: point-point distance or point-plane distance Originally, point-

based approaches such as the ICP algorithm [5, 133] set the error metric basis on

the Euclidean distance between two points that correspond to each other [29, 70].

However, since this error metric does not take the surface information into ac-

count, the point-based approaches based on point-point distance suffer from

the inability to “slide” overlapping range images. An alternative to this dis-

tance metric is to use point-plane Euclidean distance, which can be computed by

evaluating the distance between the point and its mate’s tangent plane [15, 84].

Embedding the surface information into the error metric in this way results in

point-based approaches which utilize point-plane distance metric, and tend to

be robust against local minima and converge rapidly. However, computing the

point-plane distance is computationally expensive compared with point-point

distance computation, since it requires a few additional computational steps af-

ter establishing the point-point correspondences. As work-arounds, methods

using viewing direction, z-buffer, etc. to find the correspondence are proposed

for efficiency [2, 6, 84].

2.2.2 Approach

Based on the consideration described above, we have designed a registration al-

gorithm which i) is based on the simultaneous strategy, ii) uses points as match-

ing units, iii) utilizes the point-point distance metric. The framework is inspired

by the work of Wheeler et al. [125, 123], that applied similar techniques for 2D-

3D and 3D-3D object recognition and localization.

We want to construct the geometric model as accurately as possible. For

this reason, as a preliminary step, we attach more importance to robustness and

accuracy than to computational expense in the registration method. This causes

us to choose a simultaneous strategy, which is accurate in principle.

We employ points as matching units. Although the laser range scanner we
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use is quite accurate, still the distance to the object is large and the measurement

condition is poor in many cases. Because the scanned range images include

noise, the information computed from them will be even more corrupted by

that noise. Thus, we avoid using any secondary features derived from raw range

data; instead, we directly use data points as matching units.

We use the point-point distance metric. Due to the noise problem, as men-

tioned above, we have to avoid obtaining secondary features (surface normals

in this case) and thus, cannot use the point-plane metric that requires us to cal-

culate surface normals. It is also true that point-point metric is less expensive in

computational cost than the point-plane metric, and is preferable when the data

set is very large.

The overall simultaneous registration framework can be described as an iter-

ation of the following procedure until it converges:

Procedure OneStepOfSimultaneousRegistration
input Array RangeImages

Array KDTrees, Scenes, PointMates, Transforms

for each r in RangeImages

KDTrees[r]← BuildKDTree(RangeImages[r])

for each s in RangeImages except r

Scenes[s]← RangeImages[s]

end for

for each i in Pointsof(RangeImages[r])

for each s in Scenes

PointMates[i] +← CorrespondenceSearch(i, KDTree[s])

end for

end for

Transforms[r]← Transformation(PointMates)

end for

for each r in RangeImages

Transform(r, Transform[r])

end for

We basically extend the framework of the pairwise ICP algorithm [5, 133] to
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handle multiple range images simultaneously. This is achieved by setting up a

global objective function to minimize with respect to each range images. Defin-

ing model as the particular range image of interest and scene as one of the range

images in the rest of range images set, in one simultaneous registration loop,

each range image becomes a model once. Point mate search (search for nearest

neighbor point) for each point in the model will be done against all scene range

images (M − 1 if we have M range images), and they will be stored in an array.

Rigid transformation for the current model will be computed in a conjugate gra-

dient search framework utilizing M-estimator, and will be stored in an array. Af-

ter each range image has become a model once, all range images are transformed

using the transformation stored in the array. Note that each range image is not

transformed immediately after its transformation is computed. Considering that

each step transformation evaluated inside one step of simultaneous registration

procedure will not be so large, this latency of transformation will not cause a

problem. Furthermore, this timing of transformation saves us a large amount

of computational time, since construction of k-d trees is required only once per

range image in one simultaneous registration procedure. Furthermore, it allows

parallel computation of transformation steps. Details will be discussed in the

following sections.

2.2.3 Point Mate Search

K-D Tree

As we try to register range images that consist of a large amount of 3D points,

finding correspondences for each point in each range image can easily dominate

a critical portion of the overall computational time. To obtain point correspon-

dences efficiently, we employ k-d tree structure to store the range images [33].

K-d tree’s k-d abbreviates k-dimensional and it is a generalization of binary-search

tree for efficient search in high dimension space. The k-d tree is created by recur-

sively splitting a data set down the middle of its dimension of greatest variance.

The splitting continues until the leaf nodes contain a small enough number of

data points. For instance, Figure 2.2 shows how 2D data point set is split and

separated into leaf nodes.

The k-d tree constructed will become a tree of depth O(log N) where N is
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Figure 2.2: K-d tree subdivision of 2D points. The number indicates the level of

the tree at which the split occurs.

the number of points stored. Nearest-neighbor search can be accomplished by

following the appropriate branches of the tree until a leaf node is reached. A

hyper-sphere centered at the key point with radius of the distance to the current

closest point can be used to determine which, if any, neighboring leaf nodes

in the k-d tree must be checked for closer points. Once we have tested all the

data in leaf nodes which could possibly be closer, we are guaranteed to have

found the closest point in the tree. Though its worst case complexity is O(N), the

expected number of operations for nearest-neighbor search is O(log N), which

will be the case if the data is evenly distributed. For the cases of storing surfaces

in 3D space in k-d tree, this even distribution assumption usually holds. The

largest overhead involved in using k-d trees is that of construction: the k-d tree

of range-image points must be built prior to the search. This operation costs

O(N log N). To avoid making this computational expense critical, we update

each range image position only once in one step of simultaneous registration

procedure as listed in the pseudo code in Section 2.2.2, requiring only M times of

k-d tree rebuilds in one global iteration where M is the number of range images.

Distance Metric

To utilize nearest-neighbor search based on k-d tree structure, we need a mea-

sure of dissimilarity between a pair of points. The dissimilarity, ∆, between k-d
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Figure 2.3: Point correspondences using point-point and point-plane distance

metric.

points x and y must have the form

∆(x,y) = F(
k∑

i=1

fi(xi,yi)) (2.1)

where the functions fi are symmetrical functions over a single dimension and

functions fi and F are monotonic. All distances satisfy these conditions, in-

cluding the Euclidean distance ‖x − y‖. As mentioned in Section 2.2.1, using

point-plane distance as the error metric provides faster convergence. However,

the point-plane distance, which can be computed by

∆(x,y) = (x− y) ·Ny (2.2)

does not satisfy the monotonic condition. To take advantage of the efficiency of

the k-d tree structure, we use the point-point Euclidean distance as the dissimi-

larity measure. Also, we prefer point-point distance for the sake of robustness; it

enables us to avoid the usage of secondary information derived from raw data,

such as surface normals in point-plane, which can be sensitive to noise in the

raw data points.

Figure 2.3 depicts an example of point correspondences in the case of using

point-point distance metric and point-plane distance metric. While the point-

point distance metric searches for the nearest neighboring point, meaning estab-

lishing a discrete mapping of one surface to another, the point-plane distance
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Figure 2.4: Images using laser reflectance strength as pixel values.

metric can be considered to be a way to find the continuous mapping of one

surface to another. In cases like Figure 2.3, where the model surface has to be

“slid” to fit the scene surface, the point-plane approach successfully finds the

correspondences that enables us to compute the rigid transformation close to

the sliding direction, while the point-point approach tends to get stuck in a local

minima because of the inability to find point mates in the sliding direction. This

sliding ability of point-plane approaches provides faster convergence compared

with using point-point distance metric.

To compensate for the inability to slide with the point-point based distance

measurement, we need some information to be attached to the 3D points; this

information should suggest better matches. For this purpose, we use the laser

reflectance strength (LRS) value when we use laser range finders; or we use

the intensity value when we use a light-stripe range finder as a photometric

attribute of each 3D point. Most laser range finders return the strength of the

laser reflected at each surface point that is measured as an additional output

value. Figure 2.4 shows two images with LRS values used as the pixel values.

For better visualization, the images are histogram-equalized. As can be seen,

the LRS values are mostly invariant against Euclidean transformation, since the

dominant factor of the power of laser reflected at an object surface is its surface

material. The same thing can be said about the intensity values when using the
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Figure 2.5: Point mates using point-point distance metric with reflectance

strength values. Different shape marks indicate different reflectance strength

values.

light stripe range finder under a fixed lighting environment, and when the object

is mostly Lambertian. One common method to utilize two different sources of

information in distance measurement, in this case the position distance and LRS

distance, is to set up a combined metric, such as

∆(x,y) = [(xx− xy)2 + (yx − yy)2 + (zx − zy)2 + λ(rx − ry)2]
1
2 (2.3)

where r is the photometric attribute value and λ is a constant scalar. However,

this scalar introduces a tedious and ad hoc effort in finding the “best” λ. Instead,

we use the photometric attribute to determine the best pair among candidates of

closest points. Namely, we first search for multiple (m) closest points in the k-d

tree, and then evaluate the photometric distance for each of them to obtain the

closest point with respect to the photometric attribute. We gradually reduce the

number of the candidates m along the iteration so as to make it inversely propor-

tional to the number of iterations. This utilization of the photometric attribute

is similar to [55], which uses color attribute to narrow down the closest point

candidates. Figure 2.5 depicts how the point-point distance metric utilizing LRS

values as additional attribute works in the example case depicted in Figure 2.3

(m = 4 in this example).

Speeding Up

Even though we employ k-d tree structure for efficient point correspondence

search, when the number of points in the target range images gets large, the

24



computational cost becomes massive. In early stages of the simultaneous reg-

istration, when the range images are distributed apart, it is more important to

get them close to each other than to accurately compute the rigid transforma-

tion for each registration step. To provide a way to speed up the registration,

we subsample each range image to reduce the number of points used in the

registration process. The points in each range image are given a sequential iden-

tification number m = 0, ..,M − 1 and a uniformly distributed random number

within the interval [0,M − 1] is generated to pick up the points to be used. The

seed number to generate the random numbers is common for all range images

in one simultaneous registration procedure and updated once per each global

registration step. In the current implementation, we let the user determine the

percentile of points to be used in each range image interactively. In future im-

plementations, this could be done automatically, first using a small percentage

and gradually increasing it to reach one hundred percent.

As the range images are set to be still in one iteration of simultaneous regis-

tration, it is very easy to design the whole framework to run in a parallel manner.

In our current implementation, constructing k-d trees and search points mates

and computing transformation steps are done in threads, providing high scala-

bility.

2.2.4 Least-square Minimization Strategy

Representing Transformation

Given a set of corresponding points (xi,yi) where i = 0, ..., N−1, the registration

problem is to compute the rigid transformation which registers the model points

xi with their corresponding scene points yi. The rigid transformation can be

specified by a pair of a 3 × 3 rotation matrix R and a 3D translation vector t.

When the corresponding points are aligned with one another, yi can be written

as

yi = Rxi + t. (2.4)

Since range data points are contaminated by noise, the range image registra-

tion problem can be described as a error minimization problem with the error
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function as,

f(R, t) =
∑

i

‖Rxi + t− yi‖2 (2.5)

to minimize with regard to (R t). As mentioned in Section 2.2.2, i will stand for

all point mates established from all pairs of range images (if there are M range

images, i will include all point mates from M × (M − 1) range image pairs).

Although it is convenient for vector computation to represent the rotation as a

3 × 3 matrix R, R will be constrained in a non-linear way as follows (T stands

for transpose).

RRT = I

|R| = 1

It is difficult to take advantage of the linear matrix representation of rotation

while satisfying these constraints. For this reason, we will use the quaternion

representation for rotation, a well known solution to this rotation problem. The

benefits of using quaternion will be described later. Thus, the position parame-

ters of each range image and the rigid transformation to register all of them will

be represented with seven element vectors as follows.

p = [tT qT]T (2.6)

where q = [u v w s]T

M-Estimator

As seen in Section 2.2.4, the registration problem can be described as a least-

square minimization problem with the objective function Equation (2.5). Point

correspondences are acquired using the techniques described in Section 2.2.3. In

solving this error minimization problem, there are several points to take special

care of. First, the early stages of registration will contain a lot of mismatches in

correspondences, since range images will be positioned far apart. Second, even

after several registration iterations, many mismatches can still be contained in

the correspondences, due to noise contaminated data points, etc. The underly-

ing problem here is how to robustly reject outliers. The following three repre-

sentative classes of solutions can be found in the field of robust statistics.

The first class of solutions, outlier thresholding, is the simplest and most

computationally cheap technique and thus the most common technique used in
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vision applications. The basic idea is to estimate the standard deviation σ of

the errors in the data and to eliminate data points which have errors larger than

|kσ| where k is typically greater than, or equal to, 3. The problem with outlier

thresholding is that a hard threshold is determined to eliminate the outliers. This

means that, regardless of where the threshold is chosen, some number of valid

data points will be classified as outliers and some number of true outliers will be

classified as valid. In this sense, it is unlikely that a perfect method for selecting

the threshold exists unless the outliers are all known a priori.

The second class of robust estimators is the median/rank estimation method.

The basic idea is to select the median or kth value (for some percentile k) with

respect to the errors for each observation and to use that value as our error esti-

mate. The logic behind this is that the median is almost guaranteed not to be an

outlier as long as half of the data is valid. An example of median estimators is

the least-median-of-squares method (LMedS) [37, 121]. LMedS computes the pa-

rameters of interest which minimize the median of the squared error computed

from all data pairs using that parameter. Essentially, this requires an exhaustive

search of possible values of the parameters by testing least-squares estimates

using that parameter for all possible combinations of point correspondences.

