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Abstract

Face recognition under varying illumination remains a chal-
lenging problem. Much progress has been made toward a
solution through methods that require multiple gallery im-
ages of each subject under varying illumination. Yet for
many applications, this requirement is too severe. In this
paper, we propose a novel method that requires only a single
gallery image per subject taken under unknown lighting. The
method builds upon two contributions. We first estimate the
lighting from its reflection in the eyes. This allows us to ex-
plicitly recover the illumination in the single gallery images
as well as the probe image. Next, we exploit the local linear-
ity of face appearance variation across different people. We
represent the gallery images as locally linear montages of
images of many different faces taken under the same lighting
(bootstrap images). Then, we transfer the estimated combi-
nation of bootstrap images to synthesize each subject’s face
under the probe lighting to accomplish recognition. Finally,
we show through tests on the CMU PIE database that we
can achieve better recognition results using our lighting esti-
mation method and locally linear montages than the current
state-of-the-art.

1. Introduction

The effect of illumination variation on the appearance of
faces is known to be one of the major obstacles for face
recognition [17]. This is due to the fact that lighting vari-
ation often results in larger intra-personal face appearance
variation than inter-personal variation [12].

Many previous approaches have shown that good recog-
nition rates can be achieved even under extreme light-
ing [20, 2, 6, 10, 16, 25, 24]. However, most of these meth-
ods require multiple gallery (or training) images per subject.
Each face has to be sampled under many different light direc-
tions such that the space of images under all possible light-
ing can be well reconstructed. For many applications this
requirement is not practical. Rather, one would desire to ac-
complish recognition using only a single image per subject.
This would not only allow recognition on the existing single
image databases but also simplify enrollment procedures for
future databases.

If the single gallery images are all the information we
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have, we would have to somehow extract an illumination in-
variant feature from each gallery image as well as the probe
(or test) image to accomplish recognition. However, it has
been shown that such discriminative illumination invariant
features do not exist [5]. One can also take an illumination
normalization approach by deriving intrinsic images of each
image [7, 26]. However, recovering intrinsic images from a
single image is an inherently ill-posed problem and requires
restrictive assumptions.

Alternatively, in addition to the single gallery images, one
can collect relevant information from other peoples’ faces.
For instance, a set of 3-D laser scans of many different faces
can be used to compute a statistical generative model of face
geometry and photometry [4, 27, 23]. Then the generative
face model can be fit to the images to estimate identity-
dependent parameter values for recognition. However, such
an approach is computationally expensive and difficult to
scale since it requires 3-D information of many people.

Furthermore, while [4] reports excellent results on face
recognition under varying illumination using single gallery
images, it is only tested on images taken with ambient light-
ing in addition to a single point source!. It has been shown
in [10] that face recognition under single point light source
is significantly more difficult compared to having multiple
light sources®. Yet face recognition under a single point
source is also important, since we frequently encounter such
cases, for instance, in images taken outdoors on a sunny day
or in images taken indoors with the subject close to a domi-
nant compact source.

Although it may be impractical to capture many images
of each person who we would like to recognize, it is easy to
prepare an image set in which faces of many different peo-
ple are captured under many different lighting conditions. In
fact, publicly available face databases, which we normally
use to test face recognition algorithms, can readily be used
to provide general information of face appearance variation

INote that the CMU PIE database [22] contains two sets of images taken
under varying illumination (“illum” and “lights”). One set of images (“il-
lum”) are taken with single flashes while the other set (“lights”) also has the
room light turned on. We run our experiments on the “illum” set.

2In [11] it is shown that for the same data set we use, the error rate
almost halves every time another point source is lit in the image and reaches
almost zero with 11 point light sources. Similar results are reported on the
Yale Face database B [6] in [10].



under varying illumination. Let us refer to these images as
the bootstrap images [21]. Note that the people in the boot-
strap set are not the same individuals as those in the gallery.
In fact, we use an entirely different database for the bootstrap
set. Thus, we have to prepare such a data set only once for
any set of gallery images.

