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Abstract Atmospheric conditions induced by suspended particles, such as fog and

haze, severely alter the scene appearance. Restoring the true scene appearance from a

single observation made in such bad weather conditions remains a challenging task due

to the inherent ambiguity that arises in the image formation process. In this paper,

we introduce a novel Bayesian probabilistic method that jointly estimates the scene

albedo and depth from a single foggy image by fully leveraging their latent statistical

structures. Our key idea is to model the image with a factorial Markov random field

in which the scene albedo and depth are two statistically independent latent layers

and to jointly estimate them. We show that we may exploit natural image and depth

statistics as priors on these hidden layers and estimate the scene albedo and depth

with a canonical expectation maximization algorithm with alternating minimization.
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We experimentally evaluate the effectiveness of our method on a number of synthetic

and real foggy images. The results demonstrate that the method achieves accurate

factorization even on challenging scenes for past methods that only constrain and

estimate one of the latent variables.

Keywords Defogging · Dehazing · Scene Albedo · Scene Depth · Markov Random

Field · Bayesian Estimation

1 Introduction

Seeing through varying weather conditions remains a challenge for computer vision

systems to operate in the real world. Among the many possible weather conditions,

stationary atmospheric effects induced by suspended particles such as aerosols and

water droplets, i.e., haze and fog, are of particular interest as they cause non-trivial

degradations to the captured images. Removing such unwanted visual effects, often

referred to as “dehazing” or “defogging,” has strong implications in many scene un-

derstanding applications. For instance, it can help retain visibility when autonomously

navigating a robot or a vehicle, alleviate the contrast loss that makes object recognition

and detection harder, and most important provide means for analyzing the true scene

appearance regardless of the weather condition.

Restoring the true scene appearance, i.e., recovering how the scene would have

looked like on a clear day, from a single weather-degraded image, however, remains a

challenging problem. As shown by Narasimhan and Nayar (2002), the foggy day scene

appearance is the end result of attenuated scene color and transmitted airlight whose

extents depend on the scene distance to the camera (depth). As a result, an inherent

bilinearity between scene albedo and depth underlies the weather-degraded image that
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Fig. 1 An example foggy image of a pumpkin patch (reprinted from (Fattal, 2008b)). The

scene appearance is nonlinearly distorted due to scattering of scene reflection and airlight by

suspended atmospheric particles. Restoring the true scene appearance, i.e., “defogging” the

image, is challenging due to the inherent bilinear ambiguity of scene albedo and depth in the

underlying image formation process.

renders the inverse problem fundamentally ill-posed, as we will later make explicit.

Past approaches tackle this problem by either assuming that one of the two unknowns

–usually the scene depth– is known or rely on empirical observations to constrain the

scene color estimates, e.g., find a clear-day image with locally maximal contrast. In

these approaches, the scene depth is known or is rather a byproduct computed once

the clear-day image is estimated.

In this paper, we derive a novel joint estimation method based on a Bayesian

formulation to factorize a single foggy image into its scene albedo and depth1. As

the underlying problem is inherently bilinear, we believe that the two variables, scene

albedo and depth, should be estimated jointly and both solution spaces must be reduced

with realistic constraints. The key observation we make is that both the scene albedo

and scene depth carry over their latent structures to the observed foggy image. To

facilitate this structural information of the scene, we formulate the image formation

1 Preliminary results of our work was reported in (Kratz and Nishino, 2009).
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on a foggy (or hazy) day with a Factorial Markov Random Field (FMRF) (Kim and

Zabih, 2002).

The FMRF model consists of a single observation, the foggy image, and two statis-

tically independent latent layers that represent the scene albedo and the scene depth.

This particular formulation with a probabilistic graphical model allows us to seam-

lessly integrate the structural constraints that we may extract from the input image

as priors on the latent layers. In particular, we show that we can extract parameters

of a heavy-tail distribution on the gradients of the scene albedo and impose it as a

prior that is specific to the scene. We also show that, depending on the scene, we can

impose different priors on the depth layer that better capture the scene structure. For

the actual factorization, we derive an Expectation Maximization algorithm tailored to

the specific FMRF formulation using conventional graph-cuts algorithms in the expec-

tation steps to obtain maximum a posteriori (MAP) estimates of the albedo and depth

values. In this paper we will use the term defogging, but the method does not rely on

the density of the suspended particles as long as single scattering dominates, and can

be also applied to hazy images.

We experimentally evaluate the effectiveness of the method by showing the factor-

ization results on a number of images. The results show that the method successfully

arrives at plausible estimates, i.e., realistic recovery of clear-day images and scene

structure even for images that prove challenging for past methods.

2 Related Work

The visual effect induced by bad weather conditions has been of great interest in a

number of fields–most prominently in meteorology–and their distinct characteristics,
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depth-dependent contrast loss and color shifts, can even be found in medieval paintings.

Scientific studies of such weather-degraded scene appearances in images, especially of

their physical and optical processes, however, only started in the mid 1900s (Middleton,

1952; McCartney, 1975). Early approaches to image restoration of weather-degraded

images (a.k.a. defogging) treat the problem as yet another instance of image contrast

enhancement. For instance, Grewe and Brooks (1998) learn an optimal set of parameter

values, from pairs of images of the same scene with and without weather degradation,

in order to fuse multiple images to reduce the atmospheric effects.

