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Abstract
A framework for photo-realistic view-dependent image

synthesis of a shiny object from a sparse set of images and
a geometric model is proposed. Each image is aligned with
the 3D model and decomposed into two images with regards
to the reflectance components based on the intensity varia-
tion of object surface points. The view-independent surface
reflection (diffuse reflection) is stored as one texture map.
The view-dependent reflection (specular reflection) images
are used to recover the initial approximation of the illu-
mination distribution, and then a two step numerical mini-
mization algorithm utilizing a simplified Torrance-Sparrow
reflection model is used to estimate the reflectance parame-
ters and refine the illumination distribution. This provides a
very compact representation of the data necessary to render
synthetic images from arbitrary viewpoints. We have con-
ducted experiments with real objects to synthesize photo-
realistic view-dependent images within the proposed frame-
work.

1. Introduction
Rendering photo-realistic virtual images from observa-

tions of real objects has been a major research topic in the
computer vision and the computer graphics community for
a while. Extensive amount of work in this area constitutes a
few main research streams.

Image-based rendering is one of those major research
streams. Taking only 2D images as the input, image-based
methods rely on the fact that light rays can be parameterized
as a 7D function called plenoptic function [1]. Considering
each pixel in real images as samples of this plenoptic func-
tion, image-based methods synthesize virtual images by se-
lecting the most appropriate sample of rays, or interpolating
between the sampled rays. Levoy and Hanrahan [6] repre-
sents the light rays in free space (space free of occluders)
in 4D by using two 2D planes, which enables the plenoptic
function to be described in a more compact way. Gortler
et al. [3] adopts a similar two 2D plane representation, but

additionally they use rough geometric information derived
from images to correct the basis function of the rays. Re-
cently, especially for rendering scenes with the viewing di-
rection inside-out, Shum et al. [12] have proposed a 3D rep-
resentation of the plenoptic function. Since these plenoptic-
function-based methods require only real images as the in-
put, they provide high generality, i.e. they can be applied
to a wide variety of objects and scenes. However, because
of the principle of interpolation, these approaches tend to
require a large amount of input images. Although the light
rays can be represented efficiently in 4D or lower dimen-
sionality, and compression techniques such as vector quan-
tization or MPEG-based approaches can drastically reduce
the total amount of information to be stored, they still re-
quire a dense sampling of the real object which means tak-
ing hundreds of images. Recently, Chai et al. [2] have pro-
posed a framework to analytically compute the minimum
sampling rate for these image-based approaches from spec-
tral analysis with the use of sampling theorem. However,
since they assume diffuse surface, view-dependent variance
such as specularity, that plays an important role in photo-
realisitic synthesis of images, is not taken into considera-
tion. These view-dependent components occur in a high
frequency domain compared to diffuse components, so that
it excessively increases the sampling rate. Also, as long as
relying on interpolation, it will be difficult to synthesize the
movement of the view-dependent appearance effects. Basi-
cally they will just fade in and out.

Model-based methods or “Inverse Rendering” is another
major research stream in this area. Model-based methods
use both 2D images and 3D geometric model of the tar-
get object to estimate the BRDF of the object surface, by
fitting a particular reflection model to the pixel values ob-
served in input images [10] or by solving the inverse ra-
diosity problem [17]. As model-based methods estimate
the BRDF parameters of the object surface, view-dependent
rendering and re-lighting can be accomplished with a very
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compact representation of the object. In these methods the
radiance and positions of the light sources need to be known
to compute the BRDF, and direct information of lighting en-
vironment has to be provided in some way, e.g., with high
dynamic range images of the light sources.

