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Abstract

We present a method for simultaneously estimating the illumination of a scene and the reflectance

property of an object from single view images – a single image or a small number of images taken from

the same viewpoint. We assume that the illumination consists of multiple point light sources and the

shape of the object is known. First, we represent the illumination on the surface of a unit sphere as

a finite mixture of von Mises-Fisher distributions based on a novel spherical specular reflection model

that well approximates the Torrance-Sparrow reflection model. Next, we estimate the parameters of this

mixture model including the number of its component distributions and the standard deviation of them,

which correspond to the number of light sources and the surface roughness, respectively. Finally, using

these results as the initial estimates, we iteratively refine the estimates based on the original Torrance-

Sparrow reflection model. The final estimates can be used to relight single-view images such as altering

the intensities and directions of the individual light sources. The proposed method provides a unified

framework based on directional statistics for simultaneously estimating the intensities and directions of

an unknown number of light sources as well as the specular reflection parameter of the object in the scene.

keywords

Inverse rendering, Von Mises-Fisher distribution, Finite mixture distibution, EM algorithm

I. INTRODUCTION

Recovering photometric information of real-world objects and scenes from their images and

3-D geometric models, and synthesizing images of the same objects and scenes under arbitrary

novel illumination conditions have been studied as inverse rendering and relighting mainly in

the computer vision and graphics communities. The more information about the object and

the scene in the image we estimate, such as the directions and colors of the illumination and

surface properties of objects, the wider variety of virtual editing of the original image we can

accomplish.

A variety of inverse rendering methods have been proposed to estimate illumination from

single-view images, e.g. from a single image or a sequence of images captured from the same

point. These methods range from those limited to simple illumination consisting of only a single

light source [23] to those that handle more complex illumination with multiple light sources

[38], [42], [10], [16], [12], [26], [41], [34], [35], [14], [22]. These methods, however, assume

the surface reflectance to be known or to be Lambertian.

Instead of only estimating the illumination or the reflectance property of objects in a scene
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[8], [5], [2], several approaches that recover both of them for single-view relighting have been

proposed [11], [31], [25], [17], [9]. Such joint estimation methods can be classified into two

categories: spatial domain methods [11], [31], [17], [9] and frequency domain methods [25].

Although decoupling of illumination and reflectance can be better described in the frequency

domain, relighting such as directly manipulating the intensities and directions of the recovered

light sources can be achieved more naturally in the spatial domain. In our framework, we adopt

a spatial domain based joint estimation method using mixtures of spherical distributions as the

core representation of the illumination and surface properties.

Much of the spatial domain methods for illumination estimation assume (1) all the light

sources are infinitely distant (i.e., directional light sources), (2) the geometry of the target object

is known, and (3) the number of light sources is known. In this paper, we propose a novel method

for simultaneously estimating both the illumination of a scene and the reflectance property of a

real object in the scene, given single-view images taken under multiple point light sources and

a geometric model of the object. Unlike previous methods, our method can recover not only

the direction and intensity of multiple light sources but also the number of light sources and the

specular reflectance property of the object. This eliminates one of the above general assumptions

making the method more practical. We accomplish this by deriving a novel spherical specular

reflection model based on the Torrance-Sparrow reflection model [32] to model the illumination

and the surface property as a mixture of spherical distributions. It is exactly this combination

of (1) reformulation of specular reflection and illumination as mixtures of spherical distribu-

tions and (2) the careful adoption of well established machine learning algorithm for solving

the mixtures that enables automatic estimation of the illumination distribution, the reflectance

parameters, and the number of light sources. The results demonstrate, for the first time, the

advantage of using a rigorous directional statistics approach for appearance modeling.

First, using the specular reflection component separated from the input image, we represent

the illumination condition as a finite mixture of von Mises-Fisher distributions [37], [7] on

the unit sphere based on a spherical representation of specular reflection. Then, by using the

Expectation Maximization algorithm, we estimate the mixture parameters which correspond

to both the illumination distribution and the reflectance parameter. Finally, using the results

as initial estimates, we solve an optimization problem using the original specular reflection
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model in Cartesian coordinates. The results allows us to render the object under novel lighting

conditions.

The remainder of the paper is organized as follows. In Section II, we explain the von Mises-

Fisher distribution defined on the surface of a sphere. Using this distribution model, we derive

a novel spherical specular reflection model based on the Torrance-Sparrow reflection model.