Image formation under static bad weather conditions such as fog and haze can

be described with rigorous physically-based analytical models that provide a sound

foundation for tackling its inversion. Based on earlier analysis of atmospheric light

transport (Middleton, 1952; McCartney, 1975), Narasimhan and Nayar (2002) recently

derived a dichromatic atmospheric scattering model that represents the light attenua-

tion caused by single scattering of light with suspended atmospheric particles. By using

this dichromatic model and the constraints it imposes in the color space, analogous to

the dichromatic reflectance model (Shafer, 1985) and its use for reflectance component

separation (Klinker et al, 1990) and illumination estimation (Tominaga and Wandell,

1989), they showed that a clear-day image and scene depth can be recovered from

multiple (at least two) images of the same scene taken under different bad weather

conditions, i.e., different fog densities. They further showed that essentially the same

model can be used to impose chromatic constraints to estimate scaled depth structure

and then to restore the contrast of the scene from two images taken under different

bad weather conditions. Schechner et al (2003) exploit the difference in the polarization

characteristics of airlight and scene reflection to dehaze a scene from two images taken

with polarizers of different angles.
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Capturing multiple images, especially under different weather conditions, can be

prohibitive in practical situations. Defogging becomes particularly challenging when

we only have access to a single input image because of the inherent bilinearity of

scene albedo and scene depth. A few past methods alleviate this ambiguity altogether

by assuming known scene depth by manually specifying the rough 3D scene struc-

ture (Narasimhan and Nayar, 2003c), by assuming a planar terrain viewed with an

airborne camera (Oakley and Satherley, 1998; Tan and Oakley, 2001), or by aligning

geo-referenced digital city models (Kopf et al, 2008b).

More recent work on single image defogging formulate the problem as local con-

trast enhancement while accounting for the scene albedo and depth relation. These

approaches impose constraints on the scene albedo and treat scene depth as a byprod-

uct of the estimation process. Tan (2008b) imposes a locally constant constraint on

the albedo values to increase the contrast in local block regions of the image. The

results inevitably suffer from block artifacts. Tarel and Hautière (2009) estimate the

“atmospheric veil,” an image of the scattered airlight, by using combinations of min,

max, and median filters to enforce piecewise constant, and use the estimate to obtain

a contrast enhanced image of the scene. Fattal (2008b) assumes that the surface Lam-

bertian shading factor and the scene transmission are locally independent in order to

separate the haze from the scene, and then uses a Gaussian-Markov random field to

smooth the transmission values. Our method, however, assumes that the albedo and

depth are conditionally independent given the foggy image. Though Fattal (2008b)

does exploit the statistical independence of appearance and depth, they only constrain

the appearance. Similarly, recent independent work by He et al (2009b) (our method

was first reported in (Kratz and Nishino, 2009)) imposes constraints only on the depth

structure induced by an empirical observation of clear-day intensity values in local re-
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gions and refines the blocky depth estimates with an image matting algorithm. We will

discuss the similarity of this constraint to the initial depth estimates in our method

and show that it naturally arises as an upper bound that can be computed per pixel.

In sharp contrast to these past methods, we tackle defogging as the factorization

of an image into scene albedo and depth. Most important, we jointly estimate both

the scene albedo and depth. We achieve this with a novel probabilistic graphical model

formulation of the underlying image formation process that enables the integration of

structural constraints as statistical priors on both the depth and albedo values. Finally,

our method exploits natural structural information extracted from the input image

itself, resulting in scene-specific priors that impose stronger constraints for resolving

the bilinear ambiguity.

3 The Bilinear Ambiguity in a Foggy Image

Let us first review image formation of a foggy image. Readers interested in further

details are referred to (Narasimhan and Nayar, 2002, 2003b). When an image is formed

through static bad weather conditions–we consider only fog or haze in this paper–the

scene appearance is altered by the minute atmospheric particles suspended in air. The

light rays traveling through the air get scattered by these particles before they reach

the camera. In this paper, we only consider single scattering as multiple scattering

occurs only when the fog is very dense2.

The light reflected by the scene that would have determined the scene appearance

on a clear day becomes attenuated by this scattering. As the number of times a light ray

hits an atmospheric particle is proportional to the distance it travels, this attenuation

2 Eliminating its visual effects can be achieved through deconvolution (Narasimhan and

Nayar, 2003a).
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is clearly scene depth dependent. Let us denote the airlight that illuminates the scene

with a 3-vector of RGB values L∞. Allard’s law, originally derived for night visual

range of light sources, can be used to express the image irradiance Ls at each pixel

x = (x, y) due to reflected scene radiance (Middleton, 1952; Narasimhan and Nayar,

2002):

Ls(x) =
L∞ρ(x)e−βd(x)

d(x)2
, (1)

where β is the attenuation coefficient that we assume to be uniform across the entire

scene, i.e., the fog is spatially homogeneous, and also is independent of the wavelength;

and ρ(x) and d(x) are the scene albedo and depth, respectively, at the scene point

corresponding to image coordinates x. The scene albedo is a 3-vector of RGB color

channels and the scene depth a scalar value shared among all color channels, so to be

more precise d(x) should be considered as d(x)[1 1 1]T. Also note that the clear-day

image of the scene is

Lc(x) =
L∞ρ(x)

d(x)2
. (2)

The scene appearance is also altered by the airlight itself. The atmospheric particles

suspended along the line of sight intercepts the airlight and scatters some portion of it

towards the camera, in effect making it act as an additional light source. The amount

of airlight scattered towards the viewer is dependent on the unblocked distance along

the view direction for each pixel: the scene depth at each pixel. This can be expressed

using the airlight formula, also known as the Koschmieder’s law (McCartney, 1975):

La(x) = L∞(1− e−βd(x)) . (3)
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The scene appearance in a foggy image is the linear combination of the attenuated,

reflected scene light and the intercepted airlight:

I(x) = Ls + La (4)

=
L∞ρ(x)e−βd(x)

d(x)2
+ L∞(1− e−βd(x)) . (5)

Ideally, we would like to directly estimate the true scene albedo ρ(x). This, however,

is intractable due to the d2-falloff term. Instead we resort to estimating the “effective”

scene albedo in the image space, i.e., the image irradiance due to the reflected radiance

at the scene point, by redefining the scene albedo to include the falloff effect

ρ̃(x) =
ρ(x)

d(x)2
, (6)

which is also known as the normalized radiance (Narasimhan and Nayar, 2003b). It is

also clear that we can only recover the scaled scene depth: the optical depth d̃(x) =

βd(x). If we have prior knowledge of the fog/haze density, we can guess β reasonably

well and use that value to re-scale the scene depth estimates later. This is in contrast

to our previous work (Kratz and Nishino, 2009) where β was assumed to be known

and constant.