Recent researches in the so-called “3D photography” do-
main have proposed methods that go in between these two
major streams. By taking advantage of the latest advances
in 3D sensing equipments, such as laser range scanners and
structured light scanners, these approaches try to make full
use of the 3D geometry as well as the images. The work
done by Nishino et al. [9] and Wood et al. [16] can be con-
sidered as setting one of the 2D planes in the light field ap-
proaches on to the object surface, in concrete, on the coarse
triangular patches or dense surface points respectively. By
deriving information from the geometry in this way, these
approaches succeed in achieving higher compression ratio
without losing smooth view-dependent variation such as the
movement of highlights. However, these methods still rely
on very dense observation of the objects.

In this paper, our goal is to accomplish photo-realistic
view-dependent rendering with an efficient representation
of the data, from a casually acquired image sequence as the
input. By casual acquisition we mean a relatively sparse set
of images taken by a hand-held camera. In this case, the
input images are not enough to simply apply image-based
rendering methods. Also we assume the 3D model and the
camera parameters are known, while we do not rely on any
direct information of the light sources, i.e. the radiance and
the positions. To solve this problem, we first separate the
view-dependent and view-independent components of the
surface reflectance. The view-independent surface reflec-
tion will be stored as one texture map for the whole ob-
ject. Then we use the view-dependent component images
to derive an efficient representation of the lighting environ-
ment. We accomplish this by initially shooting back the
pixels in the view-dependent images along the perfect mir-
ror direction to form an illumination hemisphere. This is
somewhat similar to what Wood et al. did to increase the
correlation of lumispheres [16], except we build one global
representation of the illumination. Using this illumination
hemisphere as the initial estimation of the lighting environ-
ment, we estimate both the lighting environment and sur-
face properties using a reflection model to approximate the
reflectance mechanism.

The remainder of this paper consists as follows. In
Section 2, we define a scenario we target, clarify the as-
sumptions we make and overview our framework. In Sec-
tion 3 we describe the representation we use for the view-
independent reflection component of the object appearance.
In Section 4, we introduce a method to represent the view-
dependent reflection component efficiently, and how to re-
fine the initial estimations of it. Based on the representa-

tion mentioned in these sections, we show how to render a
view-dependent image in Section 5, and show experimental
results, applying the proposed framework to real object, in
Section 6. Finally, Section 7 concludes the paper.

2. Overview
2.1. Scenario and Assumptions

As mentioned in the previous section, extensive amount
of research has been conducted and has succeeded in mod-
eling and representing the appearance of objects to realize
photo-realistic image synthesis. However, there is still a
gap when we try to apply these techniques for practical use.
For instance, consider a situation when a person wants to
show his own object to a friend remotely, e.g. via internet,
allowing his friend appreciate freely at any detail of the ob-
ject, as if he had it in his own hand. This can directly apply
to what people might want to do when they are purchas-
ing objects online, i.e. e-commerce. Current techniques
require the user to take a large amount of images or assume
the scene structure like the lighting environment is known
perfectly. Our ultimate goal is to enable people to do this
with as less effort as possible with a representation that is
as compact as possible. Setting this as our future goal, in
this paper, we will concentrate on a constrained but still re-
alistic scenario. We target a situation where a user takes
several snapshots of an object in interest with a digital cam-
era, moving around the object, and wants that information
extended into some sort of representation, so that the user
can see the object from arbitrary viewpoints. On tackling
this problem, we make several assumptions while trying to
keep the generality of the scenario.

Obviously the object and the light sources do not move
while the image capturing period, and only the camera
moves. The camera used to capture the input images
can be pre-calibrated easily, for instance using techniques
like [18, 15]. Also, the motion of the camera can be
pre-estimated by applying low-level computer vision tech-
niques. The major assumption we make is that we already
have the 3D model of the target object. Considering recent
developments in the laser scanning industry it has become
relatively easy to obtain an accurate geometric model. In
this case, the problem is aligning the images with the 3D
model. Usually laser scanners provide low resolution tex-
ture together with its 3D point cloud, so the alignment of
2D images and 3D model can be achieved by solving the
error minimization problem between 2D and 3D point cor-
respondences. Also, when the target object has enough tex-
ture, computer vision techniques can be used to obtain the
3D model directly from the input color images as well as
the camera motion.