In this paper, we focus on face recognition under varying
illumination using a single gallery image per subject taken
under unknown lighting and a bootstrap set. Using these
image sets, the task is to identify the person in the probe im-
age taken under unknown illumination. Shashua et al. [21]
tackle this problem by deriving an illumination invariant im-
age termed the quotient image. However, their derivation
relies on restrictive assumptions such as faces exhibit pure
Lambertian reflection and different faces share exactly the
same surface normal distribution. Zhou et al. [28] formulate
this problem as a bilinear estimation of lighting and identity
in each galley and probe image. However, bilinear estima-
tion is prone to an inherent ambiguity and thus difficult to
solve. To our knowledge, [28] reports the best recognition
results in this face recognition scenario. However, we will
show in this paper that the recognition rates can be signifi-
cantly improved.

We propose a novel method that builds upon two contri-
butions to accomplish face recognition in this setup. The
first contribution is the use of lighting information reflected
in the eyes for face recognition. Recently, it was shown
in [14] that lighting information of the scene in an image
can be estimated from the eye captured in the image. We
show that — for images in which the eyes are open — we are
able to reliably estimate the lighting for each of the given
single gallery images and the probe image. The explicit
knowledge of lighting allows us to develop the recognition
algorithm described below. It can also benefit many other
face recognition methods that require the lighting to be esti-
mated [4, 27, 23].

The second contribution is a simple yet effective recogni-
tion algorithm which exploits the local linearity of face ap-
pearance. It has been shown in the past that one person’s
face can be well represented as a linear combination of other
peoples’ faces [25, 24]. We take this idea one step further by
exploiting the spatially localized linearity in the appearance
variation of different faces taken under the same lighting.
We show that by simply subdividing the images with a reg-
ular grid and by representing each individual subimage with
the bootstrap images, we are able to better synthesize the ap-
pearance of one person’s face under a novel (probe) lighting
from a single exemplar image. The work of [16] exploits the
spatially localized linearity of face appearance variation us-
ing modular eigenspaces in order to accomplish face recog-
nition based on face parts such as the mouth and the nose.
We, on the other hand, exploit the local linearity in order to
synthesize the appearance of the entire face with non-linear
photometric effects such as highlights and cast-shadows.

In particular, for each single gallery image, we first esti-
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Figure 1: Left: One of the face images we used in our experiments.
The image is cropped (the original size is 640x480). The estimated
eye limbuses are overlaid in red. Right: The environment map com-
puted from the left eye. The intensity values are color coded with
red indicating high and blue low. The estimated point source direc-
tion is depicted by a cyan cross.

mate the lighting from the eyes. Using the estimated gallery
lighting, we synthesize images of each person in the boot-
strap set taken under the same lighting by a simple linear
combination. Then, we represent the gallery image as a
locally linear montage of these bootstrap images taken un-
der the same lighting. We do this by subdividing the im-
ages with a regular grid and computing linear coefficients for
each subimage individually. In the recognition stage, given
the probe image, we estimate the lighting from the eye and
also prepare bootstrap images taken under the probe light-
ing. Then, by reusing the linear coefficients computed for
each subimage of the gallery image, we synthesize an im-
age of each potential identity taken under the probe lighting.
These reconstructed images are compared to the probe im-
age for recognition. We refer to this method as the locally
linear montage method.

By exploiting these two factors, namely the lighting in-
formation recovered from the eyes and the local linearity of
face appearance, we can significantly increase the accuracy
of face recognition under varying illumination using single
gallery images. We report recognition results on the CMU
PIE database [22] using the Yale Face database B [6] as the
bootstrap set. Compared to the result of the state-of-the-art
algorithm reported on the same data [28], we reduce the error
rate by more than 80%.

2. Estimating Lighting from the Eye

Recently, it was shown in [14] that lighting information of
the scene in an image can be estimated from an eye captured
in the image. It was shown that even from low resolution
images, such as standard VGA images, one can recover an
environment map of the scene which covers almost the entire
frontal hemisphere. The computed environment map can be
used as the illumination distribution of the scene.

