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Abstract

We introduce a novel parametric BRDF model that can
accurately encode a wide variety of real-world isotropic
BRDFs with a small number of parameters. The key ob-
servation we make is that a BRDF may be viewed as a sta-
tistical distribution on a unit hemisphere. We derive a novel
directional statistics distribution, which we refer to as the
hemispherical exponential power distribution, and model an
isotropic BRDF with a mixture of it. The novel directional
statistics BRDF model allows us to derive a canonical prob-
abilistic method for estimating its parameters including the
number of components. We show that the model captures
the full spectrum of real-world isotropic BRDFs with accu-
racy comparable to non-parametric models but with a much
more compact representation. We also experimentally show
that the model achieves better accuracy with less measure-
ments compared with such non-parametric models. We fur-
ther demonstrate the advantages of the novel BRDF model
by showing its use for reflection component separation and
for exploring the space of isotropic BRDFs.

1. Revisiting Parametric BRDF Modeling

The appearance of a real-world object is determined by
the complex interplay of the illumination, the geometric
structure, and the reflectance (material) property of the ob-
ject surface. If we assume strictly local light interaction,
i.e., if we ignore all global transports such as subsurface
scattering, we may mathematically model this light inter-
action with the Bidirectional Reflectance Distribution Func-
tion (BRDF) [21]. The BRDF is arguably the most widely
used light transport model in computer vision since it offers
a pointwise description of light reflection. As such, devising
a compact yet accurate representation of real-world BRDFs
goes to the heart of a great number of computer vision appli-
cations, especially those concerned with the recovery of il-
lumination, material property, or geometry from images. In
particular, low-dimensional parametric BRDF models play
vital roles since they enable the formulation of such inverse

problems as parameter estimation. Yet, deriving a paramet-
ric BRDF model that can accurately describe the drastic vari-
ation real-world BRDFs take on remains a challenging prob-
lem. In this paper, we specifically focus on isotropic BRDFs.

Various parametric BRDF models have been introduced
in the past. These models are either based on purely em-
pirical observation, such as Lambertian [15], Phong[23,
4], and Schlick [27] models; physically-based modeling
of the microscopic surface geometry, including Torrance-
Sparrow [6, 30] Ward [31], and Oren-Nayar [19] models;
or phenomenological modeling using linear/nonlinear bases
such as Zernike polynomials [13], spherical harmonics [24],
cosine lobes [14], and 2D Gaussians on halfway disks [9].
Unfortunately, each parametric BRDF model is limited to
representing only a specific type of reflection, e.g., glossi-
ness around the reflection vector [14, 23, 4] or the halfway
vector [6, 30, 31, 9], and cannot express the whole spectrum
of BRDFs in a single parametric form; they require a (lin-
ear) combination of separate analytical models leading to
complex expressions whose parameter estimation becomes
challenging [9]. Although phenomenological models aim to
represent all BRDFs with a common set of bases, the use of
generic bases inevitably lead to high-dimensional represen-
tations for real-world BRDF that can have various frequen-
cies and shapes.

Recently, owing to the development of novel goniore-
flectometers (e.g., [8, 17, 11]), extensive measurements of
real-world BRDFs have been collected. These data sets
have inspired the use of various non-parametric BRDF mod-
els [2, 8, 16, 25, 28] which essentially provide tabulated
views of the measured BRDF data accessible with two to
four-dimensional indices that encode the combination of in-
cident and exitant directions. Since non-parametric mod-
els are essentially raw measurements, they undoubtedly
have strong advantages in photorealistic appearance syn-
thesis. Yet, when using such non-parametric models for
solving inverse problems in computer vision, we are cursed
by the high-dimensionality of BRDF data. Although com-
pression techniques including linear/nonlinear dimensional-
ity reduction can help in achieving a lower-dimensional non-
parametric model, they hardly result in a few dimensions that
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can make solving inverse problems tractable, nor they pro-
vide physically meaningful descriptions of the BRDF. Fur-
thermore, the accuracy of non-parametric models essentially
depend on the sampling of the data and thus necessitates very
dense measurements to achieve certain accuracy.