While these median-based techniques can be very robust, this exhaustive search

remains a large drawback.

The third class of robust techniques is M-estimation [93, 37, 121], the one we

use. The general form of M-estimators allows us to define a probability distri-

bution which can be maximized by minimizing a function of the form,

E(z) =
∑

i

ρ(zi) (2.7)

where ρ(z) is an arbitrary function of the errors zi in the data set. The M-estimate

is the maximum-likelihood estimate of the probability distribution P equiva-

lent to E(z). Least-squares estimation, such as minimizing Equation (2.5), corre-

sponds to M-estimation with ρ(z) = z2.

P (z) = e−E(z) = e−
�

i z2
i (2.8)

We can find the parameters p that minimize E by taking the derivative of E with
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Figure 2.6: Weight values corresponding to several M-estimation functions.

respect to p and setting it to 0.

∂E

∂p
=

∑
i

∂ρ

∂zi
· ∂zi

∂p
=

∑
i

w(zi)zi
∂zi

∂p
= 0 (2.9)

where w(z) = 1
z

∂ρ
∂z

.

As can be seen in Equation (2.9), M-estimation can be interpreted as weighted-

least square minimization with the weight function w being a function of data

points zi. Figure 2.6 shows the plots of the respective weight functions corre-

sponding to several M-estimation functions. In our current implementation, we

use Lorentz’s function as the M-estimator; we found that it works best with our

range image data.
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Putting It Together

Now, we can redefine our registration problem as follows. Given a set of corre-

sponding points (xi,yi) (i=0,...,N-1), we will minimize

E(p) =
1

N

N∑
i

ρ(zi(p)) (2.10)

where zi(p) = ‖R(q)xi + t− yi‖ (2.11)

and ρ(zi) = log(1 +
1

2
z2

i ). (2.12)

The minimization of function E can be accomplished in a conjugate gradient

search framework [37, 93]. Conjugate gradient search is a variation of gradi-

ent descent search, which constrains each gradient step to be conjugated to the

former gradient step. This constraint avoids much of the zig-zagging that pure

gradient descent will often suffer from, and consequently provides faster con-

vergence. In applying conjugate gradient search to our minimization problem,

we need to compute the gradient of function E with respect to pose parameter

p which can be described as Equation (2.9). For the following derivations, we

redefine zi to be

zi(p) = ‖R(qxi) + t− yi‖2. (2.13)

A priori to the computation of the gradient, we pre-rotate the model points,

so that the current quaternion is qI = [0 0 0 1]T which has the property that

R(qI) = I. This allows us to take advantage of the fact that the gradient of R(q)x

can easily be evaluated at q = qI:

∂(Rx)

∂q
x = 2C(x)T (2.14)

where C(x) is the 3×3 skew-symmetric matrix of the vector x which has a useful

characteristic as follows.

C(x)y = x× y (2.15)

where × is the cross product. With these facts, ∂zi

∂p
in Equation (2.9) can be de-
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rived as

∂zi

∂p
= 2(R(q)xi + t− yi)

∂(R(q)xi + t− yi)

∂p

=


 2(xi + t− yi)

4C(x)T(xi + t− yi)




=


 2(xi + t− yi)

4xi × (t− yi).


 (2.16)

With the gradient computed in the above manner, line minimization is ac-

complished with golden section search. Line minimization methods using in-

terpolation are not adopted, since it is easy to imagine the base function to be

highly non-linear.

2.2.5 Results

Photometric Attribute

To demonstrate that we can accomplish precise registration when an additional

attribute which is almost Euclidean invariant is available, we prepared a range

image sequence of a rotationally symmetric object that contains intensity values

for each 3D point. By using a light stripe range finder [102], we obtained three

sets of the range and color image pair of a CupNoodle, and assigned the in-

tensity values (Y of Y CbCr computed from RGB values of corresponding color

images) to each 3D point in each range image. The lighting environment was

static, and the object was roughly Lambertian. Note that, even if the object was

not Lambertian and contained specularities, these could be successfully elimi-

nated with the robust M-estimation framework. Range images were located as

in Figure 2.7 by human interaction, and our registration method was applied by

first setting m in Section 2.2.3 to 100 and gradually decreasing it to 1 as the proce-

dure converged for each m. Figure 2.8 depicts the registration results. As can be

seen in Figure 2.8, without the additional attribute, range images get stuck in a

local minima as soon as they overlap and they do not slide around the symmetry

axes; however, when using the photometric attribute, the images do slide.
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Figure 2.7: Initial positions of the cupnoodle sequence.

Noisy Range Images

To examine the robustness against noise, we applied the proposed method to

a noisy range image sequence. By setting the threshold of the aforementioned

light-stripe range finder to include quite an amount of background and not to

eliminate ill triangle patches (triangle patches that have large aspect ratios), we

obtained three range images of a ceramic cat, including a lot of noise. To com-

pare the proposed method with the registration method proposed in [84], the

range images were initially aligned with each other via human interaction as

depicted in Figure 2.9. 2 After iterating both methods until convergence, we

eliminated all 3D points and triangle patches that did not belong to the ceramic

cat and measured the errors by using a point-plane distance metric. Table 2.1

shows the results and Figure 2.11 depicts the histograms of errors for both meth-

ods. Our method converged robustly, while the method of [84] converged into a

local minima, leaving a gap as can observed in Figure 2.10.

2With more rough initial hand alignment, the other registration method did not converge.
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Average Error Max. Error Min. Error

Our method 0.84 2.55 5.35× 10−7

[84] 1.29 2.57 3.21× 10−5

Table 2.1: Comparison of errors in mm.

Cultural Heritage Preservation

We have applied the proposed method to register real data, the Great Buddha in

Kamakura. The Great Buddha was scanned from fourteen different directions

using Cyrax 24003 , a time-of-flight laser range scanner that can scan up to 100m

with ±6mm error at 50m distance. Each point cloud image consists of approxi-

mately three to four million vertices. Since registering all range images with full

resolution requires massive computational resources and time, we registered

those range images in 1/25 resolution as a preliminary experiment.

First, the input range images were registered in a pairwise manner with oc-

casional human interaction for initial alignment, and then registered simultane-

ously. The variance of Lorentz’s function was set to large in the beginning and

then gradually decreased each time the registration procedure converged with a

particular variance value. Rough initial pairwise alignment was accomplished

with approximately five to ten iterations, and the final simultaneous registration

was done with 25 iterations. Figure 2.12 depicts the M-estimator error for each

iteration for the last 25 iterations. Since all range images are treated to be static

inside each iteration, the M-estimator error does not always become smaller af-

ter each iteration. However, because the error is guaranteed to decrease inside

each iteration, it is clear that the algorithm converges to a certain minimum,

which is shown in the graph.

Figure 2.13 shows the resulting registered Great Buddha using different col-

ors for each range image and Figure 2.14 shows the resulting Great Buddha us-

ing the same color for all range images.

3Cyra Technologies Inc.
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Figure 2.8: Left column: After registration without intensity attribute. Right

column: After registration with intensity attribute. Each row shows a different

range image. Grids are depicted for better visualization.
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Figure 2.9: Initial positions of the Noisy Cat sequence.

Figure 2.10: Left: Registered with [84] Right: Registered with our

method.(Viewing from the top left of the cat.)
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Figure 2.11: Histogram of errors.
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Figure 2.12: M-estimator error v.s. iteration number

Figure 2.13: Registered Great Buddha. Different color indicates different range

image.
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Figure 2.14: Registered Great Buddha.
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2.3 Robust and Adaptive Integration of Multiple Range Images

2.3.1 Related Work and Overview

Several approaches have been proposed to integrate multiple pre-registered range

images to obtain one complete geometric model from them. Turk and Levoy [120]

proposed a method to “zipper” two range images at a time, by first removing

overlapping portions of the meshes, next clipping one mesh against another,

and then re-triangulating the mesh on the boundary. Although merging two

range images is an intuitive process, pairwise merging does not work well when

integrating multiple range images. Given a number of range images overlap-

ping each other, a merging procedure which extracts the isosurface is necessary.

Merging methods that make use of volumetric, implicit-surface representation

and the marching-cubes algorithm [65] are suitable for this purpose. Hoppe et

al. [44] construct 3D surface models by applying the marching-cubes algorithm

to a discrete, implicit-surface function generated from a set of range images.

After inferring local surface approximations from clouds of points based on tan-

gent plane estimations, local search is accomplished to compute the signed dis-

tance from each voxel to the surface of the point set. Curless and Levoy [18]

enhances Hoppe’s algorithm in a few significant points. However, none of these

methods, including several others [41], compensate for noise or extraneous point

data; the data is assumed to be part of the object, and noise is assumed to be neg-

ligible. Each of these methods suffers from inaccuracy due to their integration

strategy, e.g., integrating unrelated observations, and these accuracy problems

will affect the result even when the data is noise-free. Wheeler et al. [125, 124] ad-

dressed these important problems by designing a consensus surface algorithm.

The consensus surface algorithm attempts to justify the selection of observations

used to produce the average by finding a quorum or consensus of locally coher-

ent observations. This process successfully eliminates many troublesome effects

of noise and extraneous surface observations, and also provides desirable results

with noise-free data.

Based on Wheeler’s algorithm to robustly integrate multiple range images,

we propose a range image integration method which can construct 3D mod-

els with photometric attributes. Considering applications that utilize geometric
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models, for instance, 3D object recognition and localization tasks, it is desirable

to construct 3D models with additional attributes such as color and intensity.

With the additional information provided by photometric attributes, higher ac-

curacy and robustness can be expected from those applications. By taking a

consensus of appearance changes of the target object from multiple range im-

ages, we reconstruct the 3D model with appearance values attached per vertex,

successfully discarding outliers due to noise produced in the image-capturing

process. This algorithm, taking consensus of photometric attributes, can also

be used to derive the rigid part of the appearance change on the object surface,

providing a 3D model with Lambertian reflected light values under a static illu-

mination environment.

In some sense, our method is analogous to “Voxel Coloring” [17, 58, 107],

where photometric consistency is used to carve a volume to reconstruct a geo-

metric model with texture. Our framework goes the opposite way; we already

have 3D information; from it, we pick out the consistent photometric attribute

values per voxel to be attached to one geometric model.

We also propose an algorithm to construct the 3D model in an efficient rep-

resentation. By taking the surface curvature into account when splitting the

voxels recursively in an octree manner, the resulting 3D surface will be subdi-

vided more in high curvature areas and less in surface areas that are near planar.

Thus, the resulting geometric model will require fewer triangular patches to rep-

resent the object surface. Furthermore, by taking the photometric attributes into

account, we can construct 3D models that have higher detail in surface areas

that contain significant variation of appearance, providing an efficient basis for

texture-mapping and shading. This is similar to research on mesh model sim-

plification algorithms based on surface [36, 42, 43], while we reconstruct a sim-

plified 3D model through a range image merging procedure based on implicit

surface representation. The simplification is done when splitting voxels recur-

sively, enabling better preservation of topology and mass of the object compared

with results of other volume-based simplification methods [110, 111]. Frisken

et al.[35] proposed adaptive sampling of distance field; however, their method

does not produce a triangular mesh model. For converting the volumetric rep-

resentation of the 3D model to a triangular-based mesh model, we propose an

extended version of the marching-cube algorithm; this version handles voxels
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Figure 2.15: Zero-crossing interpolation from the grid sampling of an implicit

surface

in different resolutions.

2.3.2 Volumetric Range Image Integration

In this section, we review the range image integration algorithm proposed by

Wheeler [125, 124], which we will use as our basis.

In Wheeler’s algorithm, all range images are first stored in a volumetric rep-

resentation. The volume is split into grids, with each grid containing samples

of an implicit surface. Namely, in each voxel, the signed distance f(x) from the

center point of the voxel x to the closest point of the object’s surface. Positive

values of f(x) indicate that the voxel lies outside the surface, while negative

values indicate that it lies inside. The range image integration (view merging)

problem can be interpreted as: given multiple samplings of this implicit function

through multiple range images, extract the isosurface that is the zero crossing of

this function (Figure 2.15). To solve this problem, we first have to consider how

to compute f(x), without knowing which, of many possible surfaces, is the exact

surface.
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Figure 2.16: Naive algorithm: An example of inferring the incorrect sign of a

voxel’s value, f(x), due to a single noisy triangle.

Consensus Surface Algorithm

Wheeler et al. proposed the consensus surface algorithm, to compute the signed

distance function f(x) for arbitrary points x when given N triangulated surface

patches from various views of the object surface.

Previous naive algorithms define the magnitude of the implicit function |f(x)|
of each voxel as the distance from the voxel center to the nearest triangle in all

views (range images). However, this definition returns false values when range

images contain errors. Figure 2.16 depicts this situation; the point chosen as the

closest point from x does not belong to the real surface, and the naive algorithm

incorrectly considers that x lies inside the object surface from noisy surface nor-

mal information.

This sensitivity to noise in range data can be solved by estimating the surface

locally by averaging the observations of the same surface. Nearby observations

are compared using their locations and surface normals, and if those values are

within a predefined error tolerance, they can be considered to be observations

of the same surface. The search for “nearby” observations can be accomplished

using k-d trees [34] containing each range image separately. Given multiple

surfaces that can be considered to be observations of the same surface, the con-
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Figure 2.17: Consensus surface algorithm: The signed distance is chosen from

the consensus surfaces inside the circle.

sensus surface algorithm examines the closest point in each image’s triangle set

to determine whether it can contribute to the consensus, by checking whether it

is sufficiently close in terms of location and normal direction. A simple example

when two range image surfaces are present is as follows.

