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Abstract

Rendering photorealistic virtual objects from their real
images is one of the main research issues in mixed reality
systems. We previously proposed the Eigen-Texture method,
a new rendering method for generating virtual images of
objects from thier real images to deal with the problems
posed by past work in image-based methods and model-
based methods. Eigen-Texture method samples apperances
of a real object under various illumination and viewing con-
ditions, and compresses them in the 2D coordinate system
defined on the 3D model surface. However, we had a serious
limitation in our system, due to the alignment problem of the
3D model and color images. In this paper we deal with this
limitation by solving the alignment problem; we do this by
using the method orginally designed by Viola[14]. This pa-
per describes the method, and reports on how we implement
it.

1. Introduction

Recently, mixed reality systems have been one of the
main topics in the research areas of computer vision and
computer graphics. Main research issues in these mixed re-
ality systems include how to render photorealistic virutal
objects from their real images, and then how to seamlessly
integrate those virtual objects with real images. Our inter-
est is on the former topic: rendering virtual object images
from real images. The CV and CG communities have pro-
posed two representative rendering methods to obtain such
virtual images from real objects: image-based and model-
based methods.

The basic idea of representative image-based methods[1,
2, 3, 5], is to acquire a set of color images of a real object
and store them on the disk of a computer efficiently (via
compression), and then synthesize virtual object images ei-
ther by selecting an appropriate image from the stored set or

by interpolating multiple images. Since the main purpose
of image-based rendering is to render virtual images simply
from real images without analyzing any reflectance char-
acteristics of objects, the method can be applied to a wide
variety of real objects. And because it is also quite simple
and handy, image-based rendering is ideal for displaying an
object as a stand-alone without any background for the vir-
tual reality. On the other hand, image-based methods have
disadvantages for application to mixed reality. To avoid
making the system complicated, few image-based render-
ing methods employ accurate 3D models of real objects.
Although Lumigraph[3] uses a volume model of the object
for determining the basis function of lumigraphs, the vol-
ume model obtained from 2D images is not accurate enough
to be used in mixed reality systems, i.e. for the purpose of
making cast shadows under real illuminations correspond-
ing to the real background image.

Unlike image-based methods, model-based methods[10,
11] analyze the reflectance characteristics on the surface of
the real object to render photorealistic virtual objects by as-
suming reflectance models. Since the reflectance parame-
ters are obtained at every surface point of the object, inte-
gration of synthesized images with real background can be
accomplished quite realistically; the method can generate
a realistic appearance of an object as well as shadows cast
by the object onto the background. However, model-based
rendering has nontrivial intrinsic constraints; it cannot be
applied to objects whose reflectance properties cannot be
approximated by using simple reflectance models. Further-
more, since computation of reflectance parameters needs
the surface normal at each point of the surface, it cannot
be applied to objects whose surfaces are rough.

To overcome the problems posed by the previous meth-
ods, we previously proposed a new rendering method,
which we refer to as theEigen-Texture method[7]. The
Eigen-Texture methodcreates a 3D model of an object from
a sequence of range images. The method aligns and pastes
color images of the object onto the 3D surface of the object
model. Then, it compresses those appearances in the 2D
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Figure 1. Outline of the Eigen-Texture
method.

coordinate system defined on the 3D model surface. Cast
shadows can be generated using the 3D model. Because the
method does not assume any reflectance model as model-
based methods do, it can be applied to a wide variety of
objects. Also, thanks to the linearity of image brightness,
virtual images under a complicated illumination condition
can be generated by summation of component virtual im-
ages sampled under single illuminations.

However, we experienced a severe constraint in our
system flexibility. Since we used a light stripe range
finder[4, 9] to obtain the range image sequence, the range
images and the color images were acquired in the same
coordinate, and the alignment problem of the 3D model
and the color images could be disregarded. In this paper,
we describe how we use a laser range finder to obtain the
range images, and we solve the alignment problem of the
3D model and color images by using the method originally
designed by Viola[14]: alignment by maximization of mu-
tual information.

The remainder of the paper is organized as follows. In
Section 2, we describe theEigen-Texture method. In Section
3, we describe the implementation of the proposed method
and discuss the results of the experiments we conducted to
demonstrate the efficiency of the method. In Section 4 we
describe our future work and conclude this paper.

2. Eigen-Texture Method

In this section we describe the theory of theEigen-
Texture method.