We tackle the challenging problem of deriving a low-
dimensional parametric BRDF model that can achieve accu-
racy comparable to non-parametric BRDF models. We view
the BRDF as a directional statistics distribution, a probabil-
ity density function that takes in an incident light ray direc-
tion and returns a distribution of reflected light ray direc-
tions 1. To this end, we derive a novel hemispherical direc-
tional statistics distribution and model real-world isotropic
BRDF with a mixture of it. The novel directional statistics
distribution model can model the whole spectrum of BRDFs
ranging from purely Lambertian to perfect mirror reflection
in the exact same functional form. This allows us to cap-
ture various types of real-world isotropic BRDFs in a low-
dimensional parametric form. The statistical model also en-
ables the derivation of a canonical probabilistic method for
estimating its parameter values and the optimal number of
mixture components. Experimental results show that the
model achieves accuracy comparable to the state-of-the-art
non-parametric model [25] with a much smaller footprint.

We believe the novel directional statistics BRDF model
has direct implications for a broad range of applications.
We demonstrate this by showing that the model can achieve
higher accuracy than non-parametric models when the sam-
pling of measurements is sparse; it can naturally decom-
pose real-world measured BRDFs into physically meaning-
ful and intuitive constituents (reflection components); and it
also provides powerful handles for exploring the entire space
of isotropic BRDFs.

2. Isotropic BRDF
The BRDF is defined as the ratio of the reflected differ-

ential radiance dLo in a given exitant (view) direction ωo to
the incident irradiance dEi due to light from direction ωi,

fr(ωi, ωo) =
dLo(ωo)
dEi(ωi)

=
dLo(ωo)

Li(ωi)(ωi · n)dωi
, (1)

where n is the surface normal at the surface point of inter-
est and dωi is the differential solid angle the light source
in direction ωi subtends [21]. The BRDF is thus a four-
dimensional real-valued function fr : Ω×Ω → R, where Ω
is the upper hemisphere with its origin at the surface point
and its north pole (Z axis) aligned with the surface nor-
mal. Real-world BRDFs satisfy the Helmholtz reciprocity
fr(ωi, ωo) = fr(ωo, ωi) and the energy conservation law∫
Ω

fr(ωi, ωo)dωi ≤ 1.

1Note that this is completely different from using non-parametric [2]
or analytical distributions to model microfacet orientations (e.g. [30]). We
directly model scattered radiance distributions with parametric directional
distributions resulting in a compact yet flexible BRDF model.

The two directions ωi and ωo can be described in spher-
ical coordinates (θi, φi) and (θo, φo), respectively, lead-
ing to an explicit 4D notation fr(θi, φi, θo, φo). Here we
denote the polar angle with θ and azimuth angle with
φ: θ ∈ [

0, π
2

]
and φ ∈ [0, 2π). Note that in the

above definition and throughout the rest of the paper, we
abuse the notation for directional vectors: ωi (or n) rep-
resents a unique directional vector (unit vector) in ei-
ther spherical coordinates (θi, φi) or Cartesian coordinates
(sin θ cos φ, sin θ sinφ, cos θ), whichever appropriate de-
pending on the context 2.

Although the BRDF is a four-dimensional function, for
many real-world materials, its intrinsic dimensionality is less
than four. We may exploit this lower-dimensional intrinsic
characteristic of real-world BRDF by making a few realistic
assumptions and a coordinate change.

First, since we focus on isotropic BRDFs, we may safely
assume that the BRDF is invariant to azimuthal rotations
of the incident and exitant directions fr(θi, φi, θo, φo) =
fr(θi, φi + ϕ,θ o, φo + ϕ) and to reflection by the inci-
dent plane fr(θi, 0, θo, φo) = fr(θi, 0, θo,−φo). These two
properties lend themselves to a three-dimensional descrip-
tion of the BRDF fr(θi, θo, |φi − φo|) [28]. Second, we
leverage a common reparametrization known as the halfway
vector representation [26]. Instead of representing the BRDF
with incident and exitant directions, we model them with the
halfway direction ωh between the incident and exitant direc-
tions and encode the incident light direction in a hemisphere
where the halfway direction becomes the north pole, referred
to as the difference direction ωd. This reparametrization can
be achieved with

ωh =
ωi + ωo

‖ ωi + ωo ‖ ωd = RY (−θh)RZ(−φh)ωi , (2)

where RY and RZ denote rotation matrices (∈ SO(3))
about the binormal (Y) and surface normal (Z) axes, respec-
tively [26].