Our goal then is to factorize the single foggy image I into the scene albedo ρ̃(x)

and scene depth d̃(x) for each pixel across the entire image:

I(x) = L∞ρ̃(x)e−d̃(x) + L∞(1− e−d̃(x)) . (7)

The observed input image will inevitably scale the scene radiance with a value that

accounts for the radiometric characteristics of the camera3. As such, the qualitative

3 We assume a linear camera. This assumption does not hold for general images taken with

cameras that were not radiometrically calibrated. The nonlinear radiometric camera properties

cumulated in its response function will simply be embedded in the estimated scene albedo and

depth images.
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albedo and depth we estimate, ρ̃ and d̃, respectively, will encode this unknown global

scaling. If necessary, and if we know some ground truth values in the scene, e.g., the

reflectance and/or the absolute distance of a scene point a scene point, we may estimate

the scaling factors for the estimated albedo and depth images to arrive at quantitatively

accurate values.

We can assume that the airlight L∞ is known, as it can be easily estimated (semi-

)automatically. As pointed out by Narasimhan and Nayar (2002), the observed image

color vector I reduces to the airlight L∞ vector for image points corresponding to scene

points at infinity d(x) = ∞ or at scene points with no reflection ρ̃ = 0 where we also

assume d(x) = ∞. This suggests that we can determine L∞ by picking image points

corresponding to direct observations of the sky or extremely dark scene points, e.g.,

inside a window as we show in latter experiments.

Even with knowledge of the airlight vector, factorizing the input image into scene

albedo and depth is an ill-posed problem. A simple algebraic manipulation of Equation

7 reveals the inherent bilinearity:

ln

(
1− I(x)

L∞

)
= ln(1− ρ̃(x))− d̃(x) (8)

Ĩ(x) = C(x) + D(x) , (9)

where we have explicitly separated the contributions of scene albedo as C(x) = ln(1−

ρ̃(x)) and depth as D(x) = −d̃(x). Note that we are mixing scalar values and 3-vectors

to simplify the notation, but the scalar should be read as 3-vectors of the same element

values. It is also worth mentioning that the airlight-normalized input image I
L∞

usually

is a 3-vector whose elements are in (0, 1) as the airlight color normally has the brightest

intensity in the image. We discuss other cases when this assumption does not hold in

Section 5.3.
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It is clear from Equation 9 that the scene albedo and scene depth are in a bilinear

relationship–we can scale up one of them with an arbitrary scalar and scale down

the other accordingly to arrive at the same output Ĩ. This clearly means that the

factorization of a single foggy image into scene albedo and depth suffers from this

inherent bilinear ambiguity and thus is ill-posed.

4 A Foggy Image as a Factorial Markov Random Field

The inherent bilinearity indicates that both the scene albedo and depth play equally

important roles in the determination of the scene appearance in a foggy image and thus

should be treated equally. That is, we should jointly estimate these two variables and

must properly constrain their solution spaces to arrive at meaningful estimates. For

this, we turn to a probabilistic formulation based on a Factorial Markov Random Field

(FMRF) (Kim and Zabih, 2002) to model the dependence between the two variables

and the input image canonically and incorporate suitable constraints as statistical

priors on each variable.

4.1 Factorial Markov Random Field Formulation

As depicted in Figure 2, the FMRF formulation consists of a single observation, the

foggy image, and two layers of latent variables. We associate one hidden layer with

the albedo term C and the other with the depth D. These two latent layers can be

considered statistically independent, since surface color and its geometric structure are

not statistically tied to each other. We can then factor the albedo and depth from the

foggy image by maximizing the posterior probability

p(C,D|Ĩ) ∝ p(̃I|C,D)p(C)p(D) , (10)
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Fig. 2 The Factorial Markov Random Field formulation consists of two layers of latent vari-

ables associated with the depth factor D(x) and albedo factor C(x), and a single observation

layer Ĩ(x).

where we have dropped the image coordinates as the probabilities are computed over

the entire image; p(̃I|C,D) is the likelihood of the observation; and p(C) and p(D)

are the priors. We assume uniform probability for the observation p(̃I). The structure

of the FMRF permits constraints to be imposed simultaneously and independently on

the scene albedo and depth in the form of priors on each layer.

Although the structure of each latent layer is enforced by the priors imposed on

them, they are interrelated through the observation layer. The simultaneous estimation

of both factors relies on their interaction, i.e., the likelihood of the observation. We

model the noise inherent in the observations with Gaussian distributions of the same

variance σ2. The likelihood then becomes

p(̃I|C,D) =
∏
x

N (̃I(x)|C(x) + D(x), σ2) . (11)

The significance of this factorial graphical model formulation of foggy image for-

mation lies in the fact that we can now impose realistic constraints on the two latent

variables, the scene albedo and depth, as statistical priors on the latent layers. This

enables us to fully leverage realistic constraints on these variables and seek optimal fac-



13

torization of the input image with a canonical probabilistic inference algorithm while

jointly constraining and estimating the two variables. In this paper, we only consider

conventional two-cliques and priors imposed on them as described in Section 5.1, but

we may also consider higher-order cliques and use appropriate energy minimization

techniques (Komodakis and Paragios, 2009).

4.2 Estimating Scene Albedo and Depth

Following the original inference algorithm for FMRF (Kim and Zabih, 2002), we derive

a joint energy minimization algorithm based on the expectation maximization principal

to factorize the input image into the scene albedo layer C and scene depth layer D.

The algorithm alternates between the expectation step that computes the posterior

probabilities of the latent layers, i.e., estimating the scene albedo and depth, and the

maximization step that maximizes the expected log likelihood.