Next, in Section III we describe how to represent the specular reflection as a mixture of spherical

distributions, and how to formulate the illumination estimation problem as a mixture estimation

problem. Then, we show how we can estimate both the parameters of each distribution and the

number of components of the mixture. In Section IV, we show experimental results on synthetic

and real images. Finally, we conclude in section V.

II. A REFLECTION MODEL BASED ON SPHERICAL DISTRIBUTION

Surface reflection of general inhomogeneous surfaces can be modeled as a linear combination

of diffuse and specular reflection components [27], [13]. To model the specular component,

we use the Torrance-Sparrow reflection model [32] which is widely known to approximate the

specular reflection well [19]. The Torrance-Sparrow reflection model assumes that the object

surface is made of mirror-like microscopic facets (microfacets) distributed in V-shaped grooves

as

(1)

where denotes a three-band color vector of the specular reflection radiance, is the color

vector of the specular reflection (which includes the normalization factor of the exponential

function, the reflectivity of the surface, and the scaling factor between scene radiance and a

pixel value), is the Fresnel reflectance coefficient, is the geometrical attenuation factor,

is the angle between the viewing direction and the surface normal, and are the altitude

and azimuth coordinates, respectively, is the illumination radiance per unit solid angle

coming from the direction , is the infinitesimal solid angle ( ),

is the angle between the surface normal and the bisector of the viewing direction and the light

source direction, and is the surface roughness.

From Equation (1), we can clearly see that the Torrance-Sparrow reflection model approxi-

mates the distribution of the orientations of microfacets with a Gaussian distribution with mean
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zero and standard deviation . In this section, we derive a specular reflection model based on a

spherical distribution (or a directional distribution) instead of the Gaussian distribution and we

show that this reflection model can well approximate the Torrance-Sparrow reflection model.

A. The von Mises-Fisher Distribution

To analyze statistically directional data, the von Mises-Fisher (hereafter referred to as vMF)

distribution [37], [7] has been widely used because of its analogy to the Gaussian distribution. A

direction can be expressed by a point on a sphere of unit radius. A three-dimensional unit random

vector (i.e., satisfying ) is said to obey -variate vMF distribution if

its probability density function is given by

(2)

where ( ) is the mean direction, and is the concentration parameter. The

concentration parameter characterizes how strongly the unit vectors drawn by are

concentrated around the mean direction . Let be a data set of random

unit vectors (a set of directions) following a vMF distribution model. Let be the vector sum

(resultant vector) of these vectors: , as shown in Figure 1. Then, the standard

estimate of the mean direction can be computed by simply normalizing the resultant vector

. The standard estimate of the concentration parameter is, when the true mean direction is

unknown, given by [7], [15]

(3)

Fig. 1. Estimate of the mean direction.
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Fig. 2. Modeling the orientation of microfacet as a vMF distribution. We consider a mirror direction of a

microfacet opposite the surface normal direction with respect to the microfacet normal . Supposing is

the north pole of a unit sphere, we can think of as a point on the sphere, since the angle between and ,

namely the polar angle, ranges from to . We assume that has a vMF distribution with the mean direction

equal to .

where is the resultant vector length, as shown in Figure 1 .

The density function Equation (2) can be rewritten in terms of a spherical polar coordinate

system as follows:

(4)

where and are the polar and azimuth angles from the mean direction,

respectively.

B. The Spherical Torrance-Sparrow Model

Let be the directional vector mirror-symmetric to the surface normal with respect to

the normal of the microfacet (Figure 2: Left). We assume that obeys a vMF distribu-

tion with mean direction (Figure 2: Right). More specifically, the probability of finding a

direction within a unit angular area centered at an angle, , from the surface normal di-

rection is given by Equation (4). Now, is clearly equal to twice the angle, (

in Equation (1)), between and . Hence, this probability is proportional to ,

since . Similar to the derivation of the

Torrance-Sparrow model, we replace the exponential function on the right side of Equation (1)

The maximum likelihood (ML) estimates of and are given by the above and , respectively.
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with as follows:

(5)

The concentration parameter here corresponds to the “smoothness” of the object surface. Also,

we assume the following relation between the surface smoothness and surface roughness in

such a manner that Equation (5) is equivalent to Equation (1) for small values of (hence,

)

(6)

On the other hand, it is well known that the Torrance-Sparrow reflection model can be simpli-

fied by redefining and as constant values, under the condition that the angle between the

viewing and illumination directions is smaller than [29]. Thus, we also simplify Equation

(5) as

(7)

where is redefined as . We call this specular reflection model the spherical Torrance-

Sparrow reflection model.