With the halfway representation, an isotropic distribu-
tion around the halfway vector, i.e., axially symmetric dis-
tribution about θh = 0, results in an anisotropic distribu-
tion around the reflection vector (ωr = 2(ωh · ωi)ωh − ωi)
given an incident light direction, whose elongation along the
great circle joining the incident and reflection directions in-
creases as the the incident direction approaches the graz-
ing angle [20]. This is a particularly useful property since
many real-world isotropic BRDFs exhibit asymmetric reflec-
tion around the reflection direction that cannot be captured
with isotropic distributions around ωr [23, 14, 4], but can be
approximated with an isotropic distribution around their cor-
responding halfway vectors ωh. We empirically found that
for BRDFs that can be well-approximated with the Torrance-
Sparrow reflection model [30], the center-peaked symmetry

2For instance, the dot product in Eq. 1 is defined over the Cartesian
coordinates.
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(isotropy about θh = 0) can be assumed for a wide range of
surface roughness: roughly [0, 0.4] in the roughness param-
eter value, where it generally ranges from 0 to 0.1 for real-
world surfaces. This means that we may represent isotropic
BRDFs as function(s) of (θh, θd) by assuming invariance to
azimuthal angles φh or φd

3. Recently, Romeiro et al. em-
pirically showed that most isotropic BRDFs can indeed be
represented with a two-dimensional (non-parametric) func-
tion of θh and θd by simply averaging over φd [25].

To this end, we will model real-world isotropic BRDFs
with a two-dimensional analytic model as we detail next. We
seek to estimate an optimal 4 parametric representation for
the 2D slices of the real-world isotropic BRDFs encoded in
measured data of the 3D function fr(θh, φd, θd).

3. Hemispherical Exponential Power Dist.

We will now derive an analytical reflection model for rep-
resenting real-world isotropic BRDFs. In particular, we will
derive a parametric model for fr(θh, φd, θd), where the az-
imuthal dependency on the incident-exitant directions are
represented with φd. Note that we may instead choose to
model fr(θh, φh, θd) without any change in the following
derivation. Given the results of the analysis in the previ-
ous section, we model this three-dimensional distribution
that is intrinsically two-dimensional (fr(θh, θd)) with a set
of 2D slices of fixed difference directions θd (relative inci-
dent direction) and φh = 0: fr(θh, φd, θd = θi

d), where
θi

d = {mπ
2M |m = 0, . . . , M}. Figure 1(a) shows the 1D

profiles on the incident plane of θd = 0-slices of several
measured BRDFs [16]–fr(θh, φd = {0, π

2 }, θd = 0). They
appear center-peaked and symmetric about θh = 0, as pre-
dicted by our previous analysis. They also show that differ-
ent BRDFs can have very different distribution shapes.

The key observation we make is that a 2D slice of a
BRDF can be viewed as a statistical distribution of reflected
light rays given an incident light ray (θd), where the re-
flected radiance values fr(θh, φd, θd) represent the probabil-
ity of incident light being scattered into that specific direc-
tion (θh, φd). In other words, we may view it as a probability
density function of a directional distribution–a distribution
on the surface of a unit hemisphere Ω parameterized with
(θh, φd). Our goal is to derive a suitable directional statis-
tics distribution model that has a small number of parameters
while realizing the necessary flexibility to represent a wide-
range of real-world isotropic BRDFs.