In the expectation step, the posterior probabilities of the latent variables are com-

puted and maximized assuming that the likelihood parameter, the noise variance σ2

(Equation 11), is known–they are set to the current estimates from the maximization

step. If we use standard exponential potential functions for the priors, maximizing the

posterior (Equation 10)

argmax
ρ̃,d̃

p(C,D|Ĩ) = argmax
ρ̃,d̃

p(̃I|C,D)p(C)p(D) (12)

= argmax
ρ̃,d̃

exp
[
−Q(̃I,C,D)

]
exp [−VC(C)] exp [−VD(D)] , (13)
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becomes equivalent to minimizing the negative log posterior that amounts to an energy

minimization:

argmin
ρ̃,d̃

(
− ln p(C,D|̃I)

)
=

argmin
ρ̃,d̃

∑
x

Q(̃I(x),D(x),C(x))+
∑
x

∑
y∈Nx

VC(ρ̃(x), ρ̃(y))+
∑
x

∑
y∈Nx

VD(d̃(x), d̃(y)) ,

(14)

where Nx is the set of pixels neighboring pixel x, Q(̃I(x),C(x),D(x)) is the data

energy reflecting the exponent of the Gaussians in the likelihood (Equation 11), and

VC(ρ̃(x), ρ̃(y)) and VD(d̃(x), d̃(y)) are the potential energies imposed by the 2-clique

priors for the albedo and depth layers, respectively.

Since the data energy term Q(̃I(x),D(x),C(x)) is dependent upon both factors

D(x) and C(x) we cannot minimize the total energy directly. To efficiently minimize

Equation 14, we use the pseudo observable introduced by Kim and Zabih (2002), where

each layer is estimated in an alternating fashion by assuming that the other layer’s

values are known and by minimizing the corresponding partial energy. This amounts

to alternating between solving two independent single-layer MRFs while fixing one of

the latent variables to the current estimate and estimating the other. Thus Equation

14 becomes two separate partial energies minimized in alternating orders

∑
x

Ĩ(x)− D̄(x)−C(x)

σ̄2
+
∑
x

∑
y∈Nx

VC(ρ̃(x), ρ̃(y)) , (15)

∑
x

Ĩ(x)− C̄(x)−D(x)

σ̄2
+
∑
x

∑
y∈Nx

VD(d̃(x), d̃(y)) , (16)

where C̄(x) and D̄(x) are the expected values–the current estimates–of C(x) and D(x),

respectively. The likelihood parameter σ is also set to the current estimate σ̄ given the

maximization step, which is fixed throughout one expectation step. Since the pseudo-

observables depend on the current estimate from the other layer, the expectation step
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is iterated until convergence. The maximization step is a simple parameter estimation

of σ given the latent layers with the current estimates of ρ̃ and d̃.

We solve each single-layer MRF in the expectation step, i.e., Equations 16 and

15, using graph-cuts algorithms (Boykov and Kolmogorov, 2004; Boykov et al, 2001;

Kolmogorov and Zabih, 2004). The graph-cuts algorithm we use depends on the form

of the prior. For instance, when we use a piecewise constant prior (Potts model ex-

pressed with a Kronecker delta prior) or a Laplace prior, we use the expansion-move

algorithm (Boykov et al, 2001; Szeliski et al, 2008). Graph-cuts necessitates discretiza-

tion of the albedo and depth values, but we consider this a reasonable trade-off for

computational tractability so long as the samplings of their possible ranges are fine

enough.

5 Leveraging Latent Structures of the Scene

The factorial Markov random field formulation provides a sound foundation for jointly

estimating the scene albedo and depth from a single foggy image. Most important, it

allows us to leverage constraints that we may consider on the two latent variables as

priors, i.e., clique potentials, to simultaneously tighten their solution spaces. It turns

out that despite the veil of fog, the input foggy image encodes significant structural in-

formation of the scene albedo and depth that we may extract or identify and use as such

statistical priors. Furthermore, we may extract good initial estimates of the scene depth

directly from the input image. These scene-specific priors and initial estimates help nav-

igate the optimization to arrive at meaningful estimates, i.e., physically-plausible local

minima, that embody the statistics of real-world scenes.
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5.1 Scene-Specific Priors

One of the widely used natural image statistics that captures the variability of scene

color is the gradient distribution. Usually an image of a natural scene exhibits a heavy-

tail distribution in its gradient distribution, whose statistical characteristics are often

used as statistical priors for image processing tasks such as noise removal. This invalu-

able images statistics is often approximated with an analytic statistical distribution,

as the direct use of non-parametric representations (histograms) incur a prohibitive

computational burden. Although various parametric representations can be consid-

ered, such as that of the conditional distribution of the gradient components based

on wavelet of Fourier bases, a simple analytical model such as an exponential power

distributions (generalized Gaussians) is generally sufficient. Then the question is what

parameter values should be used for this analytic model to impose a realistic constraint

on the albedo layer. Past work that use natural image statistics often learn the param-

eters from a training image set or simply model them with a Laplace distribution. It is,

however, important to notice that the kurtosis of the gradient distribution is usually

scene-specific and directly encodes the statistical characteristics of the variability of

scene colors. This kurtosis, i.e., the power of the exponential power distribution, is the

key to a strong prior.

We notice that the input foggy image contains sufficient information to directly

determine the parameter values of the albedo prior that approximate the clear-day

image statistics of the very same scene. Consider the gradients of a clear-day image of

the scene, whose foggy image we have as an input. The fog alters the scene colors by

scaling down the original scene color and adding an airlight vector, whose magnitudes

are scene depth dependent, e−d̄(x) and 1− e−d̄(x), respectively. Although this results
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in complex nonlinear changes in the scene color vectors we can expect the chromaticity

values of the scene points to be less affected by these color shifts as they are the

directional color vectors. The directional change due to the poor weather would be

substantial if the added airlight dominates, which happens when the scene depth is

large–when we are observing far away scene points. In such areas, however, the scene

contents are less discernible, i.e., contains less scene edges to begin with, as less pixels

will be dedicated to the same size of a scene area as compared to that closer to the

camera. As such, we can expect the first-order statistics, most important the kurtosis,

of the distribution of the chromaticity’s spatial gradients to be more or less preserved

under different weather conditions. To this end, we first calculate the chromaticity of

the input image I(x) = {Ik|k ∈ {R,G,B}}

ik(x) =
Ik(x)∑

k∈{R,G,B} Ik(x)
, (17)

where k denotes the color channel. We then calculate the gradient∇ik(x), and compute

its histogram, which may be viewed as an approximation of the joint distribution of

the chromaticity gradients of the albedo layer we seek to recover. Figure 3 shows the

chromaticity image and its gradient distribution for the foggy pumpkin patch image

in Figure 1. This is different from our previous work Kratz and Nishino (2009) that

assumed similarity between the chromaticity and albedo gradients (their raw color

values). Further validation of this chromaticity albedo prior and comparison with our

previous approach is discussed in Section 6.