SameSurface(〈p0,n0〉, 〈p1,n1〉) =
 True (‖ p0 − p1 ‖≤ δd) ∧ (n0 · n1 ≥ cos θn)

False otherwise
(2.17)

where δd is the maximum allowed distance and θn is the maximum allowed

difference in normal directions.

Range image surfaces that pass this check are considered to be the consen-

sus surfaces, and the distance to the closest one of them is used as the signed

distance (see Figure 2.17).

Octree-based Voxel Splitting

To represent surface in volume, the volume has to be fine only around where the

surface lies, instead of having fixed resolution [18]. In Wheeler’s algorithm, this

is accomplished by recursively splitting the voxels in an octree manner. Voxels

containing zero crossing or neighboring zero crossing implicit function values
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Figure 2.18: A 2D slice of the octree splitting volume. The resolution is high

around the surface and low elsewhere.

are subdivided into the finest level by checking the magnitude of the signed

distance 4 . As the resolution of voxels containing the resulting surface are the

same (Figure 2.18), the marching-cube algorithm [65] can be applied straightfor-

wardly to extract the final triangular-based mesh surface.

2.3.3 Consensus Surface with Photometric Attributes

In applications utilizing geometric models, e.g., 3D object recognition/localization,

non-rigid appearance variation plays a crucial role in the accuracy and robust-

ness. In particular, specular reflection causes the appearance to change non-

rigidly, consequently making the whole process difficult. Thus, to date, most

object recognition and object localization algorithms simply neglect specular re-

flection as outliers and assume Lambertian surfaces for target scenes and mod-

4Refer to [125, 124] for details.
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els. To cooperate with this basic assumption on photometric properties, it is

highly desirable to construct the geometric model to be used in such applica-

tions with Lambertian reflection property. If the 3D model is represented with

photometric attributes that are rigid against changes in illumination and view-

ing directions, higher accuracy and robustness can be expected. Furthermore,

if the illumination directions and viewing directions can be pre-estimated when

processing recognition algorithms, non-rigid appearance variation such as spec-

ular reflection can be predicted and added to the 3D model appearance to further

elevate the accuracy.

We accomplish this photometrically rigid 3D model construction in our range

image integration framework. As examples of photometric attributes attached

to range images, we consider two different attributes: laser reflectance strength

and intensity/color.

As mentioned in Section 2.2.3, when using laser range finders to obtain the

geometric information, laser reflectance strength (LRS) values can be obtained

as additional attributes of each 3D point. As the laser can be considered as light

with very narrow wavelength distribution, almost a single value, the behav-

ior of the reflected laser on the target surface can be considered as same as the

general light reflection. Namely, almost isotropic reflection analogous to diffuse

reflection and sharp reflection distributed around the perfect mirror direction

analogous to specular reflection occurs. Since the laser reflected in the perfect

mirror direction will not be observed from the range finder direction, the por-

tion of the laser that is reflected back can be considered to be caused by this

diffusive reflection. As can be seen in Figure 2.4, although the LRS values are

almost view-independent, they do vary slightly depending on the scanned di-

rection [81], besides the occasional specular reflection.

To construct a 3D model with these LRS values attached to each vertex, we

take the consensus of LRS values from different range images as well as the 3D

information when merging multiple range images. In this LRS attribute case, the

consensus can be obtained simply by taking the median of the LRS values from

multiple range images inside each voxel and assigning it to each voxel center. As

an example of applications utilizing these 3D models with LRS values attached,

robust 2D-3D registration can be considered [57].

The color or intensity of target objects can be handled in the same manner.
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Range images with color information attached per vertex can be obtained by

using range finders that can acquire color images aligned to range images, e.g.,

light- stripe range finders, stereo systems, or by aligning 2D images taken sep-

arately to range images obtained by laser range finders [57, 114]. As is well-

known, the color variation on the object surface is composed of two reflection

components: the diffuse reflection and the specular reflection. While the dif-

fuse reflection is almost independent of the viewing direction and its strength

varies depending on the illumination direction, the specular reflection changes

its strength drastically depending on the viewing direction and illumination di-

rection. For simplicity, we consider a situation where the color images of the

target object are taken under a static illumination environment with only the

viewing direction varying while the object remains static. This assumption can

be made naturally when scanning objects with laser range finders, especially

when the target object is large, and also when scanning small objects to build

3D models for use in object recognition tasks in indoor scenes. As the illumi-

nation direction can be considered to be static for all color images, the intensity

variation of each 3D point on the target object surface should have a DC com-

ponent because of the invariant diffuse reflection with a sharp peak caused by

specular reflection added to it, which can be observed from a narrow viewing

direction. Thus, if each 3D point is observed from enough viewing directions,

the histogram of the intensity values should have a sharp peak at the diffuse

reflection value with some distribution around it due to image-capturing noise.

Figure 2.19 depicts an example of this from real data. Based on this considera-

tion, by taking the the median from multiple range images inside each voxel and

then assigning it to each voxel, we can determine the color or intensity values to

be attached to the resulting 3D model.

2.3.4 Integrating in Adaptive Resolution

The original consensus surface algorithm efficiently computed signed distances

by utilizing an octree. However, it generated a mesh model in finest resolution

everywhere. To reduce the amount of data required to represent the object and to

use computational resources efficiently, we propose a method which generates

a mesh model in adaptive resolution, with appropriate resolution according to
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Figure 2.19: An example of the histogram of the intensity values of consensus

points. Some outliers due to specular reflection are observed. In this case, the

median value is 0.04.

the geometric and photometric characteristics of the observed object.

Voxel Subdivision based on Geometric Attribute

To efficiently represent the final mesh model, we determine the sampling inter-

val of the signed distance, depending on the variation of geometric attributes.

As an example, we use the surface curvature. Depending on the change in sur-

face curvature, the proposed method samples coarsely in planar areas, conse-

quently reducing the amount of data and computation, while creating a finer

model of an intricate object by utilizing the computation power efficiently.

Our method determines the variation of surface curvature comparing surface

normals. We compare the normal ni of each 3D point of all range images inside

the voxel in interest and the normal n̄ of the approximated plane (see Figure

2.20), which can be estimated by applying PCA to all point data in the voxel. If

the angle between data point normals ni and approximate normal n̄ satisfies

max
i

(arccos(ni · n̄)) < δn, (2.18)
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Figure 2.20: Our method approximates neighboring range images points to a

plane and computes its normal vector n̄ by principal component analysis (PCA)

for the cloud of range image points. The approximate normal is then used to

determine further subdivision.

where δn is the threshold of angle, the sampling interval is fine enough and no

further voxel splitting is required.

To avoid erroneous subdivisions of voxels by the influence of noise included

in each range image, our method takes a consensus between range images on

decision of voxel subdivision. Now, Nn is the number of range images which

satisfies Equation (2.18). Our method does not subdivide the voxel if

Nn > Tn, (2.19)

where Tnp is the threshold of consensus for normal vectors.

Voxel Subdivision based on Photometric Attribute

Voxel subdivision based on variation of photometric attributes can be accom-

plished in a similar manner. When the voxel is subdivided depending on geo-

metric attributes only or without consideration of any attributes, the appearance

of the resulting object will be significantly smoothed out. Since ordinary shaders

such as smooth shading and phong shading will simply interpolate the intensity

values attached to each vertex, this smoothing is unavoidable. However, if we

can triangulate the 3D mesh model with regard to the appearance variation, i.e.,
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fine around appearance boundaries and having each triangular patch contain al-

most the same texture color, simple shading will work dramatically well. Also,

3D models tessellated with regard to their texture variation are useful to accom-

plish further texture analysis and synthesis. For instance, view-dependent tex-

ture mapping such as the one we explain in the next chapter can achieve higher

compression, since global texture compression stacking triangular patches with

similar texture can be applied.

In a similar manner to subdividing by the curvature of the surface, our method

computes the variation of photometric attributes of 3D points inside the voxel of

interest. Now, ci, cj are the photometric attributes of neighbor points included

in a range image. If the maximum difference satisfies

max
i,j

(Distance(ci, cj)) < δc, (2.20)

where δc is the threshold and Distance(ci, cj) is the function which computes the

difference of two photometric attributes, the sampling interval is fine enough

for the range image.

Our method also takes a consensus while considering photometric attributes.

Similar to Equation (2.19), our method does not subdivide the voxel if

Nc > Tc, (2.21)

where Nc is the number of range images which satisfies Equation (2.20) and Tn

is the threshold of consensus for photometric attributes.

Marching Cubes for Adaptive Octree

The original marching cubes algorithm can be applied only to voxels that have

the same resolution (size). We extend the algorithm for triangulation of voxels

in adaptive resolution generated from our method.

For voxels that are surrounded by voxels with the same resolution, the ver-

tices of a cube to march are the central points of 8 adjacent voxels. In a similar

manner, voxels surrounded by different sized voxels will have a set of connected

voxels in the form of a quadratic pyramid or other special forms to march. Fig-

ure 2.21 shows the edges connecting adjacent voxels in an adaptive octree. Since

these forms can be considered to be degenerated and transformed cubes, the

original marching cube algorithm can be applied without modification.
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2D slice of adaptive octree
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Figure 2.21: Edges connecting adjacent voxels in an adaptive octree.

2.3.5 Results

We have built a PC cluster that consists of eight PCs, each equipped with dual

PentiumIII 800MHz processors with 1GB memory, connected by 100BASE-TX

Ethernet. As consensus surfaces can be computed independently requiring only

adjacent voxels, we parallelize the whole process by splitting the whole volume

into pieces. With this parallel implementation, we are able to handle a huge

amount of range image data.

First, we observe the shape and intensity of a box using the light-stripe range

finder [102]. We acquire 60 range and intensity images from various viewpoints

by putting the box on a turntable and rotating it six degrees for each step. Since

range and intensity images are already aligned, we can attach intensity values

to corresponding 3D points as a photometric attribute. Specular reflection is

observed in some images (see Figure 2.22).

Figure 2.23 shows the merging result of the box. We experimented with our

algorithm in two cases: merging with adaptive subdivision based only on sur-
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Number of points Time for Integration Mean Error

(A) 3.0 million 252 min. N/A

(B) 1.2 million 82 min. 0.99 mm

(C) 1.4 million 88 min. 0.44 mm

Table 2.2: Statistics of Models of the Buddha: Our method reduces the amount of

data and computation time. However, the mean errors are quite small compared

with the Buddha size.

face curvature and based on both surface curvature and intensity. As can be seen

in Figure 2.23, although specular reflections appear in some input images, they

are not observed in the resulting model.

When subdividing voxels only by the curvature of the surface, the sampling

becomes coarse in the planar area. However, since the intensity varies drasti-

cally around the character edges, the characters are smoothed out and deformed

when rendered with simple smooth shading. On the other hand, when voxel

subdivision is accomplished based on both curvature and intensity, the consen-

sus surface sampling becomes fine around the character edges. Because of this,

the sharpness of intensity edges is well preserved and the shapes of the charac-

ters are well rendered.

Next, we applied our algorithm to the Great Buddha in Kamakura, whose

height is about 13 meters. Sixteen range images with LRS values attached to

each 3D point were acquired by Cyrax 2400 [20]. Figure 2.24 shows 3 different

results of our method. Their statistics are described in Table 2.2. We compared

the size and accuracy of the models between A and B, A and C, using Metro [16].

In a comparison of the images rendered with LRS values, the appearance of

(B3) is smoothed out compared with (A3). On the other hand, the sharp edges

due to variation in LRS values of (C3) are well preserved while the amount of

the data is successfully reduced.
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Figure 2.22: Range and intensity images of the box is acquired from various

viewpoints using a turn table. These are two intensity images of sixty input

images. Some images include specular reflection.

2.4 Summary

We have presented two methods for the geometric modeling pipeline: a robust

simultaneous registration method and a robust and adaptive integration method

taking photometric and geometric attributes into account.

For registration, we proposed a framework to simultaneously register multi-

ple range images. The simultaneous registration problem is redefined as a least-

square problem with an objective function globally constructed with respect to

each range image. For efficiency, we employ k-d tree structure for fast point

correspondence search and apply conjugate gradient search in minimizing the

least-square problem for faster convergence. For robustness, we employ photo-

metric attributes of raw 3D points, and search for “better” point mates based on

their distance. Also, M-estimator is used for robust outlier rejection.

For integration, we proposed a range image integration framework which

can construct 3D models with photometric attributes. By taking a consensus

of appearance changes of the target object from multiple range images, we re-

construct the 3D model with an appearance which successfully discards outliers

caused by noise. Also, we can provide a model with Lambertian reflected light
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Figure 2.23: Merging results of a box with texture: the model in the left column

is created by adaptive subdivision based on the curvature of the surface, and

the one in the right column is created by adaptive subdivision based on both the

surface curvature and the variation of intensity.
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(A) (B) (C)

(1)

(2)

(3)

Figure 2.24: Merging results of the Kamakura Buddha: Column: (A) without

adaptive subdivision, (B) with adaptive subdivision based on surface curvature,

(C) with adaptive subdivision based on both surface curvature and LRS varia-

tion. Row: (1) wireframe model, (2) polygonal model, (3) images rendered with

LRS values. The far upper and far lower rows are zoom-ups of the forehead of

the Buddha. 53



values by discarding specular reflection as outliers. We also proposed an algo-

rithm for constructing a 3D model in an efficient representation. Considering

the surface curvature and the photometric attributes, we constructed 3D models

that have higher detail in surface areas that contain either high curvature or sig-

nificant variation of appearance. Thus, we could efficiently use computational

resources.