2.2. Framework
Taking a geometric model and a sparse set of color im-

ages input, we propose a framework to derive an efficient
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representation of the appearance of the target object and
realize photo-realistic synthesis of view-dependent appear-
ance. The framework will constitute of several steps as fol-
lows.
Separate the reflection components in input images
based on intensity variation. We do this by taking the
minimal pixel value for each point on the object surface
throughout the image sequence. By separating the re-
flectance components, we obtain view-independent texture
for each triangular patch of the 3D model. We refer to this
view-independent texture as global texture.
Recover an initial approximation of the illumination dis-
tribution. We then compute residual images by subtracting
the global-texture-mapped image for each camera position
from the original images. These residual images contain the
view-dependent reflected light such as highlights and inter-
reflection, and the noise due to 3D-2D miss-alignment. By
shooting each pixel values in each residual image along the
perfect mirror direction with regards to the camera position
till it hits a hemisphere covering the 3D model, we obtain
an initial estimation of the illumination distribution. We re-
fer to this representation of the illumination distribution as
illumination hemisphere.
Refine illumination distribution and estimate surface re-
flectance parameters. Finally, we apply an iterative nu-
merical method to estimate the reflectance parameter of the
object surface according to a simplified Torrance-Sparrow
model and simultaneously refine the illumination hemi-
sphere.

Once we have the illumination hemisphere, the re-
flectance parameter of the object surface and the global
texture for the view-independent reflection component, we
are able to synthesize realistic images from arbitrary view-
points.

3. Global Texture
To have an efficient representation, we start by decom-

posing input images into view-independent reflection com-
ponent images and view-dependent reflection component
images.

3.1. Reflectance Model
The light reflected on the object surface can be approx-

imated as a linear combination of two reflection compo-
nents: diffuse reflection component ID and specular reflec-
tion component IS [11, 5].

I = ID + IS (1)

The mechanism of the diffuse reflection is explained as
the internal scattering. When an incident light ray pen-
etrates the object surface, it is reflected repeatedly at a
boundary between small particles and medium of the ob-
ject. The scattered light ray eventually reaches the object
surface, and is reflected into the air in various direction.

This phenomenon results in diffuse reflection. Since the di-
rections of the reflected lights can be assumed to be evenly
distributed in all directions, Lambertian model is widely
used to approximate this diffuse reflection. The Lambertian
model is described with the cosine of the angle θi between
the illumination direction and the surface normal, multi-
plied by the diffuse color vector KD, i.e.,

ID = KD cos θi (2)

Recent studies on the diffuse reflection component have
shown that in the case of surfaces with high macro-
scopic roughness, the diffuse reflection becomes view-
dependent [8]. However, for many objects in our daily life,
such as painted man-made objects, Lambertian model is
good enough.

The other reflection component IS called specular re-
flection explains the light directly reflected at an interface
between the air and the surface medium. This specular
reflection has a spike in the perfect mirror direction with
relatively weak intensity spread (a lobe) around the per-
fect mirror direction. The lobe is caused by the micro-
scopic roughness of the object surface. Since the spike of
the specular reflection can only be observed on object sur-
faces smooth enough in comparison with the wavelength of
the incident light and when the camera viewing direction
is aligned with the perfect mirror direction, we can ignore
the spike when approximating the specular reflection with a
numerical model. The lobe of specular reflection can be ap-
proximated by an intensity distribution having the peak in
the perfect mirror direction. The Torrance-Sparrow reflec-
tion model [14] uses a gaussian distribution with its mean
in the perfect mirror direction:

IS =
1

cos θr
KSFG exp[− α2

2σ2
] (3)

where KS is the color vector of the reflection which ac-
counts for the gain of the sensor measuring intensity, the
source strength, the normalization factor of the exponential
function, and the reflectivity of the surface, F is the Fres-
nel’s coefficient, G is the geometrical attenuation factor, θr

is the angle between the viewing direction and the surface
normal, α is the angle between the surface normal and the
bisector of the viewing direction and the light source direc-
tion, and σ represents the surface roughness.