We model the gradient distribution of the image’s chromaticity by fitting an expo-

nential power distribution (generalized normal distribution) to the histogram and use

it as a prior on the albedo layer:

p(C) =
∏

k∈{R,G,B}

∏
x

∏
y∈Nx

exp
| ρ̃k(x)
c(x)

− ρ̃k(y)
c(y)
|γ

λ
, (18)
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Fig. 3 (a) The chromaticity image of the foggy image of a pumpkin patch (Figure 1) and

(b) the distribution the blue channel’s gradients. A scene-specific albedo prior is estimated by

approximating the chromaticity gradients (bar graph) with an exponential power distribution

(solid curve) for each color channel.

where λ and γ are the variance and power of the exponential power distribution,

respectively, and c(x) is the chromaticity scalar (that is, the sum of the albedo over all

of the channels). Figure 3(b) shows the exponential power distribution estimated for the

corresponding gradient distribution. Note that c(x) depends on all three color channels,

though we minimize each individually. During minimization, we re-compute c(x) using

the pseudo-observables of the albedo channel. This provides a sufficient estimate of

the chromaticity: in the worst case the error would be a scale factor across all three

channels. Also we ignore the normalization factor of the exponential power distribution,

as it only results in a constant in the total and partial energies. By estimating the

exponential power distribution parameters for the gradient distributions of each channel

of the chromaticity image, we may impose priors that are specifically tailored to the

scene in the input image, which leads to strong constraints on the joint estimation that

are faithful to the scene.
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For the scene depth, we can consider a number of different statistical distributions

as its prior. For instance, if it varies smoothly, we may impose a Gaussian distribution

p(D) =
∏
x

∏
y∈Nx

exp

(
d̃(x)− d̃(y)

)2

ξ
. (19)

This is often the case for natural scenes of landscapes such as terrains and fields.

Conversely, if the scene consists of planar regions, as is often the case in urban scenes,

a piecewise constant model would provide a more appropriate prior on the scene depth:

p(D) =
∏
x

∏
y∈Nx

δ
(
d̃(x) = d̃(y)

)
, (20)

where δ is a Kronecker delta. Finally, if the scene contains both characteristics, one

may choose to use the Laplace distribution

p(D) =
∏
x

∏
y∈Nx

exp

∣∣∣d̃(x)− d̃(y)
∣∣∣

ξ
. (21)

Ideally, we would like to automatically identify the most suitable depth prior for

the input foggy image and its parameter values, i.e., the variances for the Gaussian

and Laplace priors. This can potentially be done by running the factorization multiple

times with different depth priors with different parameter values and by seeking the

combination that achieves the lowest energy. On several images, we indeed tried this and

confirmed that this approach works albeit the extra computational cost. We, however,

chose to simply manually specify the depth prior and its parameter values in the latter

experimental examples. The ability to use depth priors that are most suitable for the

scene, which is realized via the graphical model formulation, together with the similarly

scene-specific albedo priors, enables reliable factorization.
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5.2 Initial Estimates

The EM-based FMRF estimation algorithm described in Section 4.2 can be initialized

with arbitrary values assigned to the latent layers of scene albedo and depth and one

can start the alternating minimization in the expectation step with either layer. We,

however, exploit the fact that the scene depth is allowed to vary less than the albedo

to extract good initial depth estimates and start the expectation step with the albedo

layer. As can be seen in Equation 7, the albedo ρ̃(x) is a 3-vector, while the depth

d̃(x) is a single scalar value. In other words, each pixel contains three measurements

(the three channels of the observed image, I(x)) that may contribute to the depth

estimation, while only one measure for each albedo channel. This simple observation

suggests that we may obtain a good bound on the possible scene depth at each pixel

from the corresponding observed RGB color values.

We estimate the initial depth values as the farthest possible depth at each pixel.

The observed image contains three color channels, thus we may obtain a single depth

estimate for each channel k ∈ {R,G,B}. We note that the scene albedo layer value at

each pixel C(x) is inversely related to the scene depth d̃(x) as can be seen in Equation

9. Thus the farthest possible depth value (i.e., the highest value of d̃(x)) occurs when

C(x) = 0, which is equivalent to ρ̃(x) = 0, and the corresponding depth estimate

Dk(x) (or −d̃(x)) is

Dk(x) = Ĩk(x) . (22)

where k is a specific color channel. Next, we note that of the three depth estimates

Dk(x), k ∈ {R,G,B}, only the closest depth value (i.e., largest Dk(x)) is a possible

value for all three color channels. Thus we set initial depth estimate D0(x) to the
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Fig. 4 The initial depth image computed from the pumpkin patch image in Figure 1. The

initial estimates already capture the scene depth structure well, and its redundant details

arising from scene albedo variations are refined through the joint estimation.

closest possible depth over all three channels

D0(x) = max
k∈{R,G,B}

Ĩk(x) . (23)

In other words, D0(x) is the farthest depth (i.e., largest value of d̃(x)) that is a valid

value for all three color channels. This is intuitive: if you select a depth farther than

D0, then ρ̃(x) must be larger than 1 for at least one color channel to satisfy Equation

9.

Figure 4 shows the initial depth estimates computed from the foggy, pumpkin patch

image in Figure 1. As Figure 4 illustrates, these initial estimates already capture the

scene depth structure well and provide a good starting point for the FMRF-based

factorization. The redundant details in the initial depth estimate (i.e., the specular

highlights of the pumpkins) are refined and then correctly represented in the albedo

during the joint minimization. We initialize the depth layer with D0 and use it as the

pseudo-observable (current estimate) to start the expectation step by first solving the

albedo MRF.