In general, face recognition requires detecting the eyes
and the mouth locations in the image as a pre-processing step
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Figure 2: Average estimates over 68 people of the 12 different point
source directions computed from the eyes. The symbol f# denotes
the light source (flash) number.

to normalize the sizes of the faces. In our experiments, we
assume that this pre-processing is already done with a face
detection algorithm and we are provided with the rough lo-
cations of the eyes. Using the provided eye location as the
initial estimate of the center of the eye, we use the algorithm
described in [15] to fit an ellipse to the limbus (the contour
of the cornea) in the image. The initial estimate of the el-
lipse parameters is set to a circle of pre-determined radius (8
pixels) for all images.

Figure 1 shows one of the face images used in our exper-
iments and its estimated environment map. In the computed
environment map, we thresholded the intensity values and
computed the centroid of the remaining pixels which was
used as the point source direction (see Figure 1). In the im-
ages of the CMU PIE database, since flashes were used as
the point sources, the reflection in the cornea was often a
short line rather than a point.

We evaluated the accuracy of the point source direction
estimates on the 68 x 12 = 816 images we used in the CMU
PIE database. We were able to estimate the light source di-
rection from at least one of the eyes in 96.4% (786 of 816)
of the images. In the remaining 3.6% images, the eyes were
closed or nearly closed. As we discuss later, for such images,
we can fall back to other methods to estimate the lighting
and use it in the algorithm we describe in Section 4. Fig-
ure 2 shows the average estimates of the 12 different point
source directions. Figure 3 shows the histogram of errors in
the estimated polar and azimuth angles of the point source
directions. The RMS error in polar and azimuth angles were
2.4° and 3.5°, respectively. The errors in polar angles were
larger than those in the azimuth angles. This is mainly due
to the fact that the eyelids often partially occlude the limbus
and hence the estimate of the corneal orientation becomes
less accurate in the polar direction.

These results show that, in images with open eyes, we
can estimate the lighting with very good accuracy. While
the lighting information estimated from the eyes may prove
useful in many different face recognition algorithms [4, 27,
23], in this paper, we introduce a new recognition algorithm
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Figure 3: Histograms of polar and azimuth angle errors of the es-
timated point source directions. The RMS errors in polar and az-
imuth angles were 2.4° and 3.5°, respectively.

designed to explicitly exploit the known lighting.

3. Linear Reconstruction

It has been shown in the past that one person’s face can be
well-represented as a linear combination of other peoples’
faces [25, 24]. Since we have already estimated the lighting
for each gallery image and probe image from the eyes, we
can represent each image as a linear combination of other
peoples’ images in the bootstrap set taken under the same
lighting as follows.

Once we estimate the lighting for each gallery image or
the probe image from the eyes, we are able to represent
the estimated lighting as a linear combination of the light-
ing sampled in the bootstrap set. Let us denote the esti-
mated point source direction in either the gallery image or
the probe image with a 3 x 1 vector s. Similarly, we will de-
note the point source directions sampled in the bootstrap set
with s’ (j = 1,.., K). Then we can compute the lighting co-
efficients ¢ = {c!, .., c® } which are the linear coefficients of
s’ for s. Since lighting is generally frontal in face images, it
is natural to assume ¢/ > 0. Hence we solve a non-negative
minimization problem to estimate the lighting coefficients:

K
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subject to ¢/ > 0. If we have a complex lighting, for in-
stance consisting of area light sources, we can estimate and
represent it as a set of point sources by sampling the envi-
ronment map computed from the eye. Then we can compute
the corresponding lighting coefficients for each point source
using Eq. (1).

Once we compute the lighting coefficients &, we can use
them to synthesize face images of the people in the boot-
strap set under the gallery/probe lighting s. Let us denote
the bootstrap images by x,;” where j (j = 1,.., K) repre-
sents one point source direction sampled in the bootstrap set
and ¢ (¢ = 1,..M) is the identity of the person in the boot-
strap set. In our experiments, we use the Yale Face database
B [6] as the bootstrap set in which we have M = 10 and
K = 64. Then, we can synthesize bootstrap images under
the given lighting s as
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where § is the estimate of s using ¢ in Eq. (1). Note that we
have the light direction § in the superscript so that it is easier
to see that the left hand side is a bootstrap image of person ¢
taken under the lighting S.