Figure 3 shows the approximation quality of the specular reflection radiance by the spherical

Torrance-Sparrow model and the original Torrance-Sparrow model. From Figure 3, we can see

that these two simulation curves agree well when is within (it is known that generally

takes between and ) and is within (necessary condition for Torrance-Sparrow

model simplification). This implies that the spherical Torrance-Sparrow model can be regarded

as a good approximation to the Torrance-Sparrow model, and hence also to the true specular

reflection.

III. MULTIPLE LIGHT SOURCES AND REFLECTANCE ESTIMATION

In this section, we formulate the illumination distribution as a mixture of vMF distributions

on the unit sphere based on the spherical Torrance-Sparrow reflection model, and then estimate

the illumination and specular reflectance parameters as the mixture model parameters using the

Expectation Maximization (EM) algorithm for this mixture model. The resulting estimates are

then refined using a local optimization scheme based on the original Torrance-Sparrow reflection

model.
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Fig. 3. Approximation of the specular reflection radiance, for a fixed , with respect to variations of , by the

spherical Torrance-Sparrow model (solid line) as well as the original Torrance-Sparrow model (dotted line).

The curves agree well for all these cases showing that the spherical Torrance-Sparrow model approximates the

original Torrance-Sparrow model extremely well.

A. A Mixture Representation of Illumination Condition

We assume that the scene is illuminated by a finite number of distant point light sources

(i.e., directional lights) that all have the same color. Also, the specular reflectance property

of the object surface is assumed to be homogeneous. Then, Equation (7) can be discretely

approximated using the nodes of a geodesic dome [26], [21] as

(8)

(9)

where is the normalized color vector with the assumption that all the light sources have the

same color, is the number of the nodes of a geodesic dome in the northern hemisphere, is

the number of the point light source, is the radiance of the -th light source,

and is the angle between the surface normal and the bisector of the viewing direction and the
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-th light source direction.

Now suppose that light rays emanate in all directions from the viewpoint, some of the light

rays pass through the image plane toward the object and strike the object surface. Then, we map

the value of of each pixel to the mirror reflection

direction at the corresponding surface point. We call the resulting scalar field on the unit sphere

the illumination sphere [21].

The angle between this mirror reflection direction and the -th light source direction is given by

, where is the azimuth angle of the bisector

of the viewing direction and the -th light source direction from the surface normal. Since the

specular reflection can only be observed when has very small values, we ignore the second

term and approximate as . Hence, the scalar value, , of

a location, , on the illumination sphere is represented as

(10)

where is the direction of the -th light source and is the

set of the illumination and specular reflection parameters.

From Equation (10) and (2), we can clearly see that the illumination sphere is equivalent to a

mixture of vMF distributions

(11)

where is redefined as the relative radiance of the -th light source so that ,

is a vMF probability density function, and is also redefined as the relative

irradiance on the illumination sphere normalized to unit probability

(12)
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where stands for the location of the node of a geodesic dome approximating a unit sphere and

is the number of the nodes of the geodesic dome. Also, means that the entire sphere has

a solid angle of steradians.

As a result, the mixture weight, the number of components, the mean direction and concen-

tration parameter of each component distribution correspond to (the relative radiance of the

-th light source), (the number of the light source), (the direction of the -th light source),

and (the surface smoothness), respectively. Therefore, the problem of estimating illumination

and specular reflection parameters can be formulated as a vMF mixture estimation problem with

respect to . Note that, unlike usual mixture estimation,

the concentration parameter (or surface smoothness) is common to all the component distribu-

tions. This is because if is independently defined for each component distribution, each surface

point has different reflectance properties for each light source, which physically does not make

sense. Also note, under the assumption of the original Torrance-Sparrow model, the scalar field

on the sphere is expressed as a linear combination of two dimensional Gaussian distributions for

data in , so that the illumination estimation problem cannot be treated as a mixture estimation

problem.

B. EM Algorithm for Illumination Sphere

We regard the problem of simultaneously estimating the multiple point light sources and the

specular reflectance as a problem of estimating a mixture of vMF distributions, as described

above. For estimating the parameters of a Gaussian mixture, the Expectation Maximization

(EM) algorithm is widely used for its numerical stability and simplicity [4].