Recent independent work (He et al, 2009b) refer to a similar estimate of the depth

as “the dark channel prior.” It is important to note the difference in our approaches.
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The dark channel prior in (He et al, 2009b) are used as initial estimates for the matting

algorithm that imposes conventional smoothing on the depth estimation (but without

any constraints on the albedo). We have also shown that these initial estimates natu-

rally fall out as upper bounds on the depth estimates, not mere empirical observations

as discussed in (He et al, 2009b). Finally, the dark channel prior is computed in local

regions resulting in blocky estimates, while our initial depth estimates are computed

pixel-wise resulting in finer estimates. These blocky estimates are necessary for the

matting approach of (He et al, 2009b), but fine estimates provide a wide range of

possible depth estimates within each local region. This provides a more flexible start-

ing point for the FMRF minimization, while blocky estimates may over-restrict the

minimization.

5.3 Scaling and Discretization

Note that the left-hand side of Equation 9 is undefined when I(x) ≥ L∞ which can

sometimes occur in real images. For instance, specularities can cause scene colors to

exceed the intensity of airlight. To alleviate the numerical issues in such cases, we

normalize the airlight to a unit vector, and scale I(x) by a value η to redefine Ĩ(x),

C(x), and D(x) in Equation 9:

ln

(
1− I(x)|L∞|

ηL∞

)
= ln(1− ρ̃(x))− d̃(x) . (24)

We select η to minimize instances where Ĩ(x) is not real. To do so, we select η to be

the largest intensity (color vector magnitude) in the input image I(x)

η = max
x
|I(x)| . (25)
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Note that η is applied globally over the entire image and thus is equivalent to scaling

the image intensities by a fixed value and does not change the ratio of the intensities

in each color channel. At most, this normalization would later necessitate a brightness

adjustment of the result, which is often necessary regardless as the restored clear-

day image would usually be dark. Even with this scaling, however, there may still be

instances where Ĩ(x) is not real. This happens rarely, and we set the resulting pixel

value to the airlight color.

We assume that our source images are represented with 8-bits per channel, and

discretize our albedo estimates to |C| = 256 possible values. From Equation 24 we

can see that C(x) is logarithmically related to ρ(x). Thus the values for D(x) that

minimize the error will also be in log scale. We discretize D(x) to 256 possible labels.

Specifically, given a label DL(x) between 0 and 255 the depth is

D(x) = ln

(
DL(x)

255

)
. (26)

6 Experimental Results

We evaluated the effectiveness of our method on a number of real and synthetic foggy

images. For each image, we estimated the exponential power distribution for each of

the three chromaticity channels. For the depth prior, we used a Laplace, Gaussian, or

piecewise constant distribution, which was manually picked depending on the input

image. As the depth value of a scene point d̄(x) tends to infinity, i.e., for smaller D

labels, its albedo values ρ̄(x) approaches the airlight vector and thus the computation

of C becomes numerically unstable as it approaches ln 0. To avoid this numerical issue,

we simply limit the maximum depth value to the label of DL = 40 in Equation 26

and, for those with smaller depth labels, recompute the albedo values using the depth
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Fig. 5 A scene from the Weather and Illumination Database (Narasimhan et al, 2002) cap-

tured under clear (left) and poor (middle) weather conditions. The poor weather affects the

distribution of the scene’s raw color (right graph: Clear/Foggy Raw), but the distributions

of gradients of the chromaticity of both images (right graph: Clear/Foggy Chromaticity) are

nearly identical.

value corresponding to DL = 40. For all experimental results, we visualize the scene

depth with a gray scale image in which the brighter the closer (the intensity is inverse

proportional to d̄) and the albedo values are shown with airlight multiplied to them

that corresponds to the clear-day image (Equation 2) but without the d2-falloff. The

albedo image is also gamma corrected for better visualization–naturally the estimated

albedo values lie in the lower end of the 8-bit intensity range of an image as a result

of the factorization and are thus generally dark.

Figure 5 shows example images from the Weather and Illumination Database

(Narasimhan et al, 2002) that we used to validate the accuracy of the scene-specific

albedo prior. Each pair of images we used (one with poor weather, and one with clear-

day sky) were captured from the same view, almost at the same time of the day (within

an hour difference), on consecutive days with the same camera. We used 21 image pairs

captured over different months, with different severity of poor weather conditions (fog

density), and at different times of the day. We consider the clear-day images as ground

truth, and measure the error in the kurtosis represented by the power of the exponen-
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(a) (b)

(c) (d)

Fig. 6 Factorization result of a real-world hazy skyline compared with that of a polarization-

based method by Schechner et al (2003). (a) the input hazy image; (b) the dehazed clear-day

image computed by Schechner et al (2003); (c) the depth image computed by our method;

and (d) the albedo (clear-day) image computed by our method. Note that the polarization-

based method requires two images. The polarization-based method computes a physically

accurate clear-day image. The albedo image of our method achieves similar factorization that

demonstrates its accuracy. Images (a) and (b) are reprinted from (Schechner, 2003).

tial power distributions we fit to the gradient histograms of the chromaticity values

(Clear/Foggy Chromaticity in the graph) and raw color values (Clear/Foggy Raw in

the graph) of both images. As the example shown in Figure 5 depicts, the distributions

of the chromaticity gradients were nearly identical, while the those of the raw color

gradients were quite different due to the poor weather conditions. The difference in the

powers of the exponential power distribution (averaged over all channels of all pairs of

images) is 0.097 for the chromaticity gradients, and 0.359 for the raw color gradients.
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Figure 6 shows the results of our method compared with a polarization-based

method that requires minimum two images (Schechner et al, 2003). The method by

Schechner et al (2003) uses the polarization characteristics of scene reflection and

airlight to physically remove their attenuation and transmittance, thus we may as-

sume that their results represent the true clear-day scene. The results in Figure 6 show

that our method computes similar albedo estimates (again, shown as an image with

airlight vector multiplied to them) that demonstrate the accuracy of our method. The

airlight color that was automatically chosen from the brightest point in the image was

bluish, which in turn results in a yellowish tint in the airlight-normalized image and

subsequently the final albedo image (clear-day image shown in Figure 6(d)). Note that

areas that have the same color as the airlight will have an insolvable ambiguity as the

albedo and airlight color vectors line up in the color space, and thus will be estimated

as a scene point at infinity with airlight color albedo. This causes the erroneous depth

estimates, such as the trail in the front hill (Figure 6(c)). Otherwise, the results have

almost exactly the same visibility and scene color estimates as the physically-based

method, which demonstrates the accuracy of the joint estimation.