Both methods take special care of their robustness against noise, by means

of M-estimation in registration and consensus surface extraction in integration.

Experimental results, including application for digital preservation of cultural

heritage objects, prove the robustness and effectiveness of these methods.

Given an accurate geometric model through the geometric pipeline, we are

ready to analyze the appearance of real world objects based on it. In the next two

chapters, we present two frameworks for appearance analysis and synthesis,

both of which take full advantage of the geometric model we have built.
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Chapter 3

Eigen-Texture Rendering

3.1 Approach

In this chapter, we tackle the problem of rendering from a dense set of images.

Given a 3D model of the target object and an image sequence of the object with

varying viewing directions and light source directions, how can we efficiently

represent the object so that it can be rendered from arbitrary viewpoints? Fur-

thermore, how can we change the lighting conditions based on that representa-

tion?

As mentioned in Section 1.2, unlike pure image-based rendering methods,

ours assumes that we know the geometry of the scene, i.e., the shape of the object

and the viewpoint. Knowledge of the geometry of the object contributes much

information toward making the representation compact. To take full advantage

of the geometry of the object, we handle the appearance variation, caused by

view direction and light source direction changes on the surface of the object.

Note that, although it is the same 2D as the images in image-based rendering

methods, it significantly reduces the redundancy to represent the appearance.

In an image-based rendering point of view; this can be considered as pasting

one of the two 2D slices to parametarize light rays on the object surface, more

concretely, on the triangular patches of the mesh model of the object. The term

“Surface Lightfields” introduced by Miller et al. [71] captures this idea well, al-

though they use it in a different context.
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Figure 3.1 displays an overview of the proposed method, which we will refer

to as Eigen-Texture Rendering method. First, we create a 3D model of the target

object from a sequence of range images. We use a light stripe range finder [102]

to aquire the range images, and then the registration and integration of range im-

ages are done with the methods presented in Chapter 2. Next, we take a number

of color images and align and paste them onto the surface of the object model.

Then, the color images are converted into a new representation, cell images, and

compressed by extracting the principle components of each cell image sequence

via principle component analysis (PCA). The principle components of the cell

images are stored with their coefficients for each viewpoint. View-dependent

image synthesis can be accomplished by taking a linear combination of basis

cell images per triangular patch. Virtual images under a complicated illumina-

tion condition can be generated by a summation of component virtual images

sampled under single illuminations thanks to the linearity of image brightness.

3.2 Eigen-Texture

This section describes the theory of Eigen-Texture Rendering. The method sam-

ples a sequence of color and range images. Once these two sequences are input

to the system, a 3D geometric model of the object is created from the sequence

of range images via the geometric pipeline described in Chapter 2. Each color

image is aligned with the 3D model of the object. In our system, this align-

ment is relatively simple because we use the same color charge coupled device

(CCD) camera for taking both range and color images. Each color image is di-

vided into small areas that correspond to trianglular patches on the 3D model.

Then the color images corresponding to triangular patches are warped to have a

predetermined normalized triangle shape by bi-linearly interpolating the pixel

values. We refer to this normalized triangular shape corresponding to each tri-

angular patch as a cell and to its color image as a cell image. A sequence of cell

images from the same cell is collected as shown in Figure 3.2. Here, this se-

quence depicts appearance variations on the same physical patch of the object

under various viewing conditions. Principle component analysis (PCA) is ap-

plied for each cell image sequence to compress each cell image set separately.

Note that the compression is done in a sequence of cell images. The appearance
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changes in the cell image sequence are mainly due to the change of brightness,

when the object surface is well approximated with the triangular patch based 3D

model; some cell images, however, may have highlights passing across. Thus,

high compression ratio can be expected with PCA. Furthermore, it is possible to

interpolate appearances in the eigenspace.

Eigenspace compression on cell images can be achieved by performing the

following steps. The color images are represented in RGB pixels, but the com-

pression is accomplished in Y CrCb using 4 : 1 : 1 subsampling, based on the

accepted theory that human perception is less sensitive to slight color changes

than to brightness changes. First, each cell image is converted into a 1 × 3N

vector Xm by arranging color values for each color band Y CrCb in a raster scan

manner (Equation (3.1)). Here, M is the total number of poses of the real object,

N is the number of pixels in each cell image and m is the pose number.

Xm =
[

xY
m,1 ... xCr

m,1 ... xCb
m,N

]
(3.1)

Then the sequence of cell images can be represented as a M × 3N matrix as

shown in Equation (3.2).

X =
[

XT
1 XT

2 ... XT
M

]T

(3.2)

The average of all color values in the cell image set is subtracted from each el-

ement of matrix X. This ensures that the eigen vector with the largest eigen

value represents the dimension in eigenspace in which the variance of images is

maximum in the correlation sense.

Xave =


 ... xY

1,N − E ... xCr
1,N − E ... xCb

1,N −E

... . ... . ... .


 (3.3)

Xa = X−




E ... E

. ... .

E ... E


 (3.4)

E =
1

3MN

M N∑
i=1,j=1,c∈{Y,Cr,Cb}

xc
i,j

With this M × 3N matrix, we define a 3N × 3N matrix Q, and determine eigen

vectors ei and the corresponding eigen values λi of Q by solving the eigenstruc-

ture decomposition problem.

Q = XT
a Xa (3.5)

57



λiei = Qei (3.6)

At this point, the eigenspace of Q is a high dimensional space, i.e., 3N dimen-

sions. Although 3N dimensions are necessary to represent each cell image in

an exact manner, a small subset of them is sufficient to describe the principal

characteristics as well as to reconstruct each cell image with adequate accuracy.

Accordingly, we extract k (k � 3N ) eigen vectors which represent the original

eigenspace adequately; by this process, we can substantially compress the image

set. The k eigen vectors can be chosen by sorting the eigen vectors by the size of

their corresponding eigen values, and then computing the eigen ratio (Equation

(3.7)). ∑k
i=1 λi∑3N
i=1 λi

≥ T where T ≤ 1 (3.7)

Using the k eigen vectors {ei | i = 1, 2, ..., k} (where e i is a 3N×1 vector) obtained

by using the process above; each cell image can be projected onto the eigenspace

composed by matrix Q by projecting each matrix Xa. And the projection of each

cell image can be described as a M × k matrix G.

G = Xa ×V where V =
[

e1 e2 ... ek

]

To put it concisely, the input color image sequence is converted to a set of cell

image sequences, and each sequence of cell images is stored as the matrix V,

which is the subset of eigen vectors of Q, and the matrix G, which is the projec-

tion onto the eigenspace. As we described in Equation (3.1), each sequence of

cell images corresponds to one M × 3N matrix X, and is stored as 3N × k matrix

V and M × k matrix G, so that the compression ratio becomes that described in

Equation (3.8).

compression ratio = k
M + 3N

3MN
(3.8)

Each synthesized cell image can be computed by Equation (3.9). A virtual object

image of one particular pose (pose number m) can be synthesized by aligning

each corresponding cell appearance (Rm) to the 3D model.

Rm =
k∑

i=1

gm,ie
T
i + [E E ... E] (3.9)
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Figure 3.1: Outline of the Eigen-Texture Rendering method.

59



Figure 3.2: A sequence of cell images.
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3.3 Implementation

We have implemented the system described in the previous section, and have

applied the Eigen-Texture Rendering method to real objects.

3.3.1 System Setup

We built an experimental system to capture the input color images and range

images. In our capturing system setup, the object is attached to a rotary table

(see Figure 3.3).

A single point light source fixed in the world coordinate is used to illuminate

the object. A range image is taken by the 3 CCD color camera under a nematic

liquid crystal mask [102]. A sequence of range images is taken by rotating the

object 30◦ by each step in this experiment. Each range image is converted into

Figure 3.3: The system setup we use.
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a triangular mesh model; the models are then registered to one another by the

robust simultaneous registration method described in Section 2.2. After regis-

tration, to obtain one complete mesh model, all mesh models are integrated by

the integration method in Section 2.3. The integration is done in a non-adaptive

manner. We will discuss the possible advantanges of using an adaptive inte-

gration later in this document. A sequence of color images is also taken by the

same 3 CCD color camera, rotating the object similarly to the rotation of the

range image sequence; however, the object rotation interval is smaller than that

of the range image sequence. For instance, a step of 3◦ was used for the first

experiment described in the next section.

Since we use a light stripe range finder, the range images and the color im-

ages are taken with the same camera. Therefore, the color images can be easily

aligned with the 3D model generated from the range images. Another alterna-

tive way to obtain accurate 3D models is to use laser range finders. When using

other types of range finders such as laser range finders, since the 3D model and

the color images will be taken in different coordinate systems, the systems must

be aligned with one another. This can be accomplished by minimizing some

error metric of the point correspondence between the color images and the 3D

model [57], or by maximizing the correlation between them.

3.3.2 Cell-adaptive Dimensional Eigenspace

Determining the number of dimensions of the eigenspace in which the sequence

of cell images are stored is a non-trivial issue, as it has significant influence on

the quality of the synthesized images. According to the theory of photometric

stereo [128] and Shashua’s linear theory [109], in an ideal case where the 3D

model is perfectly aligned with the input images and where the model approx-

imates the real object surface well, i.e., when the object surface approximated

by the triangular patch is a plane, or when the geometric model is sufficiently

tessellated, three dimensions are enough for compressing and synthesizing the

appearance of an object with a Lambertian surface. However, as shown in Fig-

ure 3.4, the images synthesized by using the data stored in only 3 dimensional

eigenspace for every cell have an intolerable blurred effect around the high-

lights, and the textures are matted. As the reflection of most general real objects
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Figure 3.4: Virtual object image synthesized by using three dimensional

eigenspaces (an example of a highly reflective object).

cannot be approximated by a simple Lambertian reflection model due to non-

linear factors such as specular reflection and self shadowing, three dimensional

eigenspace is not appropriate to store all the appearance changes of each cell.

The quality of the geometric model has a serious influence on the number of

dimensions of eigenspace required to synthesize the image precisely. The sim-

pler the construction of the geometric model, the higher the eigenspace dimen-

sions that are needed, since the triangular patches get far from approximating

the object’s real surface, and the correlation of each cell image becomes low. Fig-

ure 3.5 shows a rendered image of a wool plush duck; only three eigen vectors

were used to render the image.. Although the material has a Lambertian re-
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synthesized

input

Figure 3.5: Virtual object image synthesized by using three dimensional

eigenspace (an example of an object with rough surface).

flectance property because it has fairly detailed structure that is difficult to be

approximated well by the 3D model surface, three dimensions do not provide

an accurate rendition; in the final rendering, self shadows generated by the wool

that sticks out from the duck’s belly are smoothed out.

These facts indicate that the number of dimensions of eigenspace should dif-

fer for each of the cells, according to whether they have highlights or self shad-

ows in their sequences, and also to the size of their triangle patch.

Taking these points into account, we determined the number of dimensions

of the eigenspace independently for each cell so that each could be synthesized

precisely. We used eigen ratio to determine the number of dimensions for each

cell. Figure 3.6 describes the relationship between the eigen ratio, the error per
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pixel versus the number of dimensions of the eigenspace. Here, the eigen ratio

is the ratio of the eigen values in their whole summation; the error per pixel de-

scribes the average difference of the pixel values in 256 gradation between the

synthesized and real images. The eigen ratio is in inverse proportion to the er-

ror per pixel, so that it is reasonable to threshold the eigen ratio to determine

the number of dimensions of the eigenspace. For each sequence of cell images,

we computed the eigen ratio with Equation (3.7), and used the first k eigen vec-

tors whose corresponding eigen values satisfied a predetermined threshold of

the eigen ratio. The number of dimensions for each cell required to compress

the sequence of input images and to reconstruct the synthesized images can be

optimized by using these cell-adaptive dimensions. Yet, on the whole, the size

of the database can be reduced. This cell-adaptive dimension method can be

implemented because our method deals with the sequence of input images as

small segmented cell image sequences.

Figure 3.7 shows the images synthesized by using 0.999 as the threshold of

the eigen ratio for each cell. As can be seen in Figure 3.7, the results described

on the right side are indistinguishable from the input images shown on the left

side. The number of dimensions of eigenspace used, the compression ratio, and

the average error per pixel are summarized in Table 3.1. Due to the small tufts of

protruding wool around the duck’s stomach, tiny self shadows appear through-

out the input sequence of color images. This causes the increase of the necessary

number of dimensions for the duck compared with those necessary for the other

objects. Because our method does not assume any reflectance model and does

not require any analysis of the surface properties, it can be applied to objects

with rough surfaces such as the bear with fine fur and the wool plush duck, an

application which is difficult to accomplish with model-based methods.
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Figure 3.6: Graph of the eigen ratio and the error per pixel versus the number of

dimensions of eigenspace.