The analysis in the previous section suggests that we may
approximate these BRDF slices with a center-peaked, i.e.,
mean direction at θh = 0, isotropic probability density func-
tion of θh: p(θh|θd). Conventional directional statistics dis-
tributions, such as the von Mises-Fisher distribution [10], a

3Note that these two azimuthal angles are uniquely interrelated given an
incident light direction or exitant direction.

4In a least square sense.

Gaussian distribution on the unit sphere, lack the flexibil-
ity to model a wide variety of directional distributions that
real-world BRDFs exhibit. An even bigger problem of such
directional statistics distributions is that the domain is the
entire sphere, making it unsuitable for modeling a BRDF.

To this end, we derive a novel hemispherical distribution
model analogous to the exponential power distribution in
Cartesian coordinates. We will refer to this directional distri-
bution as the Hemispherical Exponential Power Distribution
(hemi-EPD):

p(θh|θd,Θ) = C(Θ) (exp [κ cosγ θh] − 1) , (3)

where Θ = {κ,γ } are the parameters of the distribution.
C is the normalization factor which can be shown to be

C(Θ) = γ(−κ)
1
γ

2π

„
Γ( 1

γ )−Γ( 1
γ ,−κ)−γ(−κ)

1
γ

« , where Γ is the in-

complete gamma function [1].

This hemi-EPD has various advantages for modeling real-
world BRDFs. It can naturally encode axially distributed di-
rections with a small number of parameters, while retaining
the flexibility to represent a wide variety of distributions on
the hemisphere. We will refer to κ as the scale parameter and
γ as the shape parameter. In essence κ controls the overall
height of the distribution, corresponding to the albedo of the
reflected distribution, and γ controls the kurtosis of the dis-
tribution, the concentration of the reflected light directions.
As extreme cases, the hemi-EPD can model a perfect Lam-
bertian reflection with γ = 0 and a perfect mirror reflection
with γ = ∞. We may also see that, by taking Maclaurin ex-
pansion p(θh|θd,Θ) = C(Θ)(eκ exp[−κγ

2 θ2h]−1)+O(θn
h),

the hemi-EPD subsumes a Gaussian distribution of θh and
thus the Torrance-Sparrow model.

4. Mixture of Hemi-EPDs

Real-world object surfaces are rarely made of a single
material; at a microscopic level the surface usually consists
of multiple layers of materials. Even when subsurface scat-
tering is negligible, as we assume, individual layers con-
tribute to different distributions of scattered exitant radiance.
As a result, real-world BRDFs tend to exhibit a complex
distribution that cannot be modeled with a single analytical
model. To represent such compound radiance distributions,
real-world BRDFs are often modeled with a linear combi-
nation of multiple parametric BRDF models. For instance,
the Lambertian and the Torrance-Sparrow reflection models
are often used together to model real-world surfaces [18].
In many cases, however, the glossy appearance itself, or the
diffuse appearance itself, is generated from multiple surface
materials and thus cannot be captured with a single paramet-
ric model. Cook and Torrance [6], for instance, suggest us-
ing multiple microfacet distributions for modeling multiple
layers of glossy surface material.
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The problem of taking linear combinations of different
parametric BRDF models is that the resulting model be-
comes unnecessarily complex when the functional forms are
not the same, e.g., Lambertian and Torrance-Sparrow. This
becomes a large problem when we try to estimate their pa-
rameters in computer vision applications. On the other hand,
when the constituent BRDFs models are the same, the result-
ing BRDF model would lack the expressiveness to represent
a wide variety of materials.

We model a real-world isotropic BRDF with a mixture
of hemi-EPDs. We do not suffer from the aforementioned
dilemma, since the hemi-EPD itself offers the flexibility to
model a wide range of radiance distributions in the same
functional form. A 2D slice (of a unique θd) of an isotropic
BRDF is modeled as a linear combination of hemispherical
EPDs

p(θh|θd,Θ) =
K∑

k=1

α(k)p(θh|θd,Θ(k)) , (4)

where Θ = [Θ(1) ... Θ(K)] and K is the number of con-
stituent hemi-EPDs. Since the hemi-EPDs are axially sym-
metric directional distributions, the dependency on φd is im-
plicit (we find least-square optimal fits). We refer to each
constituent hemi-EPD as a BRDF lobe. This parametric
model can be seen as a mixture of directional distributions
and readily provides a statistical interpretation of the BRDF;
it is the directional probability density function of the exitant
radiances given an incident light ray.