3.2. Recovering View-independent Reflectance
Map

Since we assume that the object and the light source are
fixed and only the camera is moving, only the viewing di-
rection changes through the image sequence. This means
that only the specular reflection component varies from im-
age to image for each point on the object surface, while the
diffuse reflection component is view-independent and con-
stant. The curve in Figure 1 shows how the intensity value
on a particular surface point should vary while the camera
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moves around the object. The pixel value should be con-
stant and have a peak if the highlight passes through that
surface point.

Frames

Intensity

Occluded

Specular component

Diffuse component

Observed values

Figure 1. Example of intensity variation at an object
surface point.

As the diffuse reflection is theoretically constant
throughout the image sequence with the approximation of
Lambertian reflection model, storing one value for each
point on the object surface is enough to represent this dif-
fuse reflection. In practice it is difficult to obtain this con-
stant intensity value from the input image sequence. The
circles on the left side of Figure 1 shows an example of the
pixel values of a particular surface point through the image
sequence. Due to the noise inherent in the imaging sen-
sor, the intensity varies from image to image. If we have a
large number of images as the input, it is possible to draw
an intensity histogram for each surface point, and fit, e.g.,
a Gaussian model to the peak to derive the constant diffuse
reflection component. However, as we have a sparse set
of images, usually only a few sample points will be avail-
able, as depicted with white circles in Figure 1. The black
circles in Figure 1 indicate that the surface point is invisi-
ble in those images due to occlusion. In consequence, we
simply take the minimal pixel value for each surface point,
and consider it as the initial estimation of the diffuse re-
flection component. Although the minimum pixel value is
corrupted by the imaging noise, it should be close to the dif-
fuse reflection component if the corresponding surface point
is captured without surface reflection in at least one image.
This condition will be the constraint to determine the lower
bound on the number of input images, and this also means
surface points which always have surface reflection through
the input image sequence will not be treated correctly with
our framework.

Since we do not have any continuous representation of

the surface geometry, we represent this view-independent
(diffuse) reflection component as textures of triangular
patches. This can be achieved by first texture-mapping each
input image onto the 3D model, then normalizing the tex-
ture of each triangular patch to a prefixed size (e.g. 20x20
pixels), and finally taking the minimal values for each pixel
inside the normalized texture. This texture-based approach
provides an efficient representation of the diffuse reflection
component; we refer to this as global texture.

4. View-dependent Component
Our next step is to represent the view-dependent reflec-

tion component efficiently. We do this by recovering the
lighting environment as a hemisphere over the object, and
estimating the reflectance parameters of the surface and the
illumination radiance using a simplified Torrance-Sparrow
reflection model.

4.1. Illumination Hemisphere
The residual images, generated by subtracting the

global-texture-mapped object image from each original in-
put image, depicts the view-dependent appearance of the
object surface. These images mainly consist of specular re-
flection (highlights) and some interreflection and noise. In
our work, we ignore interreflection and consider it as noise.
As described in Section 3, specular reflection is the light re-
flected at the surface interface, and its intensity peak is in
the perfect mirror direction. In consequence, we can make
a rough approximation of the illumination environment by
mapping each pixel in the residual image onto a hemisphere
covering the 3D object model. Each pixel in the residual im-
age will be shot back towards the hemisphere in the perfect
mirror direction, which can be computed from the surface
normal and the viewing direction. An illumination hemi-
sphere is represented by the upper half of a geodesic sphere,
a subdivided icosahederon.