Cat Bear Duck

Average number of dimensions 6.56 6.96 17.6

Compression ratio 15.3:1 14.5:1 5.72:1

Essential compression ratio 8.34:1 6.02:1 3.15:1

(MB) 357:42 702:117 290:92

Average error per pixel 1.46 1.79 1.79

Table 3.1: Some statistics of the compression results.
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Figure 3.7: Left: Input color images, Right: Synthesized images (by using cell-

adaptive dimensional eigenspaces).
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3.3.3 Compression Ratio

The compression ratio defined in Equation (3.8) is the compression ratio of the

cell image sequences; this ratio is computed from the number of dimensions, the

size of each cell image and the number of input color images. The essential com-

pression ratio described in Table 3.1 is also the compression ratio between the

cell image sequence and the data size to be stored in eigenspaces, but its value

is computed from the real data size on the computer. The values of this essential

compression ratio are relatively lower than the compression ratio computed by

Equation (3.8). This is disparity is caused by the difference in data types: the

cell image sequences derived from the input color image sequence are repre-

sented by unsigned char type, while the data to be stored in eigenspaces – the

projections and eigen vectors – are represented with float type. In future work,

standard compression techniques such as vector quantization can be applied to

avoid this loss in compression due to data types. As our main goal for the pro-

posed method is to show the effectiveness of treating the appearance variation

of real objects on the its surface, we applied PCA as a straightforward compres-

sion technique that allows intuitive interpolation as will be discussed in Section

3.3.4.

In this thesis, we do not address computing the compression ratio between

the input image sequence and the data size stored in eigenspaces because an

accurate comparison cannot be accomplished due to the resolution problem of

cell images. When the Eigen-Texture Rendering method converts the input image

sequence into a set of cell image sequences, the resolution of the cell images is

determined to a fixed number with regard to the largest triangular patch on the

3D model be surface. Although this enables us to synthesize virtual images in

higher resolution as compared with that of the input images, it causes loss in

compression ratio. We are now investigating a method to determine the reso-

lution of cell images adaptively to their corresponding triangular patch size; in

addition, we are considering a method to derive higher compression ratio, mesh

generation of the 3D model with regard to the color attributes on its surface.
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3.3.4 Interpolation in eigenspace

Once the input color images are decomposed into a set of sequences of cell im-

ages, and projected onto their own eigenspaces, interpolation between each in-

put image can be accomplished in these eigenspaces.

As an experiment, we took thirty images of a real object as the input image

sequence by rotating the object at 12◦ by step. By interpolating the projections of

these input images in the eigenspace, we obtained interpolated projections for 3◦

degrees rotation by each step. By synthesizing images using these interpolated

projections, images of the object whose poses were not captured in the input

color images could be synthesized. Figure 3.8 depicts the curve composed of

the coefficients of the first three eigenvectors for each viewpoint corresponding

to one particular cell. The red points represent the views included in the input

images sequence and the blue points are the interpolated virtual views.

Figure 3.9 shows the synthesized images with interpolation in eigenspace.

The results prove that we can reconstruct synthetic images by interpolation in

eigenspace with adequate accuracy. The average dimensions of eigenspace for

all cells used to fill 99.9% in eigen ratio was 5.1, and the compression ratio was

about 20:1. But as we used only 30 images as the input image sequence and

synthesized 120 images, the substantial compression ratio became almost 80:1.

The average error per pixel at this time was about 7.8.

On the other hand, when we attempt to nterpolate the appearance of highly

reflective objects, the highlights will not be interpolated smoothly. As can be

seen in Figure 3.10 and Figure 3.11, the highlights will fade out and fade in,

rather than extend across the objects. This is an unavoidable effect as far as we

interpolate the specular reflection linearly, in eigenspace in our case. However,

from our experience, this highlight jumping effect can be tolerated when the

sequence is shown as a movie in which the input images are provided not too

sparse, for instance 12◦ by step for 360◦ reconstruction.

When using Moving Picture Experts Group 1 (MPEGI) to compress all the

input color images into a single image sequence, the compression ratio becomes

around 127 : 1. Despite this high compression ratio achieved by MPEGI, the av-

erage error per pixel becomes around 7 to 8. Since image sequence compression

methods such as MPEGI compress the images in their 2D coordinates without
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any geometric information of the target object, the errors tend to appear around

the nonlinear changes of the pixel values in the images (Figure 3.12); i.e., edges

of the occluding boundaries, edges of the texture, highlights, etc. These errors

cannot be seen in the images synthesized with Eigen-Texture Rendering. Even

when compressing the input color images putting the priority on the quality by

using MPEGI, it is hard to avoid these errors while keeping the compression

ratio lower than Eigen-Texture Rendering. This is because Eigen-Texture Render-

ing accomplishes compression on the object surface. Other compression tech-

niques than principle component analysis, e.g., discrete cosine transformation,

may work as well, as long as the appearance change is treated on the object

Figure 3.8: Interpolation results in the eigenspace.
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Figure 3.9: Synthetic images reconstructed by interpolating input images in

eigenspace.

surface.

3.4 Integrating into real scenes

Since our method holds an accurate 3D object model constructed from a range

image sequence, the synthesized virtual images can be seamlessly integrated

into real scene images, taking the real illumination environment into account.

As shown in Equation (3.10), the irradiance at one point on the surface of an

object from the whole illumination environment is a linear combination of the

irradiance due to all light sources that compose the illumination environment.

For this reason, a virtual object image under the real illumination environment

can be synthesized by decomposing the real illumination environment into sev-

eral component light sources and then sampling the color images under each

component light source separately.

I =
∫ ∫

{
n∑

j=1

Lj(θi, φi)}R(θi, φi, θe, φe)cosθidθidφi

=
n∑

j=1

∫ ∫
Lj(θi, φi)R(θi, φi, θe, φe)cosθidθidφi (3.10)

where I : irradiance at one point on the object surface

Lj : radiance of one component light source

R: BRDF of the object surface

(θi, φi): illumination direction

(θe, φe): view direction
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Figure 3.10: Side by side comparison of input images and rendered images with

interpolation in eigenspace. The original images are in the first column and

the rendered images are in the second column. The first and last images in the

original images were used as the input; the intermediate images in the rendered

sequence are the results of interpolation.

As a preliminary experiment, we took input color images under 3 point light

sources, lighting them separately; we synthesized images of the virtual object

with all lights turned on. Under each point light source, we took 40 color im-

ages and synthesized 120 virtual object images for each light source with the

threshold 0.999 in eigen ratio with interpolation in eigenspace; we then synthe-

sized an image sequence of the virtual object with all lights on by taking a linear

combination of image sequences of the virtual object with each point light source

on.

Figure 3.13 shows the result of the linear combination of a certain pose. In ad-

dition, we integrated the virtual object image sequence into a real scene image,

which also had been taken under a condition in which all lights were turned on.

The real illumination environment was captured with a stereo setup of cam-

eras with fish-eye lenses [100], and the virtual coordinate system was trans-

formed into the real scene coordinate by calibrating the camera to capture the
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Figure 3.11: Zoom ups of the images in Figure 3.10.

Eigen-Texture Methodinput MPEGI

Figure 3.12: A comparison with MPEGI compression accomplished on the im-

age.

real scene [119]. The result of the integration, shown in Figure 3.14, proves that

our method enables the creation of the accurate appearance of the object surface

and the precise shadow of the virtual object according to the real illumination

environment.

3.5 Summary

We have proposed the Eigen-Texture Rendering method as a new rendering method

for synthesizing virtual images of an object from a sequence of range and color

images. The implementation of the method proves its effectiveness, in particu-

lar, its high compression ratio. Also, we have demonstrated seamless integration

of virtual appearance with real background images by using the method. The
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Figure 3.13: Linear combination of light sources.

merits of the proposed method can be summarized as follows.

First, high compression ratio can be achieved because we compress a se-

quence of cell images corresponding to a physical patch on the object surface.

Appearance variation in the sequence is approximately limited to brightness

change due to illumination geometry. Second, interpolation in eigenspace can

achieve synthesis of a virtual object image when object pose is not included in

the input image sequence. Owing to this interpolation in eigenspace, we can re-

duce the necessary number of sampling color images, and reduce the amount of

data to be stored. Third, a wide range in application is possible, because we do

not need any detailed reflectance analysis. The method can be applied to such
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Figure 3.14: Integrating virtual object into real scene.

objects as those with rough surfaces, i.e., the bear and duck shown in Figure 3.7,

or with strong highlights, and whose color values saturate the dynamic range

of a CCD camera, e.g., the cat in Figure 3.7. Finally, since an accurate 3D model

of the real object is constructed from the input range images, we can generate

accurate cast shadows when integrating virtual images with real background

images. Thanks to the linearity in image brightness, we can decompose the real

illumination distribution into separate component light sources, and sample the

object under each component light source separately.

On the other hand, our method has a few drawbacks. In particular, the com-

putational expense for compression using eigenspace could be large. As solving

the eigenstructure decomposition problem requires a large number of iterations,

the computational cost for storing the input image sequence in eigenspace be-

comes relatively expensive, although, once the input images are compressed
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and stored in eigenspace, the synthesis of virtual images can be computed in

real time. With regard to this point, we believe our method has an advantage

especially on applications for interactive mixed reality systems, such as virtual

museums and electric shopping malls, where the targets can be compressed be-

forehand off-line.

Currently, we treat each cell image sequence that stacks the appearance change

of one triangular patch separately. However, if the cell image sequences can be

classified into groups that have the same underlying texture and reflection prop-

erty, accomplishing compression on the whole set of cell image sequences will

acheive better compression ratio. As future work, we plan to adopt the mesh

models subdivided (with regard to the base texture) that can be constructed via

the integration method presented in Section 2.3; in addition, we plan to analyze

the possiblity and advantages of constructing a global eigenspace by stacking

several cell image sequences and applying pinciple component analysis (PCA)

to it.
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Chapter 4

Rendering from a Sparse Set of Images

4.1 Approach

In this chapter, we will begin by considering an imaginary practical scenario. For

instance, consider a situation where a person wants to show one of his objects to

a friend remotely, e.g., via the internet, thereby allowing his/her friend to closely

examine every detail of the object just as if the friend were actually holding it in

his/her own hand. This situation can directly apply to what people might want

to do when they are purchasing objects online, i.e., e-commerce. Current tech-

niques require the user to take a large amount of images (image-based render-

ing) or to assume that the scene structure, including the lighting environment,

is known perfectly (inverse rendering). Although, the method we have seen in

Chapter 3 can drastically reduce the amount of the number of required input

images by achieving interpolation in the eigenspace, when the input image se-

quence becomes too sparse, users suffer from a fade-in and fade-out problem

of the non-rigid appearance variation (see Figure 3.11). Our ultimate goal is to

enable people to realize the aforementioned scenareo with as little effort as pos-

sible with a representation that is as compact as possible. For our immediate

goal, however, in this chapter, we will concentrate on a constrained but still re-

alistic scenario. We target a situation where a user takes several snapshots of

an object of interest with a digital camera, aiming the camera from various lo-

cations around the object. The user wants that information to be extended into

some sort of representation, so that the user can see the object from arbitrary

77



viewpoints and, if possible, change the lighting environment. On tackling this

problem, we make several assumptions while trying to keep the generality of

the scenario.

Static illumination environment, static object and moving camera

We consider a scenario where the user takes several snapshots of an object while

moving around the object. Obviously, the object and the light sources do not

move during the image capturing period; only the camera moves.

Pre-acquired geometry of the target object

We assume we know the precise geometry of the target object. By using a

laser range scanner, we acquire several range images of the target object and go

through the geometric modeling pipeline: 3D-3D registration, integration and

simplification. The final result is a 3D mesh model.

Known intrinsic camera parameters

The camera that is used to capture the input images can be pre-calibrated easily,

using techniques like [135, 119].

Known extrinsic camera parameters

The motion of the camera can be pre-estimated by applying low-level computer

vision techniques: structure from motion, bundle adjustment, etc. In the experi-

ments we conduct, we simultaneously acquire a range image using a light stripe

range finder [102] as well as capturing color images for each viewpoint. We then

use those range images to estimate the viewpoint via 3D-3D registration against

the mesh model we mentioned earlier. Note that these range images are only

used to estimate the viewpoints and not used to reconstruct the mesh model of

the target object. Other methods, for example, specifying several correspond-

ing points both in 2D and 3D by hand and solving a least square minimization

problem to accomplish 2D-3D registration may provide accurate viewpoints, es-

pecially if the relative motions between the cameras are known [127].

Homogeneous specular reflectance property

We assume the specular reflectance property of the object surface is the same
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for all points on it. Specifically, we assume (KS , σ) in the simplified Torrance-

Sparrow reflection model that we describe in Section 4.2.1 are the same for the

whole object surface.

With these assumptions, we present a framework to accomplish photore-

alistic rendering, including view-dependent rendering and relighting, from a

sparse set of images. These images sparsely sample the appearance variation

of a real world object under a static illumination environment. With the aid of

the geometric information of the target object, and assuming that the specular

reflectance property is homogeneous over the object surface, we estimate three

important elements necessary for photorealistic forward rendering: diffuse tex-

ture, approximate Bidirectional Reflectance Distribution Function (BRDF) and

the illumination distribution.