Recently, Banerjee et al. [1] proposed two variants (called the hard-assignment scheme, soft-

assignment scheme) of the EM algorithm for estimating the parameters of a mixture of vMF

distributions. In this paper, we adopt Banerjee et al.’s EM algorithm for our parameter estimation

problem. Note that their EM algorithm cannot be directly applied to our case, since our vMF

mixture model, unlike the normal vMF mixture, includes the concentration parameter ( ) which

is common to all the component distributions, as mentioned before. In order to deal with this

problem, we introduce the hard-assignment scheme in the E (Expectation) step and an updating

rule based on the estimate of the concentration parameter (Equation (3)) in the M (Maximization)

step. Also, for the parameters except , we use their soft-assignment scheme.
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Now, let be a set of samples drawn from the illumination

sphere normalized as Equation (12). Then, our EM algorithm randomly chooses points (unit

vectors) as the initial cluster means ( ) and then iterates the following steps until

convergence.

(1) E-step

Update the distributions of the hidden variables for and as

(13)

argmax
(14)

(2) M-step

Update each parameter for as

(15)

(16)

(17)

Note that the number of component distributions is assumed to be known. Nevertheless, one

of the advantages of solving this inverse rendering problem within the EM framework is that

the optimal number of components, i.e., the light source number ( ) can be determined as

discussed in the next section.
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C. Light Source Number Estimation

The problem of determining the number of components in mixture models has been well

studied in the statistical learning community [6], [33]. For instance, Cang et al. [3] used the

Williams’ statistical test to estimate the number of components in mixtures. Now let us de-

note the parameters of the -th component distribution of the entire mixture distribution to

be estimated with when we assume that the number

of mixture components is . Then, the Kullback-Leibler divergence distance between the

original vMF mixture density function, , and the

density funciton approximated by the estimated parameters ,

, becomes

The first term only depends on the number of components and their corresponding mixture

parameters and can be approximated as

(18)

where denotes the expectation value function, and is the

data set consisting of samples, as defined in the previous section. Clearly, as we increase

the number of components, , the estimated mixture density function becomes closer to the

original density function. This means that the KL divergence will decrease as we

increase , which in turn means decreases as increases. Thus, intuitively, we can decide

the optimal number of components by evaluating the rate of change of as we vary .

Now, let . Then, from Equation (18), the mean, , of represents

the mean for different group level in Williams’ test. For a given upper limit of the candidate

number of mixture components, the test statistic in Williams’ test is

(19)

Strictly speaking, we should write , but we drop for simplicity.
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where and are

(20)

(21)

where is the th individual in the th group and [3].

To solve the problem of estimating the number of light sources, we apply the algorithm of [3]

in the following implementation.

1. Choose the upper limit of the number of light sources. Set . Set the light source

number .

2. Repeat Step 2a through Step 2c until ( is not significant at significance level

) and ( is significant at significance level ) are simultaneously satisfied,

where is the critical value at significance level .

2a. Approximate the (normalized) illumination sphere with a mixture of vMF probability

density functions using the EM algorithm as described in Section III-B, .

2b. Calculate in Equation (19).

2c. , .

Note that we assume that the scene illumination contains a number of discrete point light

sources. Due to this assumption, we do not consider extended light sources such as fluorescent

lamps in our method. However, if we can assume that the extended source consists of distant

point sources with the same color and may manually enter the number of point sources, our

method could be extended to model an extended source using a relatively small number of point

sources.

D. Final Refinement

The estimates obtained in the last section may deviate a little from the true values, since

the estimation algorithm is based on the spherical specular reflection model that approximates

the Torrance-Sparrow reflection model. In this section, we improve those results through an

optimization process based on the original Torrance-Sparrow reflection model. Note that we
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fix the number ( ) and direction ( ) of the light sources, since the algorithm described in

the last sections is, as confirmed by our preliminary experiments, accurate with respect to these

parameters.

Using the original (simplified) Torrance-Sparrow model, Equation (9) can be modified as

(22)

(23)

where , . This implies that estimation of and becomes

an ill-posed problem. Therefore, we address the estimation of in Equation (23). The relative

source radiance can be calculated by normalizing each so that .

Now, we re-estimate and by solving the optimization problem as

argmin (24)

where , is the image irradiance of the observed (separated) specu-

lar reflection component, and is the numbers of horizontal and vertical pixels, respec-

tively. To solve Equation (24), we utilize an iterative approach, as described in the following

procedures.