The illumination hemisphere generated from each resid-
ual image only covers partial regions of the true illumina-
tion environment, and we need to combine these partial il-
lumination hemispheres to make a final illumination hemi-
sphere approximating the real lighting environment. To deal
with noise, we make a mask hemisphere that represents how
many times each point was taken into account while mak-
ing the partial illumination hemispheres. We then test for
each point on the hemisphere whether the count in the mask
hemisphere and the number of times they had an intensity
value in the partial hemispheres are equal. Only those points
that pass this check will be mapped on the final illumination
hemisphere, and in this case we take the mean of the inten-
sity values from the partial illumination hemispheres as its
intensity value. This way of consistency checking also re-
duces the errors, e.g. introduced by 3D-2D miss-alignment.
These errors are not view-dependent and would not stay in
a particular region on the illumination hemisphere. Inter-
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Figure 2. A sample in 2D of intensity variation shot
back to perfect mirror directions.

reflection will also be faded out, since it can be considered
as reflected light of a moving light sources.

4.2. What Illumination Hemisphere Represents
We will use a simple 2D example as shown in Figure

2 to examine what an illumination hemisphere represents.
As depicted in the upper half of Figure 2, the viewpoint is
set in a position so that the light source and the viewpoint
becomes in a perfect mirror position with respect to the ob-
ject center. When we vary the object line orientation while
fixing the surface reflectance properties (Ks,F ,G and σ in
Equation (3)), point light source’s position and brightness,
the viewpoint changes accordingly to stay in a perfect mir-
ror configuration. Consider a line perpendicular to the light
source to object center direction. It can be considered as
a section of the illumination hemisphere. If we shoot back
the observed intensity values along the perfect mirror direc-
tion, we obtain a curve, referred to as illumination curve, as
shown in the lower part of Figure 2. With varying the ob-
ject line orientation, we obtain various distinct illumination
curves as shown in Figure 2; this is equivalent to observing
an object from different viewpoints in our real scenario.

If we consider one of the illumination curves in Figure
2 as the illumination distribution, and assume there is no
roughness on the object surface, then the image rendered in
the original viewpoint for that curve will be indistinguish-
able from the original image, but the images rendered for
other viewpoints will not match the original images. This is
because the illumination curves corresponding to what we
observed in data images while assuming no surface rough-
ness are different from each other. In other words, if we
have multiple views of the same highlight, we should be
able to differentiate the effect of the surface reflectance
properties from the lighting distribution based on the input
image data, i.e., we should be able to estimate both of them.
Also, it is evident that we cannot estimate those parameters
if we only have one observation of each highlight, because
the surface roughness can be embedded in the lighting dis-
tribution without changing the appearance. Note that we do
not necessarily need to estimate the true illumination radi-
ance distribution. We just have to estimate the illumination
distribution and the surface reflectance properties such that
the highlights in the residual images can be explained.

Combining partial illumination hemispheres as de-
scribed in the last subsection gives the average of over-
lapped curves (depicted in dashed line in Figure 2). Al-
though it provides a fairly good approximation to the real il-
lumination distribution, the effect of the surface reflectance
property, i.e. roughness, is not taken into account. In or-
der to achieve correct view-dependent image synthesis, we
have to refine this illumination hemisphere and estimate the
roughness in order to approximate the real illumination dis-
tribution better.
4.3. Illumination and Reflectance Parameter Esti-

mation
Now we will try to separate the effect of the surface re-

flectance property from the illumination hemisphere. We
will use a reflection model and estimate both the surface
reflectance property and the intensities of the nodes on
the geodesic illumination hemisphere using the illumination
hemisphere obtained in section 4.1 as the initial guess.

We use the Torrance-Sparrow reflection model, except
we assume the geometrical attenuation factor G in (3) is 1
and the Fresnel reflectance coefficient F is constant. These
assumptions are valid for most dielectric and metal ob-
jects [13]. With this simplified Torrance-Sparrow reflection
model, the specular reflection IS is given by

IS,m = KS,m
1

cos θr
exp[− α2

2σ2
] (4)

with KS,m = kSg

∫
λ

τm(λ)s(λ)dλ (5)

where m stands for each R, G and B component, g is the
scene radiance to surface irradiance ratio, kS is the spectral
magnitude, τ is the spectral response, s is the surface irradi-
ance on a plane perpendicular to the light source direction,
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and λ is the wavelength.