We assume that the surface reflection can be approximated by a dichromatic

reflection model with a Lambertian diffuse reflection and simplified Torrance-

Sparrow specular reflection. Given a relatively small number of images (on the

order of one) of an object, the geometry of the object (as a 3D mesh model) and

the positions of the cameras corresponding to each image, we first separate the

diffuse and specular reflection components on each object surface point. By con-

structing a diffuse texture map that represents the diffuse reflection and subtract-

ing the diffuse-texture-mapped images from the input images one by one, we

obtain a sequence of specular reflection images. Then, we derive an initial es-

timation of the illumination distribution by shooting back each pixel value to

the perfect mirror direction and mapping those values to a hemisphere, which

we call the illumination hemisphere. We then formulate the specular reflection

mechanism as a 2D convolution on the surface of the illumination hemisphere

and estimate the reflection parameters and the true illumination distribution by

solving a blind 2D deconvolution problem. The algorithm for this blind de-

convolution problem is based on the Alternating Minimization (AM) algorithm

with a Total Variation (TV) regularization term imposed on the illumination dis-

tribution. A robust technique based on M-estimators is incorporated to combat

noise inherited from the diffuse texture extraction procedure.
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4.2 Reflection Separation

To derive an efficient representation of the appearance of a real world object

from a set of sparse sampling of its variations under a static illumination, we

begin by separating the reflection components in the input images: the diffuse

reflection and the specular reflection.

4.2.1 Reflection Model

We consider real world objects whose reflection mechanism at their surfaces can

be approximated by a dichromatic reflection model [108, 56], where the reflected

light at a surface point is explained as a linear combination of two reflection

components: diffuse reflection and specular reflection. Since the image irradi-

ance (pixel value) can be considered to be proportional to scene radiance [45],

we will forget about the constant multiplier that relates scene radiance to image

irradiance; instead, we will consider that pixel values in the images are directly

associated to scene radiance. Under this assumption, the dichromatic reflection

model tells us:

I = ID + IS (4.1)

where I is the pixel value corresponding to a particular object surface point, and

ID and IS denote the diffuse and specular reflection radiance, respectively. The

bold characters denote a three-dimensional color vector, such that I = [IR IG IB]T .

Diffuse reflection can be explained as result of the light that penetrated into

the object medium and radiated back to the air after internal scattering due to

the small particles in the object surface layer (see Figure 4.1). Because of this

internal scattering, diffuse reflection can be apprjoximated with the Lambertian

model [60], where the diffuse reflection is described as an isotropic reflected light

parameterized by the angle between the light source direction and the surface

normal. If we consider a local spherical coordinate system with its origin set

to the object surface point in interest, the radiance of diffuse reflection can be

described as:

ID = max[0,KD

∫
Ω

Li(θi, φi) cos θidωi] (4.2)

where KD is a three band color vector which is determined by both the light

source color and the surface color. Also, θi and φi denote the altitude and az-
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Figure 4.1: The mechanism of dichromatic reflection model on a object surface.

imuth coordinate of the light source with radiance Li, respectively, and ωi de-

notes the solid angle of the light source Li. Although recent studies on the dif-

fuse reflection mechanism have revealed that, when the object surface has a high

macroscopic roughness, the diffuse reflection becomes view-dependent [82], we

consider the objects we handle have a diffuse reflection that can be approxi-

mated with a Lambertian reflection model, which is true for most man-made

objects we encounter in daily life.

Specular reflection is the light directly reflected at the interface between the

air and the object surface (see Figure 4.1). Reflected light spreads around the

perfect mirror direction to form a lobe and exhibits a spike in the perfect mirror

direction. The spike of the specular reflection can be observed only on object sur-

faces smooth enough in comparison with the wavelength of the incident light,

and when the camera viewing direction is aligned with the perfect mirror direc-

tion. Hence, we will ignore the spike and choose to adopt the Torrance-Sparrow

reflection model [118] as a numerical approximation model for specular reflec-

tion, which is well known to represent the specular lobe successfully with a

simple numerical expression [80]. The Torrance-Sparrow reflection model ex-
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presses the specular lobe as the light reflected at object surface with microscopic

roughness; small V-shaped grooves which are lined with flat mirrors called mi-

crofacets. The distribution of the orientations of microfacets is approximated

with a Gaussian distribution as follows:

IS =

∫
Ω

KSFG

cos θr
Li(θi, φi) exp[− α2

2σ2
]dωi (4.3)

where KS is the color vector of the reflection which accounts for the normaliza-

tion factor of the exponential function and the reflectivity of the surface, F is

the Fresnel’s coefficient, G is the geometrical attenuation factor, θr is the angle

between the viewing direction and the surface normal, α is the angle between

the surface normal and the bisector of the viewing direction and the light source

direction, and σ represents the surface roughness.

4.2.2 Diffuse Texture Map

With the assumption that the light reflected at the object surface can be approx-

imated with a dichromatic reflection model with Lambertian diffuse reflection

and Torrance-Sparrow specular reflection, as seen in the last section, it can be

easily observed that the diffuse reflection component at each surface point has

a constant value for all images in the input image sequence and that the pixel

value is equal to or larger than the diffuse reflection color. Concretely, since we

vary the viewpoint while setting the light source directions and object still, θi in

Equation (4.2) does not vary in the input image sequence. Hence, we are able to

represent the diffuse reflection with a single RGB color vector for each surface

point.

To extract this diffuse reflection vector for each object surface point, we exam-

ine the scene radiance (image irradiance) variation of each surface point through-

out the image sequence, and use the pixel value with minimum magnitude as

the diffuse reflection color. Since we have only a few images, and because the

object surface point may be occluded in some of those images, taking the min-

imum brightness pixel value is the best strategy we can employ to obtain the

constant diffuse reflection vector. If we do have more images as the input, more

sophisticated strategies may work better, for instance, taking the median value

like Wood et. al [127] or fitting a Gaussian distribution to the histogram of pixel

values.
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Instead of keeping these diffuse reflection color vectors for each object sur-

face point, we extract them in a triangular patch-based manner. By considering

3D grids in each triangular patch of the geometric mesh model, and projecting

those grids onto each input image and extracting the minimum brightness pixel

value for each grid point, we are able to construct a texture map that represents

the constant diffuse reflection. We will refer to this texture map as the diffuse

texture map. In our current implementation, we extract the diffuse texture for

each triangular patch in the same pre-defined size, e.g., 20 × 20 pixels.

4.2.3 Illumination Hemisphere

By texture mapping the diffuse texture map for each viewpoint in the input

image sequence and by subtracting those diffuse-texture-mapped images from

each input image one by one, we obtain a set of residual images. These resid-

ual images mainly consist of scene radiance resulting from specular reflection

at the object surface and some interreflection and noise inherited from the dif-

fuse texture map extraction procedure. In our work, we ignore interreflection

and simply consider it as noise. Hence, we will refer to these residual images as

specular images.

As described in Section 4.2.1, the specular reflection approximated with the

Torrance-Sparrow reflection model has an intensity peak slightly off from the

perfect mirror direction: the direction where the surface normal becomes the bi-

sector of the incident light vector and viewing direction vector. To obtain a rough

approximation of the illumination distribution, we shoot back each pixel value

in each specular image in the perfect mirror direction and map those values to a

hemisphere covering the 3D object model. The radius of the hemisphere will be

pre-determined. We call this representation of the illumination distribution the

illumination hemisphere.

The illumination hemisphere generated from each specular image covers

only partial regions of the true illumination environment; we need to combine

these partial illumination hemispheres to make a full illumination hemisphere

that approximates the real lighting environment. To deal with noise, we make

a mask hemisphere that counts how many times each point was taken into ac-

count while making the partial illumination hemispheres. We then adopt hemi-
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sphere points that have counts close to the total number of images. Since some

light sources may be occluded in some partial illumination hemispheres, we set

the threshold less than the total number of images. Only those points that pass

this check will be mapped onto the final illumination hemisphere; in this case,

we take the mean of the intensity values from the partial illumination hemi-

spheres as the intensity value. This way of consistency checking also reduces

the errors, e.g., those introduced by 3D-3D miss-alignment for viewpoint esti-

mation. These errors are not view-dependent and would not stay in a particular

region on the illumination hemisphere. Interreflection will also be faded out,

since it can be considered to be the reflected light of moving light sources.

4.3 Illumination and Reflectance Parameter Estimation

Next, using the aforementioned illumination hemisphere and a simplified Torrance-

Sparrow reflection model, we will consider decoupling the surface reflectance

property and the illumination distribution from the specular images.

4.3.1 Problem Formulation

First we assume that the object has a specular reflection property that obeys

the Torrance-Sparrow reflection model, except that we assume the geometrical

attenuation factor G in Equation (4.3) to be 1 and the Fresnel reflectance coef-

ficient F to be constant. These assumptions are valid for most dielectric and

metal objects [113]. With this simplified Torrance-Sparrow reflection model, the

specular reflection at one object surface point v can be given as:

IS(v) =
KS,v

cos θr

∫
Ω

Li(θi, φi) exp[− α2

2σ2
]dωi (4.4)

We now represent the illumination distribution as a hemisphere that covers

the object. By using a geodesic hemisphere, which is a subdivided icosahederon

and hence can uniformly distribute nodes on the hemispherical surface, and by

considering each geodesic node to be a point light source, we can compute the

specular reflection at point v with a global spherical coordinate system where

each point light source’s position can be parameterized with its altitude and

84



azimuth angle θl and φl respectively,

IS(v) =
KS,v

cosθr

NL∑
l

ωlLl(θl, φl) exp[− α2

2σ2
v

] (4.5)

where Ll stands for the radiance of each point light source. Also, θr and α are

still the angle between the viewing direction and the surface normal and the

angle between the surface normal and the bisector of the viewing direction and

the light source direction, respectively, however in a global coordinate system.

ωl stands for the solid angle of the area that each point light source represents;

in our case, where each node will be distributed uniformly on a 2π hemisphere,

ωl becomes 2π
NL

where NL stands for the number of nodes in the geodesic hemi-

sphere. The color vector direction of the specular reflection is the same as that

of the light source. Thus, if we assume that all light sources in the scene have

the same color, we can concentrate on the relationship between the radiance of

the light sources Ll and the image irradiance IS(v). Therefore, we use the aver-

age color, L, of the initial illumination hemisphere as the color of the point light

sources. Also, we assume that the target object has a homogeneous specular re-

flection property, so that σv can be represented with one value σ. Similarly KS,v

will be represented with one value KS . With these assumptions, we can rewrite

Equation (4.5) as,

IS(v) = IS(v)L (4.6)

IS(v) =
2π

NL

KS

cosθr

NL∑
l

Ll exp[− α2

2σ2
]. (4.7)

Note that all values in Equation (4.7) are scalar values, and Ll is now the mag-

nitude of the color vector of each point light source placed on the illumination

hemisphere.

The problem of estimating the reflection parameters and illumination distri-

bution that best explains all specular images can now be formulated as a mini-

mization problem with respect to σ, Ks and Ll as:

arg min
σ,Ks,Ll(l=0,...,NL)

NK∑
k=0

NS ,NT∑
s,t=0,0

|I(s,t,k) − IS,(s,t,k)|2 (4.8)

where I(s,t,k) is the pixel value observed at point (s, t) in the kth specular image,

and (NS , NT ) are the width and height of the specular images. Since we know
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the camera position for each specular image and the geometry of the target ob-

ject, the specular reflection can be computed with Equation (4.7) as IS,(s,t,k).

4.3.2 Specular Reflection as Convolution

As described in the last section, estimating the reflectance parameters and the

illumination distribution from the specular images can be formulated as a min-

imization problem. However, Equation (4.8) is ill-posed and estimating σ, Ks

and Ll(l = 0, ..., NL) that best explains the specular images becomes solving a

deconvolution problem. To see why the specular reflection becomes a convo-

lution, we will explicitly write down the physical coordinate transformations

embedded in Equation (4.8).

Since we have the 3D geometric model of the target object, the 3D coordinates

of a point in the specular image can easily be obtained. Let us consider that a

mapping function M takes a 2D point and the frame number of the specular

image and returns the 3D coordinate of that point. If the 2D point in the specular

image does not fall in the target object region, M simply returns some 3D point

that does not have any meaning.

M : (s, t, k) 	→ (x, y, z) (4.9)

Also, let us consider a mapping function that returns the surface normal of a 3D

point, such that,

N : (x, y, z) 	→ (nx, ny, nz). (4.10)

We parameterize the illumination hemisphere with the altitude angle θ, az-

imuth angle φ and the radius r. As we pre-determine the radius of the illumi-

nation hemisphere to be a constant value R, the illumination hemisphere can be

parameterized as a two dimensional function L(θ, φ).

Given a 2D point (s, t, k) in the specular image k, we can compute the inter-

section of its surface normal with the illumination hemisphere as follows.

C : (s, t, k) 	→ (θC, φC) (4.11)

C(s, t, k) = M(s, t, k) + ζ(N(M(s, t, k)))

= (x + ζnx, y + ζny, z + ζnz)

= (θC, φC, R)
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where ζ is chosen such that |C(x, y, z)| = R is satisfied. Similarly, given a point

on the illumination hemisphere (θ, φ,R), a 2D point in the specular image k, we

can compute the intersection of the bisector of the angle between the view point

(vk
x, v

k
y , v

k
z) and object surface point and the light source position and the object

surface point as follows.

BS : (s, t, k, θ, φ) 	→ (θBS, φBS) (4.12)

With these mapping functions, we can write down the expected pixel value

in each specular image as follows.

IS(s, t, k) =
Ksω

cos θr

NL∑
l

Ll(θl, φl)g 1
2σ2

(|BS(s, t, k, θl, φl)− C(s, t, k)|) (4.13)

where ω = 2π
NL

and gγ is a Gaussian function:

gγ(φ) = exp[−γφ2].