Then, we can estimate the linear coefficients W to repre-
sent the gallery/probe image x with these bootstrap images
by solving a simple linear estimation problem:

M B
W = arg min,, |x — Z w'xy L, . (3)
(2
Here again, we assume that the linear coefficients are non-
negative and solve Eq. (3) subject to w; > 0(i = 1,.., M).
Also, we normalize each image such that |x| = 1 to factor
out the brightness variation in lighting among images and
differences in the overall reflectivities of the different faces.

Let us refer to the linear coefficient set W as the identity
coefficients since it is unique for each individual. Zhou et
al. [28] also estimate the lighting coefficients and identity
coefficients to represent the gallery image and the probe im-
age as a linear combination of bootstrap images. However,
they simultaneously estimate both coefficients in a bilinear
formulation assuming pure Lambertian reflection. It is, how-
ever, well-known that bilinear estimation suffers from ambi-
guities [9]. It has been shown that lighting estimation from
shading in images suffer from bas-relief ambiguity [3]. Es-
pecially for face images, since Lambertian reflection acts as
a low-pass filter in the frequency domain [1, 18], simulta-
neous estimation of both the identity and lighting in Eq. (1)
and (3) is prone to local minima. In fact, as we will demon-
strate later, even when the probe image and the gallery im-
age are exactly the same, it is not guaranteed that the bilinear
approach will estimate the same identity and lighting coef-
ficients. Note that we do not suffer from such ambiguities,
since the lighting is explicitly recovered from the eyes and
used to estimate the lighting coefficients separately from the
identity coefficients.

Since the identity coefficients are independent of the il-
lumination, we can reuse the identity coefficients v“v’; com-
puted from the gallery image of person k, to synthesize
his/her face image under the probe lighting s),:

M

sk __ ~i,k i,8p

X, = E Wy X, )
i

Here the probe lighting s,, is computed from the eye and its
estimate 8, is computed using Eq. (1). Once we reconstruct
each person’s face image under the probe lighting (recon-
structed gallery image), we can compare them to the actual
probe image to identify the person. We will describe this
method and its related assumptions in detail in the following
section.

This reconstruction approach using Eq. (4) allows us to
assess the quality of subsequent recognition by looking at

Figure 4: Two example results of the linear reconstruction method
described in Section 3. In each example, the left image is the probe
image and the right image is the reconstructed gallery image (re-
constructed image of the person in the gallery image under the
lighting in the probe image). Although the overall appearance is
similar to the probe image, the reconstructed gallery image does
not include the details of the face.

how well each individual’s face appearance is synthesized
under the probe lighting. Figure 4 shows two probe images
and the same persons’ reconstructed gallery images. Al-
though the reconstructed gallery images do capture the over-
all appearance of each person’s face, they are very smooth
and the details of each individual’s face are lacking. In order
to accomplish recognition with high accuracy, we need to re-
construct the images with finer details — details that captures
each individual’s facial characteristics as well as correct il-
lumination effects including cast-shadows and highlights.

4. Locally Linear Reconstruction

In order to see why the linear reconstruction method fails
to reconstruct the appearance of each individual under the
probe lighting well, let us first take a geometrical view of the
method.

Each image in the gallery, probe, and bootstrap set can be
considered as a unique point in R™. Then, computing iden-
tity coefficients W using Eq. (3) corresponds to projecting
the gallery image onto the hyperplane formed by the boot-
strap images taken under the same lighting (gallery light-
ing) and computing its relative coordinates with respect to
the bootstrap image points on this hyperplane. The relative
coordinates of this gallery image projection are then used to
reconstruct a point on the hyperplane formed by the boot-
strap images taken under the probe lighting, see Eq. (4). The
underlying claim made here is that the image points of faces
taken under the same lighting can be well-approximated with
a linear hyperplane, and the relative position of one image
point with respect to other image points on this hyperplane
is invariant to the lighting change.