Figure 1 displays an overview of the proposed method.
TheEigen-Texture methodtakes both intensity images and
range images as the input, and a 3D model of an object is
created from a sequence of range images with mesh gen-
eration from each range image, registration and integration
of each mesh models, and mesh decimation of the final 3D
model [13, 15]. Usually the intensity images and the range
images are taken in different coordinates, unless we use a
light stripe range finder to acquire both image sequences
with the same CCD camera. The first step of our method
is to align each intensity image to the 3D model. We ac-
complish this alignment by using the method originally de-
signed by Viola; this method aligns 3D model and inten-
sity image by maximizing the mutual information between
them(2.1). Once each intensity image is aligned, the method
pastes each intensity images of the object onto the 3D sur-
face of the object model. Then, it compresses those ap-
pearances in the 2D coordinate system defined on the 3D
model surface. This compression is accomplished using the
eigenspace method. The synthesis process is achieved using
the inverse transformation of the eigenspace method.

2.1. Alignment

After generating an accurate 3D model of an object, the
Eigen-Texture methodaligns each input color image with
the 3D model. This alignment can be accomplished by
using the method originally designed by Viola, maximiz-
ing the mutual information between the 3D model and each
color image. Given a 3D model of an object and a pose, a
model for the imaging process, such as reflectance models,
could be used to predict the image that will result. For ex-
ample, if the object has an Lambertian surface, the intensity
image can be predicted from surface normals of the object
surface. The predicted image can then be directly compared
to the actual image. If the object model and pose are correct,
the predicted and actual images should be identical, or close
to it. The alignment method proposed by Viola is based on
a formulation of the mutual information between the model
and the image to predict the image from the model.

Let us defineu(x) the property of the model at a particu-
lar pointx on the model surface, andv(T (x)) the property
of the image at the point corresponding tox with transfor-
mationT . The mutual information between the model and
the image can be described as Eq.1.

I(u(x), v(T (x))) ≡
h(u(x)) + h(v(T (x)))− h(u(x), v(T (x))) (1)

The first term in Eq.1 is the entropy in the model, and is not
a function ofT . The second term is the entropy of the part
of the image into which the model projects. It encourages
transformatins that project the modelu into complex parts
of the imagev. The third term is the negative joint entropy
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the model and the image, and it encourages transformations
where the model explains the image well. The alignment
problem of the model and the images can be replaced by
finding an estimate of the transformationT that aligns the
model and image by maximizing their mutual information
over the transformationsT .

T̂ = arg max
T

I(u(x), v(T (x))) (2)

To solve this problem, Viola’s method first estimates the en-
tropies from samples: approximates the underlying proba-
bility densityp(z) by a superposition of Gaussian densities
centered on the elements of a sampleA drawn fromz, Eq.3,
and approximate statistical expectation with the sample av-
erage over another sampleB drawn fromz, Eq.4.

p(z) ≈ 1
NA

∑
zj∈A

Gψ(z − zj) (3)

Ez(f(z)) ≈ 1
NB

∑
zi∈B

f(zi) (4)

where Gψ(z) ≡ (2π)
−n
2 |ψ|−1

2 exp(−1
2
zTψ−1z)

With these approximations, the entropy of a random vari-
ablez can be approximated as follows:

h(z) = −Ez(ln p(z))
≈ −1

NB

∑
zi∈B

ln
1
NA

∑
zj∈A

Gψ(zi − zj) (5)

This approximation of entropy may now be used to approx-
imate the derivative of the mutual information as follows:

d̂I

dT
=

d

dT
h(v(T (x)))− d

dT
h(u(x), v(T (x)))

=
1
NB

∑
xi∈B

∑
xi∈A

(vi − vj)T [Wv(vi, vj)ψ−1
v

− Wuv(wi, wj)ψ−1
vv ]

d

dT
(vi − vj) (6)

where Wv(vi, vj) ≡ Gψv (vi − vj)∑
xk∈AGψv (vi − vk)

Wuv(wi, wj) ≡ Gψuv (wi − wj)∑
xk∈AGψuv (wi − wk)

ui ≡ u(xi), vi ≡ v(T (xi)), wi ≡ [ui, vi]T

ψ−1
uv = DIAG(ψ−1

uu , ψ
−1
vv ) (7)

The covariance matrices of the component densities used in
the approximation scheme for the joint density are block di-
agonals(Eq.7). The local maximum of mutual information

Figure 2. A color image and a range image
with the reflectance power attribute.

is sought taking repeated steps that are proportional to the
approximation of the derivative of the mutual information
with respect to the transformation as follows. The proce-
dure is repeated a fixed number of times or until conver-
gence is detected.