Recalling that (θBS, φBS) is a function of (s, t, k, θ, φ) and (θC, φC) is a function

of (θ, φ), we can see that the specular reflection is a simple 2D convolution of the

illumination hemisphere with a Gaussian filter, from Equation (4.13).

4.3.3 Alternating Minimization

From Equation (4.13) we can interpret the specular reflection mechanism with a

Torrance-Sparrow reflection model as a 2D convolution, such that the 2D surface

of the illumination hemisphere is convoluted with a Gaussian filter (Torrance-

Sparrow reflection model) and mapped back to the 3D points. To make the fol-

lowing argument simple and consistent with references we cite, we will describe

the illumination hemisphere as u(x, y), the convolution filter as h(x, y) and the

specular image z(x, y). Then, the task of estimating the reflectance parameters

and the true illumination distribution becomes finding u, h that best describes

the following equation.

z = h ∗ u + η (4.14)

where, η is the noise mainly added while observing through an imaging system,

which can be modeled by white Gaussian noise with zero mean.
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This problem is called a blind image deconvolution problem, restoring both

the image u and the blurring function h while given only the observed image

z and probably some statistics of the noise η. The blind image deconvolution

problem is well studied in the image processing society, and there are many

existing algorithms to simultaneously identify u and h [11, 129, 130, 76]. The

difficultly of solving this blind deconvolution is that it is ill-posed with respect to

the image (the illumination hemisphere) and the blurring function (the Gaussian

of the Torrance-Sparrow reflection model). Recently, You and Kaveh [129] have

proposed a joint regularization technique to regularize both u and h to solve this

problem:

min
u,h

f(u, h) = min
u,h
||h ∗ u− z||2L2(Ω) + α1H

1(u) + α2H
1(h) (4.15)

where Ω is the domain of u and h, H1 regularization is defined as,

H1(u) ≡
∫

Ω

|∇u|2dxdy (4.16)

and α1 and α2 are positive parameters which measure the trade off between a

good fit and the regularity of the solutions u and h.

Objective function f(u, h) in Equation (4.15) as a two-variables function is not

convex and can hence have multiple solutions. You and Kaveh [129] observed

that, for a fixed h (respectively u), f( · , h) (respectively f(u, · )) is a convex

function of u (respectively h) and they proposed the Alternating Minimization

(AM) algorithm. There are two ways to run the AM algorithm with respect to

the order of the fixed non-blind deconvolution. The two variants are:

AMHU

Given u0:

1. Find minimizer hk of f(uk−1, h) by solving 0 = ∇hf(uk−1, h)

2. Find minimizer uk of f(u, hk) by solving 0 = ∇uf(u, hk−1)

3. If not convergence, go to 1.

AMUH

Given h0:

1. Find minimizer uk−1 of f(u, hk−1) by solving 0 = ∇uf(u, hk−1)

2. Find minimizer hk of f(uk−1, hk) by solving 0 = ∇hf(uk−1, h)

3. If not convergence, go to 1.
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More recently, Chan and Wong [11] have proposed using the Total Variation

(TV) norm as the regularization term instead of H1 norm.

TV (u) ≡
∫

Ω

|∇u|dxdy (4.17)

They observe that the AM algorithm converges much faster when TV regular-

ization is used. Also, Chan and Wong analyzed the convergence of the AM

algorithm with the H1 regularization and proved that the discrete version of the

AM algorithm converges to a local minimizer for any given initial guess [12].

Besides the proof of convergence, they also proved that it is not necessary to ex-

plicitly impose the numerical conditions that u and h has to satisfy, e.g., u ≥ 0.

These conditions can be embedded in the minimization steps of the AM algo-

rithm, for instance, by simply setting u(x, y) = 0 when its estimate is negative.

Detailed proofs are beyond our scope in this thesis, and interested readers are

referred to [12].

4.3.4 Reflectance Parameter and Illumination Hemisphere Estimation through

Alternating Minimization

Now let us return to our own problem, that of estimating the reflectance pa-

rameters and the illumination distribution from the specular images, which is

formulated in Equation (4.13).

When setting up a joint regularization minimization formula to solve the

blind deconvolution problem, we do not have to impose a regularization term

for the blurring function, since we already know that the blurring function is a

one dimensional Gaussian and because it is smooth with respect to its param-

eter. Also, as we have assumed that Ks is unique for all object surface points,

we cannot estimate a meaningful value for Ks. Therefore, we will set Ks as a

constant 1.0, The reason we leave Ks separate from L is so that we can have

a controllable value to simulate the effect of changing the specular reflection

strength. Thus, the minimization problem to estimate the reflectance parameter

σ and the illumination distribution represented as a discritized hemisphere can

be formulated as follows.

min
L,σ

f(L, σ) ≡ min
L,σ

NK∑
k

NL∑
l

||IS(s, t, k)− I(s, t, k)||2L2 + ρ

NL∑
l

|∇L(θl, φl)| (4.18)
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To solve Equation (4.18), we apply the AM algorithm mentioned in the last

section, with two exceptions described in the following sections.

M-estimator for Robustness

Since we have obtained the observed values of the specular reflection, I(s, t, k)

by subtracting the diffuse-texture-mapped images (estimated diffuse images)

from the original input images, we have inherited errors generated in the diffuse

reflection estimation. Thus, when estimating both the illumination distribution

and the reflectance parameters from the residual specular images, we will have

to ensure that the estimation procedure is robust against noise. For this pur-

pose, we adopt the robust estimation technique based on M-estimator [93, 37].

Consequently, we minimize Equation (4.18) for each step in the AM algorithm

through conjugate gradient with Lorentzian function [93, 37] as the M-estimator

and golden section search for line minimization, similar to the minimization

strategy we adopt for 3D-3D registration (Section 2.2).

Initial Estimation

As observed in [11] with numerical results, estimating blurring functions with-

out edges, e.g., Gaussian, with the AM algorithm happens to converge slowly as

compared with estimating PSFs with edges, e.g., out-of-focus blur. One way to

speed up this convergence rate is to give a good initial estimation of the blurring

function. In our case, if we can utilize a good initial estimation of σ, instead of

setting σ0 very small to simulate a delta function, and accomplish the AMUH al-

gorithm with the initial illumination hemisphere estimated in Section 4.2.3, we

can expect a fast convergence.

Then, the question is what is σtrue? Fortunately, we know that most shiny

objects that can be modeled with the microfacet BRDF reflection model have a σ

around the order of 0.1. So it is fair to start with σ0 = 0.1.

Also, ρ in Equation (4.18) is set to a small value (1.0 × 10−6), not to impose

too much smoothness on the illumination distribution.
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4.4 View-dependent Rendering

After estimating the refined illumination hemisphere and the surface reflectance

parameters, we can easily render synthetic images from arbitrary viewpoints by

performing the following steps.

1. Render diffuse image. This can be easily accomplished by texture map-

ping the diffuse texture map, derived in Section 4.2.2, to the 3D model and

rendering the 3D model from the given viewpoint.

2. Compute a shadow map. To correctly handle self occlusion on the object

surface and attach self shadows, we need to know whether each point light

source positioned on the illumination hemisphere is visible from the sur-

face point we want to compute the specular reflection value. We currently

implement this in a lazy shadow z-buffer [126] approach: render the 3D

model from a viewpoint set to each point light source and then store the

visible triangle patches. Note, however, that this should be done at a pixel

level; we do this on a triangular patch base to reduce computational cost.

3. Render specular image. Using the shadow map, the estimated illumina-

tion distribution and the reflectance parameters, we can render a specular

reflection image with Equation (4.7) and Equation (4.6).

4. Add diffuse image and specular image. By adding the two rendered im-

ages, the diffuse image and the specular image, we obtain the synthetic

image rendered from the given viewpoint.

4.5 Relighting

Given the estimated illumination hemisphere and the reflection parameters, we

can render images of the target object under a different lighting distribution

from that of the original, with one exception: we are not able to change the color

of the illumination distribution since the diffuse reflection will have a color that

is a convolution of the spectral distribution of the illumination and the surface

color.

Let us refer to the radiances of estimated original illumination environment

represented as point light sources on the illumination hemisphere as {Ll : l =
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0, ..., NL}. Note that these values are the radiances of each point light source

scaled by Ks, and however, that they do not affect the following discussion since

Ks will be canceled out. Under this point light source set, the diffuse reflection

color vector at an object surface point v can be written down as,

ID,v = KD,v

NL∑
l

Ml,vLl cos θl,v (4.19)

where KD,v is the diffuse reflection color of the object surface point and Ml,v is

the shadow map mentioned in the last section, which accounts for the occlusion

of the illuminations, that is, it takes 1 when Ll is visible from v and 0 when Ll is

invisible from v.

Now, given a new illumination distribution as a set of point light sources on

the illumination hemisphere, {L̃l : l = 0, ..., ÑL}, the irradiance at object surface

point v will be:

ĨD,v = KD,v

�NL∑
l

M̃l,vL̃l cos θl,v. (4.20)

From Equation (4.19) and Equation (4.20), we can see that the ratio of the

diffuse reflection can be easily computed by:

ID,v

ĨD,v

=

∑NL

l Ml,vLl cos θl,v∑�NL

l M̃l,vL̃l cos θl,v

. (4.21)

Note that we do not have to know KD,v.

Thus, we can render a diffuse reflection image of the target object under a

new illumination distribution from arbitrary viewpoints by performing the fol-

lowing steps:

1. Compute the shadow maps. We compute M and M̃ with the method dis-

cribed in the last section. The shadow maps need to be computed only

once for each illumination distribution.

2. Render the diffuse reflection image under the original illumination dis-

tribution. This can be simply done by texture mapping the diffuse texture

map we have derived in Section 4.2.2. Let us refer to this image as the

original image.

3. Compute the albedo image. Given the original illumination distribution

through the estimated illumination hemisphere and the pre-computed mask
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map M , we can compute the total irradiance at surface point v,
∑NL

l Ml,vLl cos θl,v;

and by dividing each pixel value in the original image by this value, we

can achieve a psuedo albedo image, which represents the spatial distribu-

tion of 1
KS

KD from the given viewpoint. Pixels that are black because of

shadows will be filled with neighboring albedo values.

4. Render the relit diffuse image. Given the new illumination hemisphere

and the pre-computed shadow map M̃ , we can compute
∑�NL

l M̃l,vL̃l cos θl,v

and multiply these values to each object surface point; we can then obtain

a relit diffuse image of the target object from the given viewpoint.

By rendering a specular reflection image as explained in the last section, and

then compositing it with the diffuse reflection image rendered in the above pro-

cedure, we can obtain a relit object image from arbitrary viewpoints.

4.6 Results

We applied our framework to model the appearance of a real object from a

sparse set of images, and render new views from arbitrary viewpoints possibly

with changing reflectance parameters and/or under novel illumination condi-

tions.

4.6.1 Inputs

The object we used in our experiment is a mask made in Bali. Five range images

of the mask were scanned with a Vivid 900 [72]. They were registered and fused

to produce a 3D mesh model.

Additionally, we took 6 high dynamic range (HDR) images [24, 73] and used

them as the input image sequence. A HDR image is obtained by combining

several photographs taken with different shutter speeds. Figure 4.2 depicts the

six input images with the shutter speed approximately set to 1
30

. The number

of input images is determined by roughly considering how much the highlights

overlapped between each image, meaning that the diffuse texture map separa-

tion determines the necessary number of images (see Section 4.2.2). As can been

seen in Figure 4.2, three point light sources were placed above the mask.
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Figure 4.2: Six input HDR images of the Bali mask.

To estimate the viewpoint of each input image, we captured a range image

at the same viewpoint with a light-stripe range finder, and carried out 3D-3D

alignment between the range data and the 3D mesh model with the method we

presented in Section 2.2.

4.6.2 Estimated parameters

First the diffuse texture map which represents the diffuse reflection of the object

surface was computed by taking the minimum pixel values at each object surface

point. Figure 4.3 depicts the diffuse-texture-mapped images viewed from two

of the viewpoints in the input image sequence. Note that the specular reflection

is successfully removed. By subtracting these diffuse-texture-mapped images

from the original images one by one, we obtain a specular reflection image se-
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Figure 4.3: Diffuse-texture-mapped images.

quence which we use to estimate the reflection parameters and the illumination

distribution. Figure 4.4 depicts one of the input images separated into two im-

ages: a diffuse image and a specular image. Unfortunately, slight misalignment

in 3D-3D registration for viewpoint estimation cannot be avoided and it results

in erroneous estimation of the diffuse texture map, as can be observed in the

blurring effect of the mark on the mask’s forehead. Although these errors will

be inherited by the specular reflection image, as can be seen in Figure 4.4, we are

able to estimate the reflection parameters and the illumination distribution ro-

bustly since we adopt the robust estimation framework as mentioned in Section

4.3.4.

By shooting each pixel value in the specular image sequence back in the per-

fect mirror direction and then mapping those values to a hemisphere with a

pre-determined radius (in this case 160cm), we obtain partial illumination hemi-

spheres. The left and middle image of Figure 4.5 show two of these partial illu-

mination hemispheres as viewed from the top. By combining these partial illu-

mination hemispheres, we obtain an initial illumination hemisphere, as shown
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Figure 4.4: Separation of reflection components. Left: original input image, Mid-

dle: diffuse reflection image (diffuse-texture-mapped image), Right: specular

reflection image.

in the right image of Figure 4.5. Note that the errors in the partial illumination

hemisphere are mostly removed by the voting strategy described in Section 4.2.3

and that three clusters corresponding to the three point light sources are visible.