Clearly, this assumption does not hold for images of
faces. Because of non-linear appearance variations due to
specular reflections and cast-shadows, we cannot expect that
lighting variations will preserve the relative coordinate sys-
tem of image points of different faces. However, we can
make simple modifications to the way we compute the rela-
tive coordinates such that they are well preserved under illu-
mination variations.
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Figure 5: Example results of varying the amount of subdivision of
images used to reconstruct the gallery images under the probe light-
ing. The original image size was 100 x 80 and we compared the re-
construction errors for 6 different levels of subdivision. The RMS
error of gray level values of the reconstructed images decreases as
the images are subdivided into smaller subimages.

4.1. Spatially Local Linearity

While images of one person’s face taken under varying il-
lumination have been shown to lie close to an extremely
low-dimensional subspace [6, 8, 1, 18], face images of dif-
ferent people taken under the same lighting do not exhibit
the same behavior [24, 25]. Therefore, approximating the
gallery/probe image using the hyperplane formed by the set
of bootstrap images would simply not yield a good recon-
struction. Once again, consider Figure 4. With only a mod-
est number of bootstrap images it is difficult to represent the
fine details in face images — details that are crucial for recog-
nition.

However, if we observe locally in the spatial domain of
face images, we can expect the intensity variation to be of
much lower-dimensional compared to the variation of the en-
tire image. In other words, while the appearance variation of
the entire face across different people is highly non-linear,
local image regions exhibit spatially localized linearity be-
cause of similar geometric and photometric properties® [13].
In [16], this spatially local linearity of face appearance varia-
tion across different people has been exploited for construct-
ing low-dimensional subspaces of facial parts such as the
nose and mouth. Here, we can exploit this local linearity to
reduce the dimensionality of the subspace formed by all im-
ages points in which we compute the relative coordinates. In
other words, we can make the linear hyperplane approxima-
tion of the image point of faces taken under the same lighting
work better by reducing the dimensionality of the subspace
in which those image points lie.

3In [21], the authors assume pure Lambertian reflection and that the
surface normals are exactly the same among different people and only the
albedo varies. Note that we are not making such restrictive assumptions.
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Figure 6: Example results of varying the number of nearest neigh-
bors used to reconstruct the gallery images under the probe lighting.
The RMS error of gray level values of the reconstructed images de-
creases when only neighboring bootstrap images are used (10 cor-
responds to using all images). The optimal number of nearest
neighbors was 2 for this specific example.

Since the faces are pre-aligned, we can simply subdivide
the images into rectangular subimages with a regular grid
and compute identity coefficients for each individual subim-
age. In other words, we will first represent the gallery image
as a montage of bootstrap images taken under the same light-
ing. Then, we use the same combination with the bootstrap
images taken under the probe lighting to reconstruct a mon-
tage of the same person under the probe lighting. Figure 5
shows example results of varying the degree to which the im-
ages are subdivided to reconstruct the gallery images under
the probe lighting. In this example, the gallery lighting was
f8 and the probe lighting was f15 (see Figure 2 for lighting
directions). The RMS errors of gray level values were com-
puted over 68 people (note that each image is normalized
such that the total energy is 1). The original image size was
100 x 80 and we compared the reconstruction errors for 6
different levels of subdivision. As can be seen in the results,
the smaller the subimages become the better we can recon-
struct the image. In the example shown in Figure 5, the best
result was achieved when the images were subdivided into
2 x 2 subimages. Note that, for different combinations of
lighting, the optimal size of subimages might slightly vary.
In our experiments, we use a fixed size (2 x 2) for all tests.