Repeat :
A← {sample of size NA drawn from x}
B ← {sample of size NB drawn from x}
T ← T + λ d̂IdT

In the experiments described in 3, we used a laser range
finder to acquire the range image sequence. Likewise most
other laser range finders, the laser range finder we used
(PULSTEC TDS-1500) returns the reflectance power value
of the laser at each point the laser hits on the object surface
as shown in Figure 21. This value depends predominantly
on the texture of the model surface, so that it is highly cor-
relative with the intensity values of the object surface in
their color images. Regarding this fact, we used these re-
flectance power values as the property of the model to be
evaluated in the alignment procedure, as well as the surface
normal at each point of the model surface. The pixel values
are evaluated as the property of the image.

2.2. Appearance Compression and Synthesis

After the alignment is accomplished, each color image
is divided into small areas that correspond to triangular
patches on the 3D model. Each triangular patch is normal-
ized to have the same shape and size as that of the others.

1A clear image can be found in the color version of this paper put on
the CD-ROM of the proceedings.
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Figure 3. A sequence of cell images.

Color images on the small areas are warped on a normal-
ized triangular patch. This paper refers to this normalized
triangular patch as acell and to its color image as acell
image. A sequence of cell images from the same cell is col-
lected as shown in Figure 3. Here this sequence depicts ap-
pearance variations on the same physical patch of the object
under various viewing conditions. These cell images corre-
sponding to each cell are compressed using the eigenspace
method. Note that the compression is done in a sequence
of cell images, whose appearance change are due only to
the change of brightness. Thus, high compression ratio can
be expected with the eigenspace method. Furthermore, it is
possible to interpolate appearances in the eigenspace.

Eigenspace compression on cell images can be achieved
by the following steps:

The color images are represented inRGB pixels with
24-bit depth, but the compression is accomplished in
Y CrCb using4 : 1 : 1 subsampling. First, each cell image
is converted into a1 × 3N vectorXm by arranging color
values for each color bandY CrCb in a raster scan manner
(Eq.8). Here,M is the total number of poses of the real ob-
ject,N is the number of pixels in each cell image andm is
the pose number.

Xm =
[
xYm,1 ... xCr

m,1 ... xCb

m,N

]
(8)

Then the sequence of cell images can be represented as a
M × 3N matrix as shown in Eq.9.

X =
[

XT
1 XT

2 ... XT
M

]T
(9)

The average of all color values in the cell image set is sub-
tracted from each element of matrixX. This ensures that
the eigenvector with the largest eigenvalue represents the
dimension in eigenspace in which the variance of images is
maximum in the correlation sense.

Xa = X−

 E ... E

. ... .
E ... E


 (10)

E =
1

3MN

M N∑
i=1,j=1,c∈{Y,Cr,Cb}

xci,j

With thisM × 3N matrix, we define a3N × 3N matrixQ,
and determine eigenvectorsei and the corresponding eigen-
valuesλi of Q by solving the eigenstructure decomposition
problem.

Q = XT
aXa (11)

λiei = Qei (12)

At this point, the eigenspace ofQ is a high dimensional
space, i.e.,3N dimensions. Although3N dimensions are
necessary to represent each cell image in a exact manner,
a small subset of them is sufficient to describe the prin-
cipal characteristics and enough to reconstruct each cell
image with adequate accuracy. Accordingly, we extract
k (k � 3N ) eigenvectors which represent the original
eigenspace adequately; by this process, we can substantially
compress the image set. Thek eigenvectors can be chosen
by sorting the eigenvectors by the size of the corresponding
eigenvalues, and then computing the eigenratio (Eq.13).

∑k
i=1 λi∑3N
i=1 λi

≥ T where T ≤ 1 (13)

Using thek eigenvectors{ei | i = 1, 2, ..., k} (whereei is
a3N × 1 vector) obtained by using the process above; each
cell image can be projected on to the eigenspace composed
by matrixQ by projecting each matrixXa. And the projec-
tion of each cell image can be described as aM × k matrix
G.