Measured BRDFs are, however, usually not normalized,
i.e., the total energy is not one. To model such real-world
data, we fit a mixture of unnormalized hemi-EPDs

p(θh|θd,Θ) =
K∑

k=1

1
C(Θ(k))

p(θh|θd,Θ(k)) . (5)

to them. Note that we may interpret the reciprocal of the
normalization factors 1

C(Θ(k))
to be the unnormalized mix-

ture coefficients. Whenever necessary, we can scale these
unnormalized mixture coefficients to arrive at a valid prob-
ability density function, which simply corresponds to scal-

ing the measured BRDF data with
∑K

C(Θ(k)) to nor-
malize its total energy. This in turn means that as long as∑K 1

C(Θ(k))
≤ 1, the energy conservation law is satisfied.

We may derive a canonical algorithm for fitting this mix-
ture of hemi-EPDs, which we refer to as the directional
statistics BRDF model or in short the DSBRDF model, to
measured data by following the same principal as that of
the Expectation Maximization algorithm [3]. As outlined in
Algorithm 1, this amounts to iterating between computing
the conditional expectation of the latent variable k (E-step),
i.e., estimating the responsibilities, and then maximizing the
complete joint likelihood (M-step), i.e., maximum likeli-
hood estimation of the parameters of each unnormalized kth

Algorithm 1 EM for Mixtures of Hemi-EPDs

Initialize all κ(k), γ(k) k = 1, ...,K
repeat

EXPECTATION STEP

for n = 1 to N do
for k = 1 to K do

q(k|θ(n)
h ,Θold) =

1

C(Θ
(k)
old)

f(θ
(n)
h |Θ(k)

old)

PK
k=1

1

C(Θ
(k)
old)

f(θ
(n)
h |Θ(k)

old)
end for

end for
MAXIMIZATION STEP

Initialize Θ(k) for k = 1, . . . , K
for k = 1 to K do

argmin
Θ(k)

NX

n=1

‖q(k|θ(n)
h ,Θold)Li(θ

(n)
h , φ

(n)
d , θd)

− 1

C(Θ(k))
p(θ

(n)
h |θd, Θ(k)) ‖2

end for
until convergence

lobe. The input to the algorithm is a 2D slice of measured
BRDF data (θd = const) consisting of N data points, each

having different (θ(n)h , φ
(n)
d ). We formulate the maximum

likelihood estimation as least square minimization which we
solve with the Levenberg-Marquardt algorithm. For the M-
step, the parameter values can be initialized by first estimat-
ing κ and then using it to estimate γ for each lobe. We use
the same strategy for initializing all values in the beginning:
we first estimate one set of κ and γ from all the data points
and then halve those values as we step through the remaining
lobes. We found this initialization to work well for all 100
BRDFs that we fit.

Once we fit the DSBRDF model to the 2D slices of a
measured BRDF data ({θi

d|i = 0, . . . , M}), we can estab-
lish correspondences among the K individual lobes across
different θi

d by simply sorting the lobes based on the scale
parameter values κ(k), since we may safely assume that in-
dividual BRDF lobes will decay or increase coherently–their
height ordering will remain in tact as θd increases. Note
again that we do not simply ignore the dependency of the
BRDF slice on φd; through the EM algorithm, we estimate
an optimal fit of DSBRDF model in a least square sense,
i.e., estimate the parameter values that explains the asym-
metry with minimum squared error. If necessary, we may
also conduct robust estimation by using a robust estimator in
the M-step, which may become crucial for rejecting outliers
that are often found in real-world measured data.