4.2. Reconstruction from Neighbors

Recently, in the context of manifold embedding, Saul et
al. [19] showed that one can effectively compute a low-
dimensional embedding of image points in high-dimensional
space by assuming that nearby points remain nearby. In our
case, we would expect that faces that are close by in the im-
age space would have more similar shape and photometric
properties than those faces that are far apart. As a result, we



expect that nearby faces to one face in the image space under
one lighting would be better representative for that face un-
der another lighting. To this end, we follow [19] and only use
neighboring image points to represent an image point of in-
terest in R (or R™, where 7 =# of pixels in each subimage).
Instead of using all bootstrap images taken under the same
lighting to compute the identity coefficients using Eq. (3),
we will find ¢ nearest neighbors to the gallery image and
use only those bootstrap images to compute the identity co-
efficients*. Then we will use the same ¢ people’s face im-
ages taken under the probe lighting to reconstruct the gallery
image under the probe lighting from the computed identity
coefficients using Eq. (4).

Figure 6 shows example results of varying the number of
nearest neighbors used to reconstruct probe images. In this
example, the gallery lighting was 8 and the probe lighting
was f15 (see Figure 2 for lighting directions). The images
were subdivided into 2 x 2 subimages. The RMS errors of
gray level values were computed over 68 probe images (note
that each image is normalized such that the total energy is 1).
Since the bootstrap set (Yale database B) has 10 people, 10
nearest neighbors corresponds to using all bootstrap images
under the same lighting. As can be seen, using only 2 nearest
neighbors yields the best reconstruction.

The optimal number of nearest neighbors depends on how
densely the image points are sampled as well as the dimen-
sionality of the subspace that all image points form. As a re-
sult, it is difficult to automatically determine the number of
nearest neighbors to be used. This remains as future work.
In our experiments, we use ¢ = 3 which we found to yield
best results.

4.3. Locally Linear Montage

Let us now summarize the face recognition method we pro-
pose. We will refer to the proposed algorithm as the lo-
cally linear montage method, where locally linear refers to
both spatially within the image and also locally in the image
space. Also, remember that we need to first explicitly esti-
mate the lighting in order to use this method, which we do
from the eyes in the images.

Given a set of gallery images x, and bootstrap images
Xy ={ay?|i =1,..M,j = 1,..K}, we would like to iden-
tify the person in the probe image x,,. Note that the gallery
images need not be taken under the same lighting.

1. For each gallery image x’;
(a) Estimate the lighting s’; from the eye.

(b) Compute the lighting coefficients ¢
Eq. (1).

(c) Synthesize bootstrap images taken under lighting
ak

k .
g using

sk as X;? using Eq. (2).

4We use the Euclidean distance for measuring distances between the
images.

(d) Subdivide both the gallery image and the boot-
strap images into rectangular patches: X’;’m,

ak
ng "™ where m is the patch number.

(e) Compute the identity coefficients W™ using

Eq. (3) for each rectangular patch m with ¢ near-
est neighbor bootstrap images.

2. Given the probe image x,,

(a) Estimate the lighting s,, from the eye.

(b) Compute the lighting coefficients &, using Eq. (1).

(c) Synthesize bootstrap images taken under lighting
8, as X7,

(d) Subdivide the bootstrap images taken under
th@ probe lighting XZ” into rectangular patches
X5

3. For each person k in the gallery image set, reconstruct
the image under the probe lighting 5(]; with W™ and

X57"™ using Eq. (4) for each patch.

4. Compare every reconstructed image 5(’; with the probe
image x,,. The identity k that gives the smallest error in
L, is the estimate of identity.

Note that step 1 is an off-line procedure and the actual
recognition process (step 2 to 4) only involves simple mul-
tiplications and additions which can potentially be imple-
mented to run in real time.

5. Experimental Results

In order to conduct a comprehensive evaluation and a fair
comparison with the state-of-the-art method of Zhou et
al. [28], we evaluated our algorithm on the same setup used
in [28]. We used Yale Face database B [6] which has 10 peo-
ple taken under 64 different point source directions as the
bootstrap images. Following [28], we ran recognition tests
on the 12 light source subset of CMU PIE database which
has 68 people [22]. As in [28], we tested our algorithm on
all possible combinations of gallery lighting and probe light-
ing.

We ran three recognition methods on the data set: the bi-
linear estimation method [28], the global linear reconstruc-
tion method described in Section 3, and the locally linear
montage method given in Section 4. The table shown in
Figure 7 shows the recognition rates for all combinations of
gallery and probe lightings’.