Through the Alternating Minimization (AM) algorithm with Total Variation

(TV) regularization described in Section 4.3.4, we estimated the lighting distri-

bution as the illumination hemisphere and the reflection parameter σ. Figure 4.6

depicts the estimated final illumination hemisphere. To compare the estimated

illumination distribution with the true illumination distribution, we captured

the lighting condition with a fish-eye lens mounted CCD camera, as shown in

Figure 4.6. Since we did not do any geometric calibration to enable direct com-

parison between the two images of the illumination distribution, we cannot see

whether they match precisely. However, it is obvious that the estimated illumi-

nation hemisphere has an illumination distribution very close to the positions of

the three point light sources. The intensity of the brightest point light source in

the illumination hemisphere was 1370.83 and that of the darkest was 0.65. Note

that these values are a combination of Ks and Li. By starting with 0.1 for σ, we

obtained 0.075 as its final estimated value.

Figure 4.7 shows real and synthetic images from three of the input view-

points. The right row visualizes the difference of pixel intensity values, where
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Figure 4.5: Left and Middle: partial illumination hemispheres corresponding

to two viewpoints in the original input image sequence. Right: the combined

initial illumination hemisphere.

Figure 4.6: Left: Estimated illumination hemisphere, Right: An photograph of

the true illumination distribution captured through a fish-eye lens and flipped

horizontally.
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blue ranges approximately from 0 to 50, green ranges from 150 to 200 and red

ranges 200 to 255, same to the relation between RGB color and wavelength.

While slight diffrence arises due to the difference of the input 3D model from

the true geometry of the target object, the rendered images are consistent to these

geometric differences, and consequently it does not effect the visual consistency,

which makes the synthetic images appear realistic. The average of RMS errors

was 12.5.

4.6.3 View-dependent Rendering

With the estimated illumination hemisphere and the reflection parameter, we

are able to accomplish photorealistic view-dependent rendering from arbitrary

viewpoints. Figure 4.8 shows the result of rendering the target object from a

novel viewpoint. The left image in Figure 4.8 is a real photograph taken from the

same viewpoint but not used in the input image sequence. As can be seen, the

result is almost indistinguishable from the real photograph. The slight difference

is mainly due to lack of perfection in the 3D model and consequent difference in

computed normals. The RMS error was 16.1.

4.6.4 Changing Reflection Parameters

We can also render images of the target object with different reflection param-

eters. As an example, Figure 4.9 displays four synthetic images rendered with

different roughness (σ) and different Ks (Note that the estimated roughness is

σ = 0.075). Note that, as we have mentioned in Section 4.3.4, Ks cannot be de-

coupled from the radiance of the illumination; consequently, we have estimated

the illumination distribution with Ks = 1.0 and we can only relatively change

its value.

4.6.5 Relighting

Besides rendering from arbitrary viewpoints, we can render images under arbi-

trary novel illumination conditions.
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Figure 4.7: Comparison on input images. Left: input real images, Middle: syn-

thesized images, Right: difference
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Figure 4.8: Left: real photograph, Middle: synthetic image, Right: difference.

Turning off lights

By masking the estimated illumination hemisphere, we can easily obtain illumi-

nation hemispheres corresponding to each real point light source. Figure 4.10

shows real photographs and rendered synthetic images with each of the three

point light sources turned on separately.

Moving Lights

We can render synthetic images of the target object under arbitrary illumina-

tion conditions. Figure 4.11 depicts some frames from a movie we have made

with moving point light sources. While the light source on the right hand side

remains static, another point light source moves from the left hand side to the

right hand side. Note that the diffuse reflection is also rendered correctly de-

pending on the illumination condition.

4.7 Summary

We have presented a framework to accomplish photorealistic view-dependent

rendering and relighting from a sparse set of images and a pre-acquired geomet-

ric model of the target object. We take an approach similar to inverse rendering,

except that we estimate all three components necessary for forward rendering:
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Figure 4.9: Left Top: σ = 0.1 Ks = 1.0, Right Top: σ = 0.04 Ks = 1.0, Left Bottom:

σ = 0.075 Ks = 2.0, Right Bottom: σ = 0.075 Ks = 0.3
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Figure 4.10: Left Column: real photographs, Right Column: synthetic images.
102



Figure 4.11: Synthetic images rendered under a moving light source.
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texture, BRDF and illumination distribution. The key idea is to first separate

the reflection components to obtain a texture map that represents the diffuse re-

flection and images whose pixel values’ dominant factor is specular reflection.

Then the specular images are used to recover the illumination distribution and

reflectance parameters of a simplified Torrance-Sparrow reflection model via 2D

blind deconvolution with regularization term imposed on the illumination dis-

tribution. We have explained our framework in theory, and have presented re-

sults applying the framework to a real world object.
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Chapter 5

Conclusions

5.1 Summary

In this dissertation, we have explored photometric object modeling, whose aim is to

digitally represent real world objects in the computer for photorealistic display

of them. To achieve this goal, we have developed two new methods: Eigen-

Texture Rendering and Rendering from a Sparse Set of Images. Both methods build

up an efficient representation of the virtual object for view-dependent rendering

and relighting, taking a set of photographs as the input. Also, the underlying

philosphy of both methods is to take full advantage of knowledge of the geom-

etry of the target object.

For rendering from a dense set of images, a dense sampling of the target ob-

ject’s appearance variation under changing lighting and viewing conditions, we

developed Eigen-Texture Rendering. By handling and compressing the appear-

ance variation on the 2D surface of the target object, we can succesfully render

synthetic images from arbitrary viewpoints and under novel lighting environ-

ments while preserving the non-rigid appearance variation. By elevating the

correlation of appearance variation by treating them based on their physical lo-

cation on the object surface and by applying PCA, the resulting representation

of the virtual object becomes compact as compared with previous image-based

approaches. Furthermore, by interpolation in eigenspaces, we are able to de-

crease the number of necessary input images, thereby increasing the flexibility

of the system. Since the method does not make any assumptions on the surface
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reflection property, a wide variety of objects can be handled in the framework,

as we have seen demonstrated by the experimental results. Also, usage of the

geometric model allows us to easily superimpose virtual objects into real images

with correct geometric visuality.

To drastically reduce the necessary number of input images for another or-

der, we developed Rendering from a Sparse Set of Images. Taking a sparse set of

images and a pre-acquired geometric model of the target object, we recover the

illumination distribution as a hemisphere covering the object and the parame-

ters of the simplified Torrance-Sparrow reflection model, thereby enabling view-

dependet rendering from arbitrary viewpoints and relighting under novel illu-

mination conditions. The problem of recovering the illumination distribution

and reflection parameters simultaneously is formulated as a 2D blind deconvo-

lution problem and solved by Alternating Minimization (AM) algorithm with

TV regularization. Unlike previous inverse rendering approaches, ours enables

recovery of all three unknowns, namely texture, BRDF and lighting from the

observation of real objects, thereby increasing the flexibility of the system. The

resulting representation of the virtual object is very compact – a 3D model of the

object, the illumination hemisphere and reflection parameters.

With regard to the geometric models we use in both methods, we proposed

two new methods in the geometric modeling pipeline. For registration, we pro-

posed a framework to simultaneously register multiple range images. The si-

multaneous registration problem is redefined as a least-square problem with an

objective function globally constructed with respect to each range image. For

efficiency, we employ a k-d tree structure for fast point correspondence search

and apply a conjugate gradient search in minimizing the least-square problem

for faster convergence. For robustness, we employ photometric attributes of raw

3D points, and search for “better” point mates based on their distance.

For integration, we proposed a range image integration framework which

can construct 3D models with photometric attributes. By taking a consensus

of appearance changes of the target object from multiple range images, we re-

construct the 3D model with an appearance which successfully discards outliers

caused by noise. Also, we can provide a model with Lambertian reflected light

values by discarding specular reflections as outliers. We also proposed an algo-

rithm for constructing a 3D model in an efficient representation. Considering
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the surface curvature and the photometric attributes, we constructed 3D models

that have higher detail in surface areas that contain either high curvature or sig-

nificant variation of appearance. Thus, we could efficiently use computational

resources. Both methods take special care of their robustness against noise, by

means of M-estimation in registration and consensus surface extraction in inte-

gration. Experimental results, including application for digital preservation of

cultural heritage objects, prove the robustness and effectiveness of these meth-

ods.

5.2 Contributions

The specific contributions of this thesis are:

1. A new framework to reconstruct a efficient representation of the appear-

ance of real world objects from a dense sampling of its variation: The key

idea is to make full use of the underlying geometry of the target object and

handle appearance variation on the object surface to elevate the correlation

for efficient compression via PCA.

2. A new framework to reconstruct a compact reprsentation of appearance

of real world objects from a sparse sampling of its variation: By simulta-

neously recovering the texture, BRDF approximation and lighting condi-

tions from the input images and a 3D model, we are able to accomplish

rendering from arbitrary viewpoints and relight under novel illumination

conditions. The key idea is to first decompose the input images into two

sets of images, diffuse images and specular images, and then formulate the

factorization of illumination and reflection effects from specular images as

a 2D blind deconvolution problem.

3. Robust simultaneous registration of multiple range images: By performing

M-estimation over an error function common for all range images, we si-

multaneously register multiple range images. Also, photometric attributes

of raw 3D points, e.g., intensity and laser reflectance strength, can be in-

corporated in the registration framework for further robustness and faster

convergence. The implementation can be done in a parallel manner.
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4. Robust and adaptive integration of multiple range images: By adaptively

subdividing voxels dependeing on the curvature or/and the photometric

variation of the object surface, we can reconstruct an efficient representa-

tion of the target object. Special care is taken for robustness against noise

by taking a consensus of the range image points, and it can be executed in

a parallel manner.

5.3 Future Work and Discussion

We conclude with a discussion of open problems and future improvements which

we are interested in pursuing.

Effective sampling in simultaneous range image registration

In early stages of the simultaneous registration of multiple range images, when

the range images are distributed apart, we subsample the range images to re-

duce the number of points used in the registration framework to achieve signif-

icant speed-up. While conducting many experiments using our framework, we

found that reducing the number of data points to be used in registration does not

necessarily affect the accuracy of the final registration result. According to the

principle of statistics, the more data points we use when minimizing the global

error function, the higher the accuracy will be. However, as long as we use range

finders that will always return data points that have some noise embedded in

their values, the minimization of the error function will have a lower bound that

we will not be able to cross. Hence, it should be necessary and meaningful to es-

timate the accuracy limitation that we can obtain, and use as few data points as

possible to achieve that bound for efficient registration. Although we have not

fully explored this idea, preliminary experiments showed us that using around

only 5% of the points used in registering the Great Buddha in Kamakura gives us

almost the same accuracy as using all the points we scanned. Our guess for the

best sampling is to subsample points based on the derivative of the surface cur-

vature. In this sense, the framework for adaptive subdivision of voxels in our

range image integration framework may be useful for building a subsampled

range image.
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On the fly integration of multiple pre-registered range images

We have developed a fully scalable range image integration method, and the

next step would be to aim real-time. One interesting idea might be to embed

the integration framework in a geometric model viewer, and accomplish the

integration of multiple pre-registered range images gradually while the user is

viewing the volumetric representation of the range images. We believe that the

subdivision framework based on oct-tree data structure and consensus surface

algorithm in our integration framework has the potential to achieve this goal.

Further compression in a global eigenspace

While we currently normalize each cell image corresponding to each triangu-

lar patch to have the same triangular shape in Eigen-Texture Rendering, with the

exception that it makes it easy to implement the system, theoretically there is

no strong reason not to treat each triangular patch in a different size. As well

as making it possible to have different sized cell image sequences, it would also

be very interesting to construct a global eigenspace for extracting the principle

components across different cell image sequences. To maximize the correlation

inside and across the combined cell image sequences, it would be better to use a

3D model that is subdivided with regard to its texture variation and to combine

cells that have almost the same underlying texture in their appearance variation.

Our adaptive integration framework can be used to construct a good basis for

this purpose.

Geometry refinement in Rendering from a Sparse Set of Images

Now that we have developed a scheme to recover the texture, lighting and BRDF

from a sparse set of images and a geometric model, we are also interested in

recovering the geometry from the set of images simultaneously to the other un-

knowns. While it would be extremely difficult to reconstruct the geometry from

nothing, it would still be possible to start from a rough geometry and refine it

gradually. The initial rough geometry can be provided by well studied computer

vision techniques, such as stereo and structure from motion. As well as estimat-

ing the illumination radiance and reflection parameters, probably the surface

normals can be estimated to well explain the input images, and the surface nor-

mals may impose constraints on the object geometry for refinement.
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Recovering the spatio-spectral distribution of the illumination environment

In our Rendering from a Sparse Set of Images framework, we recover the spa-

tial radiance distribution of illumination environment as an illumination hemi-

sphere. While we can accomplish relighting with this estimated illumination

hemisphere by changing the distribution of the light sources and changing the

radiance of each point light sources, we cannot change the color of the light

sources; it is fixed to the average color of the original illumination environment.

To relight the target object with novel illumination colors, we have to recover

the spectral distribution for each point light source placed on the vertices of the

illumination hemisphere. Once we have estimated this spatio-spectral distribu-

tion of the original illumination environment, we are able to estimate the true

RGB albedo of the object surface for diffuse reflection. We think color constancy

approaches [30, 31, 32, 116] may provide very powerful means to accomplish

this estimation.
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