5. Determining the Number of Lobes
The number of necessary lobes for accurately encoding

the directional distribution of a real-world isotropic BRDF
varies depending on the material. We can automatically de-
termine the optimal number of lobes by running the EM al-
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Figure 1: Row (a): The directional statistics BRDF model with 3 lobes (solid line) fit to θd = 0 slices of different measured BRDF data [16]

(square) shown as the 1D profile on the incident plane. The DSBRDF model accurately fits the measured data despite the significantly

varying shapes of the measured distributions (RGB correspond to RGB color channels). Row (b): The lobes (red, green, blue lines) of a

3-lobe DSBRDF model (black solid line) fit to measured data (black dots). Each lobe clearly captures a distinct characteristic reflectance

component of the BRDF (zoom in to see the small lobes in the 3rd column BRDF).

gorithm for different numbers of lobes and then testing the
quality of fits using a statistical measure.

If we consider the KL-divergence between the sta-
tistical distributions of a measured BRDF fr(θh, φd, θd)
and the fit K-lobe directional statistics BRDF distribution
p(θh|θd,ΘK), it will be minimized when the expected log

probability EK
p = − 1

N

∑N log p(θh|θd,ΘK) is minimized.

We may examine the rate of change of EK
p while decreasing

the number of lobes K from a predetermined upper bound K̃
to determine the optimal K–the smallest K that achieves a
statistically set error tolerance. Similar to [12], we adopt the
Williams’ statistical test [32] to determine this optimal K.
We use critical values for 1% tolerance. Details are omitted
due to limited space and readers are referred to [5, 12] for
further details about the Williams’ test in general.

6. Modeling Measured BRDF Data

We evaluate the accuracy of the directional statistics
BRDF model on the real-world BRDF data collected by Ma-
tusik et al.[16], which is also used in other extensive compar-
ative studies of parametric and nonparametric BRDF mod-
els [20, 25], to provide a fair and thorough comparison. This
database consists of 100 measured isotropic BRDFs sam-
pled over θh ∈ [0, π

2 ], θd ∈ [0, π
2 ], and φd ∈ [0, π] 5, one

degree apart except for θh where the sampling is nonlinear
to achieve denser sampling around the center θh = 0 [16].
We uniformly subsample the incident light direction repre-
sented by θd with 5 degrees spacing, resulting in 18 slices
of each BRDF fr(θh, φd, θd = θi

d), where θi
d = {mπ

36 |m =
0, . . . , 18}. For each slice, we fit the directional statistics
BRDF model using the EM algorithm described in Section

5Again, for isotropic BRDFs, the reflected radiance values are symmet-
ric about the incident plane.

4.

When computing the BRDF value for a given (θh, θd)
pair, we linearly interpolate the nearest DSBRDF parameter
values to obtain the parameter values of the DSBRDF model
for that specific θd. This is a powerful advantage of the
DSBRDF model since it automatically provides an adapted
interpolation that captures the otherwise highly non-linear
variation along the θd dimension. This is in sharp contrast to
interpolation in the raw intensity space that non-parametric
models would have to rely on. We empirically found that
uniform sampling of θd with step sizes larger than 5 degrees
suffices for most BRDFs. We also plan to explore parametric
modeling of the DSBRDF parameter values across θd in the
future to arrive at an even more compact representation.

We found that data points very close to θh = 0 were
unreliable for fitting the DSBRDF model, since for several
extremely shiny material their intensities could be too high
to reliably capture even with a high-dynamic range imaging
setup. Thus, we excluded data points with θh less than a de-
gree and instead added a delta term to the mixture model to
compensate for the discrepancy at θh = 0 whose height was
computed after fitting the DSBRDF model.

Figure 1(a) shows some of the results of fitting 3-lobe
DSBRDF models to the θd = 0 slices of different mea-
sured BRDF data as the 1D profiles on the incident plane.
The results show that the directional statistics BRDF model
fits the measured data very well. Notice that the measured
BRDF data exhibit various types of distributions which can-
not be modeled with a simple combination of Lambertian
and Torrance-Sparrow reflection models. The flexibility of
individual hemi-EPDs enables us to fully capture the wide
range of distribution shapes of real-world isotropic BRDFs.
Although examples are omitted due to limited space, some
BRDFs exhibit non-centered lobes (ones centered at the
perimeter of θh). These are mainly caused by subsurface
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Figure 2: Synthetic spheres rendered using the directional statistics BRDF model with parameters values estimated from measured BRDF

data (nickel, specular-blue-phenolic, and orange-paint in [16]). Each row shows spheres rendered using the original measured BRDF data

and those rendered using the DSBRDF model with 1 to 5 lobes from left to right, respectively. The estimated optimal number of lobes for

the DSBRDF models (see Section) were 5, 4, and 2, respectively, which agree well with the visual quality of the rendered spheres.