5The images which we could not estimate the lighting from the eyes
(3.4% of the images) were not used in the experiments shown in Figure 7
for fair and clear comparison. However, in practice, we can fall back to the
bilinear estimation in [28] to estimate the lighting for such images and use
it in our locally linear montage method. The results did not change with this
hybrid method (92.8%) while the bilinear method ran on all images also did
not change (67.4%).
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13 | 60.3/ 82.4/ 89.2 83.8/ 92.6/100.0 54.4/ 66.2/ 91.0 70.6/ 92.6/100.0 [92.6/100.0/100.0 92.6/ 98.5/100.0 86.8/ 89.7/ 98.5 69.1/ 82.4/ 89.6 44.1/ 55.9/ 83.3 63.2/ 61.8/ 89.1 75.0/ 79.4/ 98.5 89.7/ 86.8/ 98.5 | 73.5/ 82.4/ 94.8
14 58.8/ 73.5/ 90.8 82.4/ 8.2/ 98.5 58.8/ 70.6/ 95.5 88.2/ 95.6/ 98.5 89.7/ 97.1/ 98.5 195.6/100.0/100.0' 89.7/100.0/ 98.5 66.2/ 77.9/ 92.5 63.2/ 57.4/ 90.7 63.2/ 69.1/ 96.9 83.8/ 89.7/ 98.5 92.6/100.0/ 98.5 | 77.7/ 84.9/ 96.4
15 (30.9/ 44.1/ 72.3 58.8/ 0.6/ 92.4 41.2/ 39.7/ 82.1 54.4/ 75.0/100.0 79.4/ 86.8/100.0 80.9/100.0/100.0 '95.6/100.0/100.0 80.9/ 94.1/ 98.5 76.5/ 64.7/ 96.3 44.1/ 45.6/ 78.5 58.8/ 70.6/ 95.5 95.6/ 98.5/100.0 | 66.4/ 74.1/ 93.0
16 20.6/ 36.8/ 86.2 39.7/ 51.5/ 90.9 23.5/ 29.4/ 80.6 39.7/ 45.6/ 91.0 64.7/ 79.4/ 97.0 72.1/ 73.5/100.0 89.7/ 95.6/100.0 195.6/100.0/100.0' 89.7/ 73.5/100.0 25.0/ 26.5/ 78.5 42.6/ 38.2/ 92.4 73.5/ 77.9/100.0 | 56.4/ 60.7/ 93.1
17 |26.5/ 32.4/ 73.6 33.8/ 42.6/ 88.7 22.1/ 29.4/ 85.2 33.8/ 45.6/ 92.6 45.6/ 55.9/ 92.6 41.2/ 57.4/ 96.3 75.0/ 72.1/100.0 94.1/ 80.9/100.0 '97.1/100.0/100.0 20.6/ 36.8/ 75.9 26.5/ 50.0/ 92.6 54.4/ 54.4/100.0 | 47.5/ 54.8/ 91.5
20 [72.1/83.8/ 98.4 70.6/ 73.5/ 95.2 94.1/ 86.8/100.0 79.4/ 92.6/ 96.9 60.3/ 54.4/ 93.8 67.6/ 70.6/ 95.3 45.6/ 50.0/ 83.1 32.4/ 26.5/ 58.5 19.1/ 38.2/ 57.4 (95.6/100.0/100.0' 83.8/ 97.1/100.0 63.2/ 50.0/ 95.4 | 65.3/ 68.6/ 89.5
21 |66.2/ 72.1/ 95.2 79.4/ 92.6/ 98.4 71.9/ 72.1/ 98.5 91.2/ 98.5/100.0 86.8/ 76.5/ 96.9 89.7/ 86.8/ 98.5 64.7/ 72.1/ 97.0 50.0/ 47.1/ 81.8 42.6/ 50.0/ 68.5 76.5/ 98.5/ 98.5 '94.1/100.0/100.0 83.8/ 79.4/ 98.5 | 75.2/ 78.8/ 94.3
22 |52.9/ 52.9/ 82.5 55.9/ 73.5/ 90.6 47.1/ 42.6/ 89.2 70.6/ 70.6/ 93.8 88.2/ 88.2/ 96.9 88.2/ 97.1/ 98.5 83.8/100.0/ 97.0 70.6/ 76.5/ 86.4 61.8/ 48.5/ 88.9 52.9/ 54.4/ 92.3 75.0/ 76.5/100.0 197.1/100.0/100.0 | 70.3/ 73.4/ 93.0
avg.|60.8/ 72.1/ 90.7 70.8/ 81.7/ 96.2 64.5/ 68.4/ 93.5 73.7/ 83.2/ 97.7 75.1/79.7/ 97.6 76.6/ 81.7/ 98.5 69.5/ 76.1/ 96.1 58.9/ 63.2/ 86.7 50.6/ 53.6/ 82.2 64.2/ 70.2/ 92.3 72.5/ 79.2/ 97.9 73.2/ 73.3/ 98.2 | 67.5/73.5/94.0