In our implementation, the illumination hemisphere is
uniformly sampled using a geodesic hemisphere (a subdi-
vided icosahederon). Each node on the illumination hemi-
sphere is considered as a point light source. Because linear-
ity holds in surface irradiance, we can compute the specular
reflection at point v on the object surface as

IS,m(v) = kS,v

NL∑
l

ωlLl,m
1

cosθr
exp[− α2

2σ2
v

] (6)

where Ll,m stands for the radiance of each point light
source in each color band, and ωl stands for the solid an-
gle of the area that each point light source represents.

From (4) and (5), we see that the color vector direction of
the specular reflection is the same as that of the light source.
If we assume that all light sources in the environment have
the same color, we can use the average color of the initial
illumination hemisphere as the color of the light sources. In
consequence, the specular reflection intensity on the surface
of the 3D model in each image is reduced to

IS =
2π

NL
kS,v

NL∑
l

Ll
1

cosθr
exp[− α2

2σ2
v

] (7)

Note we do not have m anymore, and Ll is now the magni-
tude of the color vector of each point light source.

Now, we can estimate the surface reflectance paramters
kS and σ, and refine the illumination hemisphere by esti-
mating Ll through minimizing the following objective func-
tion

min(Iv − IS,v)2 (8)
where Iv is the observed intensity value in residual images,
and IS,v is the intensity value computed from Equation (7).

Since the value of the surface roughness parameter σ is
usually much smaller than the light intensities L l and spec-
tral magnitude kS, it will be difficult for the numerical min-
imization to converge if we try to estimate all the three si-
multaneously. Instead, we take an approach similar to that
in [7, 4]. We estimate σ and the set of Ll and kS alter-
natively in different iterations, and repeat the iteration by
turns until both of them converge. We use the Y value in
the Y CrCb color coordinate as the initial estimation of L l.
Due to the possible error introduced in the construction of
the global texture, we expect outliers in the specular images.
To handle this, we solve this reflection parameter estimation
problem in an M-estimator framework, and the objective
function is

E(x) =
1

NV

NV∑
v

ρ(zv(x)) (9)

with zv(x) = (
Iv − IS,v

σerr
)2 (10)

where x is either (Ll, kS,v) or (σv) depending on iteration,

Figure 3. Two images out of eight input images.

and we currently use the Lorentzian function

ρ(z) = log(1 +
1
2
z2) (11)

In the above formulation, we assume the object has the
same surface reflectance property kS and σ for the entire
surface. This can be a drawback of our framework, although
this assumption can be made on many dielectric objects.

5. View-dependent Image Synthesis
After estimating the refined illumination hemisphere and

the surface reflectance parameters, synthetic images from
arbitrary viewpoints can be easily rendered through the fol-
lowing three steps.

1. Render a global-texture-mapped image with regards to
the viewpoint.

2. Render a specular reflection image computing the pixel
with the reflection model using the refined illumination
hemisphere and surface reflectance parameters.

3. Composite two images by adding values at each pixel.

6. Results
We applied our framework to model the appearance of

a real object. We took 8 color images, each from different
position roughly on a circle around the target. The images
were taken with a digital camera (Olympus C2000), while
trying to keep the angle between each camera position sim-
ilar, so that the object was observed uniformly. Figure 3
shows two of the input images. We used Cyberware laser
stripe range scanner to obtain a geometric model of the ob-
ject, and simplified it to a mesh model with 2834 triangles.