scattering 6, which cannot be captured with the directional
statistics BRDF model. We plan to extend the model to in-
clude such non-centered lobes. In this paper, we use a simple
circular mask on (θh, φd) with a radius proportional to θd to
discard data points at the θh perimeter.

Figure 2 shows synthetic spheres rendered under an en-
vironmental illumination (St. Peter’s Basilica light probe
in [7]) using the original tabulated measured BRDF data [16]
as well as the fit parametric directional statistics BRDF
model with 1 to 5 lobes, for different BRDFs. We imple-
mented the rendering in pbrt as a new material with a new
BxDF [22]. One can see that the rendered spheres become
visually indistinguishable from the measured BRDF after the
optimal number of lobes is used in the DSBRDF model,
which were 5, 4, and 2, respectively. These results clearly
show that the DSBRDF model captures the behavior of the
BRDF extremely well with only a small number of param-
eter (measured BRDF requires 3 × 90 × 90 × 180 floating
point values while the DSBRDF model with K lobes only
needs 3 × 2K × 18).

The directional statistics BRDF model automatically pro-
vides a decomposition of the BRDF into their constituent
lobes. Figure 1(b) shows the 1D profiles of the three individ-
ual lobes of 3-lobe DSBRDF models fit to measured data (we
are only showing the red channel). Each lobe clearly models
a separate reflection component with distinct characteristics.
For instance, we may interpret the first two lobes, the red
and green curves, in the left most DSBRDF model as the
specular spike and the specular lobe. Our DSBRDF model

6Since the BRDF data in [16] are collected by capturing images of a
sphere painted with the specific material of interest, subsurface scattering
can contribute to strong intensities at the perimeter of the sphere, thus lead-
ing to sharp lobes centered around the perimeter of θh for large θd.

reveals that even the specular spike has a certain spread in
the angular domain and successfully models it, which would
otherwise be extremely hard to model with other analytical
specular reflection models. The third lobes (blue) in the 3rd
and 4th DSBRDF models correspond to the diffuse lobes
representing body reflections, which again cannot be mod-
eled with a simple Lambertian model.

Figure 3 shows synthetic spheres each rendered with
the individual constituent lobe (hemi-EPD) of a 3-lobe DS-
BRDF model fit to the measured data. The renderings clearly
visualize the distinct reflectance characteristics of individ-
ual lobes. One can see that for a very glossy BRDF, the
three lobes are dedicated to modeling specularity of differ-
ent roughness (top two rows), while for materials with some
matte appearance, the 3rd lobe essentially separates out the
diffuse reflection that solely encodes the color of the material
(bottom two rows).

Note that such decomposition of the BRDF cannot be
achieved with non-parametric BRDF models. We believe
this is a strong contribution that can benefit many applica-
tions in computer vision, such as reflection component sep-
aration for robust recognition, 3D reconstruction, etc.

Figure 4 shows the relative (energy-normalized) RMS er-
rors [25] for all the 100 BRDFs in [16] using DSBRDF mod-
els with optimal numbers of lobes. The results show that the
directional statistics BRDF model can model a wide-range
of real-world isotropic BRDFs accurately. The overall ac-
curacy is comparable to the non-parametric bivariate model
introduced in (c.f. Fig. 3 in [25]). The significance of the
DSBRDF model lies in the fact that we can achieve this ac-
curacy with a very small number of parameters and thus with
significantly smaller footprint.