Figure 7: Recognition results of bilinear estimation [28] / global linear reconstruction (Section 3) / locally linear montage. The locally
linear montage method achieves over 25% better recognition rate compared to the bilinear estimation method.

In the diagonal of the results, one can see that the bilinear
estimation method does not achieve 100% recognition rates
while the other two methods do. These are the cases when
exactly the same images are used for both the gallery and
the probe. We ran the bilinear alternating minimization de-
scribed in [28] with random initial estimates, since there are
no legitimate reasons to use a constant initial value for ei-
ther the identity or lighting coefficients. These results show
that the ambiguity between lighting and identity in the bilin-
ear estimation is difficult to resolve. The other two methods
which explicitly estimates the lighting from the eyes do not
suffer from such ambiguity.

As shown in Figure 7, once the lighting estimated from
the eyes is used (global linear reconstruction), the over-
all recognition rate increases 6% compared to the bilinear
method. Furthermore, by exploiting the local linearity of
face appearance taken under the same lighting in the locally
linear montage method, we achieve 94% recognition rate. In
[28], the authors increase the number of people in the boot-
strap images to 100 by using synthetic face images rendered
from the Blanz and Vetter 3-D Face database [4]. This yields
93% overall recognition rate. This recognition rate is about
the same as what we can achieve with only 10 people in
the bootstrap set. We expect that the locally linear montage
method can scale better.

Figure 8 shows several reconstructed gallery images un-
der a specific probe lighting. By comparing the third row
(global linear reconstructions) with the second row (bilinear
reconstructions), one can see that the overall shading on the
face is more accurate once the lighting information recov-
ered from the eyes is used. This can be observed by looking
at the sharpness of the shadow boundaries cast by the noses.
In the locally linear montages (the fourth row), the facial fea-
tures of each individual is recovered in detail, as well as the
non-linear effect of highlights and cast-shadows.

The locally linear montages are blocky since each indi-
vidual subimage is currently handled independently. In or-
der to achieve even better reconstruction we would need to
exploit the spatial correlation of face appearance variation
among different people. For instance, instead of subdivid-
ing the images with a regular grid and handling each subim-
age independently, we would have to simultaneously esti-
mate both the optimal spatial partitioning/segmentation and
the identity coefficients such that the reconstruction errors

are minimized. However, such an optimization is extremely
difficult to solve. We are currently investigating efficient al-
gorithms which will yield sub-optimal but effective solutions
to circumvent this problem.

6. Conclusion

In this paper, we first showed that the lighting information
recovered from the eyes in face images can be of significant
use for face recognition under varying illumination. Next,
we showed that the explicit information of lighting allows
us to exploit the local linearity of face appearances of differ-
ent people taken under the same lighting. By reconstructing
the gallery image as a locally linear montage of bootstrap
images taken under the probe lighting using the combina-
tions computed for the single gallery image, we are able to
better synthesize each person’s facial details and non-linear
illumination effects. We showed that these two contributions
result in significantly better recognition rates through a com-
prehensive test on face recognition with varying illumination
from single gallery images.
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