Figure 4 shows the texture variation for two different tri-
angular patch, through the input image sequence and the
corresponding global texture derived from them on the right
side. Note, both were visible only in three images. The up-
per row is the successful case, showing by taking the mini-
mal pixel values we can get the diffuse reflection component
separated out. The middle in upper row has the highlight.
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Figure 4. In box: Two examples of texture variation
in the input image sequence. Outside box: The corre-
sponding global texture.

The lower row shows an example when noise is introduced
into the global texture. The third texture in the lower row
has some amount of the texture which should have corre-
sponded to a neighboring triangular patch, and this results
in the noise of global texture on the right hand side. The left
side image in Figure 5 is a global-texture mapped object im-
age, rendered from the view position corresponding to that
of the left image in Figure 3. The errors can be seen on
the frame of the sunglasses, due to the alignment of images
and the 3D model. We will discuss how to treat this 3D-2D
miss-alignment in Section 7 as future work. Currently, we
do not try to refine this global texture.

The right image in Figure 5 shows the residual image
corresponding to the left image in Figure 3. As mentioned
above, the noise introduced in the former step, i.e. gener-
ating global texture, will appear in the residual images, and
will be directly mapped onto the partial illumination hemi-
spheres (top row in Figure 6). However, as described in Sec-
tion 4.1, we can get rid of most of these noise values when
combining these partial illumination hemispheres (bottom
left in Figure 6). By sampling this initial illumination hemi-
sphere uniformly, and through the two step numerical mini-
mization described in Section 4.3 , we obtain a refined illu-
mination hemisphere (bottom right in Figure 6) and the sur-
face reflectance parameters, kS = 626.0 and σ = 0.0114
for this object. Each residual image was thresholded with a
certain brightness value and then sampled by picking up ev-
ery other pixel. We used a geodesic hemisphere with 18000
nodes to sample the illumination hemisphere. In the initial
illumination hemisphere, 1757 nodes had values assigned,
and after the parameter estimation it decreased to 1162.

Figure 7 shows a side by side comparison of one of the
input image and a synthetic image rendered using the re-
fined illumination hemisphere and estimated reflectance pa-
rameters. Although the highlights are rendered close to the
original in shape and brightness, their positions are slightly

Figure 5. Global-texture-mapped image (left) and
residual image (right) corresponding to the left image
in Figure 3.

Figure 6. Top row: Partial illumination hemispheres.
Bottom row left: Initial combined illumination hemi-
sphere. Bottom right: Refined illumination hemi-
sphere (each point light source corresponding to a
geodesic node is splatted for visualization). (All
mapped on a 2D plane y=0)

different from those in the original images. This is because
we use a hemisphere for approximation, which means that
assuming all light sources are in the same distance from the
object center, the estimated distribution of lights is slightly
different from that in real environment. Also since we use
a simplified mesh model, the shape details are not well pre-
served, resulting in different shape highlight on the upper
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Figure 7. Left: Input image. Right: Synthetic image.

Figure 8. Synthetic images rendered from viewpoints
not included in input.

left side of the penguin. Figure 8 shows two synthetic im-
ages rendered from a new viewpoint. Triangular patches
under the bill of the penguin were not visible in the input
images, so they are rendered in black.

7. Conclusion and Future Work
In this paper, we have proposed a framework to accom-

plish photo-realistic view-dependent image synthesis from
a sparse image set and a geometric model. In particular,
we proposed a method to separate the reflectance compo-
nents in the input images based on the intensity variation of
object surface points. We store the view-independent com-
ponent as one texture map, and use the residual images to
estimate a rough approximation of the illumination environ-
ment, using a hemisphere covering the object. Finally a two
step numerical minimization technique utilizing a Torrance-
Sparrow reflection model was introduced to refine this il-
lumination distribution and estimate the surface reflectance
parameters. This framework provides a very compact repre-

sentation of the object appearance for view-dependent ren-
dering. We have conducted experiments with real objects to
show the effectiveness of our framework.

Future work includes approximating the illumination
distribution with distance and integrating the estimation
process of the cameras’ pose parameters in the framework.
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