G = Xa ×V where V =
[

e1 e2 ... ek
]

To put it concisely, the input color image sequence is con-
verted to a set of cell image sequences, and each sequence
of cell images is stored as the matrixV, which is the subset
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of eigenvectors ofQ, and the matrixG, which is the pro-
jection onto the eigenspace. As we described in Eq.8, each
sequence of cell images corresponds to oneM ×3N matrix
X, and is stored as3N × k matrix V andM × k matrix
G, so that the compression ratio becomes that described in
Eq.14.

compression ratio = k
M + 3N
3MN

(14)

Each synthesized cell image can be computed by Eq.15. A
virtual object image of one particular pose (pose number
m) can be synthesized by aligning each corresponding cell
appearance (Rm) to the 3D model.

Rm =
k∑
i=1

gm,ieTi + [E E ... E] (15)

3. Implementation

We have implemented the system described in the previ-
ous section, and have applied theEigen-Texture methodto
real objects.

3.1. System Setup

For the experiments, we attach the object to a rotary ta-
ble, and use light sources fixed in the world coordinate to
illuminate the object. A range image is taken through a
laser range finder PULSTEC TDS-1500 . A sequence of
range images is taken by incrementing the rotation angle of
the rotary table for each step;30◦ by each step in this ex-
periment. After the range images are converted into trian-
gular mesh models[13, 15], they are merged and simplified
to compose a triangular mesh model which represents the
3D shape of the object. A sequence of color images is taken
by a SONY 3 CCD color camera, incrementing the rotation
angle as well as the range image sequence, but the rotation
interval is smaller than that of the range image sequence.
For instance, a step of3◦ was used for the first experiment
describe in the next section.

3.2. Cell-adaptive Dimensional Eigenspace

Determining the number of dimensions of the eigenspace
in which the sequence of cell images are stored is a non-
trivial issue, as it has significant influence on the quality of
the synthesized images. According to the theory of photo-
metric stereo[16] and Shashua’s trilinear theory[12], three
dimensions are enough for compressing and synthesizing
the appearance of an object with a Lambertian surface.
However, as the reflection of most general real objects can-
not be approximated by simple Lambertian reflection model
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Figure 4. Graph of the eigen ratio and the error
per pixel versus the number of dimensions of
eigenspace.

due to nonlinear factors such as specular reflection and self
shadow, three dimensional eigenspace is not appropriate to
store all the appearance change of each cell.

Also the quality of the geometric model has serious in-
pact on the number of dimensions of eigenspace neccesary
to precisely synthesize the image. The simpler the construc-
tion of the geometric model, the higher the eigenspace di-
mensions are needed, since the trianglular patches stray far
from a close approximation of the object’s real surface, and
the correlation of each cell image becomes low. So the num-
ber of dimensions of eigenspace should differ for each cell,
according to whether they have highlights or self shadows
in thier sequences, and to the size of their triangular patch.

With regard to these points, we determined the num-
ber of dimensions of the eigenspace independently for each
cell so that each could be synthesized precisely. We used
eigenratio to determine the number of dimensions for each
cell. Figure 4 describes the relation between the eigen ra-
tio, the error per pixel versus the number of dimensions of
the eigenspace. Here the eigen ratio is the ratio of the eigen
values in the whole summation of them, and the error per
pixel describes the average difference of the pixel values
in 256 graduation in the synthesized and real image. The
eigen ratio is in inverse proportion to the error per pixel,
so that it is reasonable to threshold the eigen ratio to de-
termine the number of dimsensions of the eigenspace. For
each sequence of cell images, we computed the eigenratio
with Eq.13, and used the firstk eigenvectors whose corre-
sponding eigenvalues satisfied a predetermined threshold of
the eigenratio. The number of dimensions for each cell re-
quired to compress the sequence of input images and to re-
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Cat Raccoon
Average number of dimensions 6.56 18.2
Compression ratio 15.3:1 5.54:1
Essential compression ratio 8.34:1 3.32:1
(MB) (357:42) (319:96)
Average error per pixel 1.46 1.34

Table 1. The number of dimensions, the com-
pression ratio and the average error per pixel
of the results.

construct the synthesized images can be optimized by using
these cell-adaptive dimensions. Yet, on the whole, the size
of the database can be reduced. This cell-adaptive dimen-
sion method can be implemented because our method deals
with the sequence of input images as with small segmented
cell images.

Figure 5 shows the images synthesized by using 0.999 as
the threshold of the eigenratio for each cell. As can be seen
in Figure 5, the results described in the right side are indis-
tinguishable from the input images shown in the left side.
The average number of dimensions of eigenspace used, the
compression ratio and the average error per pixel are sum-
marized in Table 1. Because our method does not assume
any reflectance model and does not have to analyze the sur-
face properties, it can be applied to objects with rough sur-
face like the raccoon in Figure 5, which is difficult with
model-based methods.