Figure 5 shows how the relative RMS errors of the DS-
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Figure 3: Synthetic spheres rendered with measured BRDF, 3-lobe

DSBRDF model, and 1st to 3rd individual lobes of the DSBRDF

model from left to right, respectively. The lobe decompositions

clearly visualize the distinct reflectance characteristics of individ-

ual lobes, e.g., the color is solely encoded in the 3rd lobe for the

bottom two materials indicating body reflection.
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0.4
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Figure 4: Relative RMS errors for all 100 BRDFs in [16] using

the DSBRDF model with optimal number of lobes and synthetic

spheres rendered with the DSBRDF model (first row) and mea-

sured data (second row). The large errors are mainly caused by

subsurface scattering (see the left most column); otherwise the vi-

sual quality of the DSBRDF model is very high.

BRDF model and a non-parametric representation [16] with
linear interpolation varies as the sampling of the measured
data is reduced. The results clearly show that the DSBRDF
model achieves higher accuracy than the non-parametric
model that heavily relies on densely sampled measurements
and interpolation among the sampled data points, even when
the data is only reduced by a moderate amount. These re-
sults clearly demonstrate the importance of having an accu-
rate low-dimensional parametric BRDF model for modeling
real-world data, since sampling densities are usually sparse
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Figure 5: Relative RMS errors of the DSBRDF model (solid

lines) and a non-parametric representation with linear interpola-

tion (dashed lines) for three different BRDFs (distinct colors) as the

sampling of the measured data is reduced (we subsample indices of

θh in [16] by the integer factors on the horizontal axis). The re-

sults show that the DSBRDF model achieves higher accuracy than

a non-parametric representation even with moderate subsampling,

demonstrating the robustness of the DSBRDF model.

in real-world applications.

7. The Space of Isotropic BRDFs
By modeling various measured BRDF data with the di-

rectional statistics BRDF model and storing all parameter
values for all slices into a single vector, we obtain the coor-
dinates of each BRDF in a low-dimensional space (3×6×18-
dimensions for 3 lobes and 18 slices) where each parameter
set corresponds to each other between different BRDFs–we
have a consistent decomposition of all the BRDFs. These
parameters directly provide useful handles to examine and
characterize the space of real-world isotropic BRDFs.

For instance, we may visualize the space by embedding
the parameter values into a two-dimensional space. Fig-
ure 6 shows the results of applying ISOMAP [29] to the 3-
lobe directional statistics BRDF model parameter values for
θd = 0. Although difficult to visualize in the figure, there is
a dense cluster on the left which contains most purely matte
BRDFs. The embedding clearly layouts a coordinated spec-
trum of isotropic BRDFs, especially in terms of their degrees
of specularity in the horizontal direction from left to right.
Such physically intuitive embedding strongly suggests that
the DSBRDF model successfully characterizes the intrinsic
structure of the BRDF space.

8. Conclusion
We introduced a novel parametric BRDF model based on

the idea of modeling BRDFs as a set of directional statis-
tics distributions. For this, we derived a new hemispheri-
cal distribution and defined the BRDF as a collection of 2D
slices where each individual slice is modeled as a mixture of
these hemispherical distributions. We showed that the novel
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Figure 6: The space of isotropic BRDFs visualized in two dimen-

sions by embedding the parameter values of 3-lobe DSBRDF mod-

els fit to measured data. Starting with the left most cluster of very

matte BRDFs, the horizontal transition encodes the continuum of

isotropic BRDFs with increasing specularity towards the right.

directional statistics BRDF model can accurately model a
wide variety of real-world isotropic BRDFs achieving accu-
racy comparable to non-parametric models and also achiev-
ing higher accuracy than them with less data.

We believe that the new parametric BRDF model has
strong implications for a broad range of applications. We
have merely scratched the surface of its advantages by
demonstrating its ability to automatically decompose mea-
sured BRDF into physically meaningful reflection compo-
nents and its use for exploring the entire space of isotropic
BRDFs. The model lays the foundation for deriving canon-
ical probabilistic formulations (as we showed for estimating
its parameters) for long standing physics-based vision prob-
lems, which we plan to investigate in the future.
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