Figure 7 shows the factorization results of a synthetically generated foggy image.

The results of our method are compared with those computed with the method intro-

duced by Fattal (2008b). Although at first glance the albedo and depth estimates by

Fattal (2008b) (Figure 7(c)) may seem closer to the ground truth (Figure 7(b)) they

suffer from inaccuracies that indicate remaining mixing of scene albedo and depth.

These are visible in the somewhat shallow contrast of the albedo image, as if some fog

still veils the image, and the depth estimates contaminated by the albedo (texture).

Our results (Figure 7(d)), in contrast, show clear factorization of the scene albedo and

depth, where the two are not contaminated by each other. Our method directly esti-
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(a) (b) (c) (d)

Fig. 7 Factorization results of a synthetic foggy image. (a) The input image; (b) the ground

truth albedo (left) and depth images (right); (c) the estimated albedo (left) and depth images

(right) computed with the algorithm by Fattal (2008b); (d) the estimated albedo (right) and

depth images (left) computed with our method. Fattal’s algorithm results in fog-veiled albedo

image and texture-contaminated depth image (c) indicating remaining mixing of albedo and

depth effects. In contrast, our algorithm successfully factorizes the input image into clear and

vivid albedo and smooth and texture-free depth images (d).

mates the image albedo which are the true colors as if there were no airlight at all. This

explains the increase in contrast–the more vivid albedo image–of our results. The clear

albedo and depth estimates in our result (Figure 7(d)) exemplifies the significance of

achieving a joint estimation while canonically constraining both latent variables, unlike

constraining and solving for just one of the variables (albedo in Fattal (2008b)).

Figure 8 shows a direct comparison of our approach to the method by Fattal (2008b)

using real-world foggy images4. Our scene-specific albedo priors produce better con-

sistency in the color of the recovered albedo, resulting in a more uniform appearance

across the varying geometric structures of the scene. This, for example, can be seen

in the green colors across the field and orange colors of different pumpkins in Figure

8(a), the wheat colors across the field in Figure 8(b), and the colors of the bricks and

different greens in Figure 8(c). In all cases, the albedo estimates by Fattal (2008b) show

4 For the input image in Figure 8(c), we used the inside of the window to determine the

airlight vector. Again, for regions with scene colors similar to airlight, e.g., the window frame,

the depth estimates will be saturated.
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color variations indicating remaining fog effects, e.g., the brighter green in the middle

of the pumpkin patch, the darker wheat colors at far distance, and grayish tint to the

bricks around the bird house on the house wall and the greens at different distances. In

contrast, our albedo images are vivid and consistent in colors across the entire image.

These characteristics agree well with the synthetic image results in Figure 7.

Similarly, and as an interrelated consequence, our approach estimates the depth

variation of the scene more accurately. This can be observed in the globally smooth

variation towards the top of the image for the examples in Figure 8(a) and 8(b), as

well as the robustness against highlights observed on the pumpkins at grazing angles.

Also, the estimation by Fattal (2008b) lead to overly far depth values for further scene

areas for the pumpkin patch and wheat field (Figure 8(a) and 8(b), respectively), and

for the house exterior (Figure 8(c)), and lacks the details for these regions altogether.

In sharp contrast, our method estimates depth at finer granularity even in these areas

(for instance, observe the wheat bundles at the top region of our depth image in Figure

8(b) and the walls of the house in our depth image in Figure 8(c)). These errors in

the depth estimates also explain the fog-like veil in the albedo images computed by

Fattal (2008b) and the more accurate and consistent albedo estimates of our method.

These results demonstrate the importance of constraining both latent variables with

scene-specific priors, which is enabled with our Bayesian graphical model formulation.

Figure 9 shows a few comparisons of the factorization results by our method with

those of He et al (2009b). The estimated albedo and depth images are more or less

the same. As we discussed in Section 5.2, He et al (2009b) independently introduced a

depth initialization method, although they refer to it as a prior, that is similar to ours

but computed block-wise unlike our pixel-wise initialization. In sharp contrast to their

matting based method that refines the depth image, we achieve factorization via joint
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estimation with true statistical priors (constraints) imposed on both the albedo and

depth values. The importance of this contribution in comparison to He et al (2009b)

becomes particularly significant when defogging challenging scenes like that in Fig-

ure 9(c), where the scene colors nor the scene depth alone does not embody strong

structures–there is not much variability individually and a mere smoothing constraint

on one does not suffice (He et al, 2009b). Clearly, our method achieves more accurate

removal of the fog (Figure 9(c) right), while fog persists in the albedo estimates by He

et al (2009b) (Figure 9(c)). Similar observations can be made between our results on

the images used by Fattal (2008b) (Figure 8) and those computed by He et al (2009b)

shown in (He et al, 2009a). These results demonstrate the effectiveness of constraining

both latent variables with scene-specific priors and jointly solving for them, which ef-

fectively compensates for each other’s lack of discriminative information to successfully

arrive at an accurate factorization.

Figure 10 shows comparison of our method with another recent defogging method

(Kopf et al, 2008b). Except for the differences in the overall tint of colors, which are

again due to the automatically chosen airlight vector in our method, the estimated

albedo images are of similar quality–they exhibit similar visibility and local contrast–

demonstrating the effectiveness of our method. The method by Kopf et al (2008b)

require a semi-automatically aligned geo-referenced 3D terrain model to obtain the

depth of the scene5. We, on the other hand, jointly estimate the scene depth as shown

in the last column for each example in Figure 10. Except for the erroneous depth

estimates for regions that happen to have albedo colors similar to the airlight, e.g.,

5 The focus of their method is rather on the different applications of such 3D-aligned images,

and defogging is just one example.
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the clouds in Figure 10(b) and ground for the hikers in Figure 10(c), the depth image

agree well with the scene structure.