3.3. Compression Ratio

The compression ratio defined in Eq.14 is the compres-
sion ratio of the cell image sequences, which is computed
from the number of dimensions, the size of each cell image
and the number of input color images. The essential com-
pression ratio described in Table 1 is also the compression
ratio between the cell image sequence and the data size to
be stored in eigenspaces, but its value is computed from the
real data size on the computer. The values of this essential
compression ratio is relatively lower than the compression
ratio computed by Eq.14. This is caused by the difference of
data types: the cell image sequences derived from the input
color image sequence are represented withunsigned char
type, while the data to be stored in eigenspaces, the pro-
jections and eigenvectors, are represented withfloat type.
To avoid this loss in compression due to data types, we are
working on implemention of vector quantization of com-
pressed stored data.

In this paper, we are not computing the compression ratio
between the input image sequence and the data size stored
in eigenspaces because an accurate comparison cannot be
accomplished due to the resolution problem of cell images.

When Eigen-Texture methodconverts the input image se-
quence into a set of cell image sequences, the resolution of
the cell images are determined to a fixed number with regard
to the largest triangular patch on the 3D model surface. Al-
though this enables us to synthesize virtual images in higher
resolution compared to the input images, it causes loss in
compression ratio. We are now investigating a method to
determine the resolution of cell images adaptively to thier
corresponding triangular patch size. Furthermore, to derive
higher compression ratio, mesh generation of the 3D model
with regards to the color attributes on its surface is under
our consideration.

3.4. Interpolation in Eigenspace

Once the input color images are decomposed into a set
of sequences of cell images, and projected onto thier own
eigenspaces, interpolation between each input image can be
accomplished in these eigenspaces.

As an experiment, we took thirty images of a real ob-
ject as the input image sequence by rotating the object at
12◦ by step. The square points illustrated in Figure 6 in-
dicate projections of each cell image in eigenspace corre-
sponding to each pose of the real object. By interpolating
these projected points in the eigenspace, we obtained inter-
polated projection points for each position of the real object
for 3◦ degrees rotation by each step. As a practical matter,
we interpolated the projection of the input image sequence
for each eigenvector and obtained the interpolated projec-
tion points denoted by plus marks in Figure 6. By synthe-
sizing images using these interpolated projections, object
images whose pose were not captured in the input color im-
ages could be synthesized. It is impossible to interpolate
the appearance features, i.e. highlights, that are not cap-
tured in the input color image sequence, so that synthetic
images interpolated from very sparse input sequence tend
to lack those photorealistic characterisitcs. Taking this into
account, typical objects with shiny surfaces like the cat in
Figure 5 could be compressed about 80:1 with interpolation
in eigenspaces; the synthesized results would be satisisfac-
tory realistic.

4. Conclusions and Future Work

In this paper, we have proposed theEigen-Texture
methodas a rendering method for synthesizing virtual im-
ages of an object from a sequence of range and color im-
ages, along with improvement on its constraint on the im-
age acquiring system. To accomplish the alignment proce-
dure of the 3D model and color images, we use the method
originally designed by Viola, alignment of 3D model and
color images by maximizing the mutual information. As re-
cent ordinary laser range finders return the power of laser
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Figure 5. Left: Input color images, Right: Synthesized images (by using cell-adaptive dimensional
eigenspaces).

Figure 6. G plotted in eigenspace (the first
three eigenvectors are depicted).

reflectance at each point scanned by the laser, we use this
information to raise the robustness of the alignment. With
this improvement on the alignment problem, our method
has gained flexibility in application as well as the ability to
be applied to a wide variety of objects and high compression
ratio.

Figure 7 shows an intensity image and two range images
with the reflectance power attribute of the 13m tall bud-
dha sitting in the city of Kamakura, Japan. By using recent
products in the field of laser range finders2, it is becoming
relatively easy to obtain accurate range data of large statues
and buildings. As a practical application of our method, we
are planning to a scan heritage objects in Japan and Asia,
such as the buddha in Kamakura city, and thereby archive
the geometric and photometric properties of them for the
preservation of historic resources.

2We acquired the range images of the buddha by a time-of-flight laser
range scanner Cyrax2400, a product of Cyra Tech. Inc.
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Figure 7. A color image and range image with reflectance attribute of the huge buddha in Kamakura
city.
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