In Figure 11, we compare our results with those by Tan (2008b). Since each pixel

is modeled as an observation in the FMRF model, our approach can isolate fine edges

between different depth objects with much finer detail, as visible in the lack of block

artifacts the approach by Tan (2008b) suffers from. For instance, observe the tree

trunk in Figure 11(b). Our method achieves much greater consistency in the colors of

the recovered albedo layer when compared with the input images. Our scene-specific

priors enforce a strict structure for each color layer ensuring that the resulting albedo

value is consistent with the initial observation. For instance, the street sign in Figure

11(a) should be yellow as our method successfully estimates, while the local contrast

maximization method by Tan (2008b) estimates it to be orange.

Figure 12 shows the improvement gained by jointly estimating the scene depth and

albedo. The first column shows our initial depth estimate and the corresponding albedo

computed directly from Equation 9. The initial depth estimate contains redundant

detail resulting in a loss of detail in the plants and buildings in the scene. In addition,

the initial estimate is too far, causing the buildings to appear yellow. Figure 12(b)

shows the results of blurring this estimate (i.e., only trying to estimate the depth),

which incorrectly estimates the depth in many areas causing a loss of detail in the

trees and an over-saturation of the buildings. Only by imposing constraints on both the

depth and the albedo can meaningful and accurate results be achieved (Figure 12(c)).

Figure 13 shows our method compared with our previous approach (Kratz and

Nishino, 2009) that assumes the chromaticity gradient distribution was similar to that

of the raw color values of the albedo layer. Our previous method resulted in albedo

values similar to the chromaticity image, and thus for some cases caused the recovered
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albedo image to appear too saturated. In the image shown in the middle, the blue

channel is under-estimated, and thus the image appears too yellow and red. By includ-

ing the chromaticity term in Equation 18, we achieve a more accurate factorization

(shown on the right) with colors consistent with the input image.

7 Conclusion

In this paper, we presented a novel probabilistic method for factorizing a single image

of a foggy scene into its albedo and depth values. We formulated this problem as joint

estimation of scene albedo and depth with energy minimization of a factorial Markov

random field, enabling full exploitation of natural image and depth statistics in the

form of scene-specific priors. The experimental results demonstrate superior accuracy

over past methods, especially on challenging scenes where only constraining and solving

for a single latent variable does not suffice. We believe the overall framework we have

introduced for this particular problem of defogging would also be useful for tackling

other computer vision problems that suffer from inherent bilinearity.
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(a)

(b)

(c)

Fig. 8 Factorization results of real-world foggy images, (a) a pumpkin patch, (b) a wheat

field, and (c) a house, compared with those of another single image defogging method by Fattal

(2008b). For each image, in the columns, the input foggy image (left), the estimated albedo

image (middle), and the estimated depth image (right) are shown. In the rows, the results by

Fattal (2008b) (top), and by our method (bottom) are shown. Our results demonstrate more

accurate factorization of scene albedo and depth, resulting in more vivid and fog-free albedo

images and more detailed depth images. The input images and the corresponding results by

Fattal (2008b) are reprinted from (Fattal, 2008a).
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(a)

(b)

(c)

Fig. 9 Factorization results of real-world foggy images, of (a) an aerial city view, (b) an

urban view, and (c) a cliff, compared with those of another method by He et al (2009b). For

the example in (a), in the columns, the input foggy image (left), the estimated albedo image

(middle), and the estimated depth image (right) are shown; and in the rows, the results by He

et al (2009b) (top), and by our method (bottom) are shown. For the examples in (b) and (c),

the input image, the albedo image by He et al (2009b), and the albedo image by our method

are shown from left to right, respectively. Overall the factorization results are of similar quality,

but our method achieves clearer defogging on particularly challenging scenes like that in (c).

Occasionally our EM method may favor the depth prior and result in artifacts such as the

trees in (a). The input images and the corresponding results by He et al (2009b) are reprinted

from (He et al, 2009a).
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(a)

(b)

(c)

Fig. 10 Factorization results of real-world foggy images, of (a) a view of Manhattan, and (b)

(c) two scenic views of the Half Dome, compared with those of another method by Kopf et al

(2008b). For each example the input image, the albedo image by Kopf et al (2008b), the albedo

image and the depth image computed by our method are shown from left to right, respectively.

The color differences in the estimated albedo images are due to the particular selection of the

airlight vector by our method. Otherwise, overall the factorization results are of similar quality.

Most important, our method jointly estimates the scene albedo and depth, while the method by

Kopf et al (2008b) requires a semi-automatically aligned 3D terrain model. The input images

and corresponding results by Kopf et al (2008b) are reprinted from (Kopf et al, 2008a).
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(a)

(b)

Fig. 11 Factorization results of real-world foggy images, of (a) a street and (b) a lake, com-

pared with those of a contrast enhancement method by Tan (2008b). For each example, the

input image, the albedo image by Tan (2008b), the albedo image and the depth image com-

puted by our method are shown from left to right, respectively. Again, the color differences in

the estimated albedo images are due to the particular selection of the airlight vector by our

method. Our results do not suffer from the block artifacts observed in Tan’s results, e.g., at the

occluding boundary of tree trunk in (b), as the FMRF formulation and inference achieve pixel-

wise factorization. The input images and corresponding results by Tan (2008b) are reprinted

from (Tan, 2008a).
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(a) (b) (c)

Fig. 12 The albedo (top) and depth (bottom) using only our initial depth estimate (a), a

blurred version of the initial depth (b),and our proposed method that jointly estimates depth

and albedo (c). Only by jointly estimating the albedo along with the depth can we obtain

meaningful results.



40

Fig. 13 Factorization results comparing with our previous method (Kratz and Nishino, 2009)

that imposed the scene-specific albedo prior based on the chromaticity gradient kurtosis on

the raw color gradients instead of their chromaticity gradients. The input image, our pre-

vious result, and our current result are shown from left to right, respectively. Our previous

method approximated the albedo to be too close to the chromaticity image, and resulted in

color artifacts such as the white buildings appearing too yellow (middle). By performing the

minimization on the chromaticity values (right), we achieve a factorization more consistent

with the input image.