First, we set the initial values of and as

(25)

(26)

where and are the (initial) estimates of and obtained in the last section, respectively,

and is the solution to the following linear least squares problem:

argmin (27)

where represents the specular image synthesized using the estimates which we obtained in

the last sections. Next, we alternate between gradient descent minimization of Equation (24)

with respect to and until convergence [21].
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(a) (b)

Fig. 4. (a) Input image. (b) Specular reflection image.

TABLE I

ESTIMATION RESULTS.

Light 1 Light 2 Light 3 Light 4

Estimated light direction

Ground truth

Estimated light intensity

Ground truth

We now assume that the diffuse reflectance property of the surface can be approximated with

a Lambertian reflection model. In this case, we are able to synthesize the new diffuse image

by computing the ratio of irradiance between the original and new lighting condition for each

surface point. Then, by synthesizing the new specular image with the estimated illumination

and specular parameters, and adding those diffuse and specular images, we are able to render

the virtual object image under the new lighting condition [21].

IV. EXPERIMENTAL RESULTS

To demonstrate and evaluate our method, we chose to use a synthetic image and two real

images as inputs. In all the experiments, we used a geodesic dome consisting of approximately

4,100 vertices. We searched for the optimal number of light sources in the interval from to

( ). We randomly drew samples ( ) from the normalized illumination sphere (i.e.,

a mixture of vMF distributions) as described in Section III.B.
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(a) (b)

Fig. 5. (a) Illumination sphere computed from Figure 4(b). (b) Illumination sphere estimated as a mixuture of vMF

distributions.

0

1

2

3

4
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7

8

1 2 3 4 5

Number of light sources

Test static

Fig. 6. Change in as the number of mixture components decreases. Since ( ) is not significant and

( ) is significant at level, we determine the number of mixture components (i.e., light sources) as

.

A. Synthetic Image

In this experiment, we rendered an input image of a scene consisting of multiple objects with

a relatively large roughness value using RADIANCE [24]. Figure 4(a) shows the input image.

From the specular reflection image (Figure 4(b)), we computed the illumination sphere (Fig-

ure 5(a)) as discussed in Section III.A. Then, we normalized the illumination sphere (Equation

(12)) and approximated it with a finite mixture of vMF distributions while varying the number
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Fig. 7. Image synthesized using the estimated reflection parameter and illumination distribution.

of components as explained in Sections III.B and III.C. Figure 6 shows the effects of decreas-

ing the number of mixture components. The vertical axis represents the value of the Student’s

t-distribution. The horizontal axis represents the setting number ( ) of mixture components. In

Figure 6, at the correct number of components ( ), the two criteria

and are simultaneously satisfied and thus the number of light sources can

be determined as . Figure 5(b) shows the illumination sphere approximated with a mixture of

vMF distributions for the estimated number of components. The synthetic image in Figure 7

was generated using the estimated parameters. The directions and intensities of light sources

are tabulated in Table I. The estimate of the roughness parameter is . Since RADIANCE

uses the Ward reflection model [36], the estimated roughness parameter cannot be directly com-

pared to the ground truth value. Nevertheless, the light sources including their directions and

intensities are recovered accurately, which in turn indicates that the roughness parameter is also

estimated accurately. Figure 8 shows ground truth images and synthetic images rendered under

novel lighting conditions in which only one light source of the four is turned on in each pair. We

can see that the target objects and their shadows cast on the table are rendered correctly. As a

result, even with such a relatively large roughness, we are able to estimate how each light source

separately contributes to the original scene appearance.

B. Real Image

We also conducted experiments on real objects. The objects we use in our experiments are

a hemispherical object made of Fiber Reinforced Plastic (FRP) and a replica of a beetle made

of Polyvinyl Chloride (PVC). Figure 9 shows an input image for each object. Note that the
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Fig. 8. Images under each point light source. Left: Original images, Right: synthesized images.
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(a) (b)

Fig. 9. Input images. (a) Hemispherical object. (b) Beetle object.

(a) (b)

Fig. 10. Reflection components separated from Figure 9 (a). (a) Specular reflection image. (b) Diffuse reflection

image.

specular highlights in Figure 9(b) partially overlap. For each object, color images are captured

using a color CCD video camera. We obtain a 3D geometric model for each object using a

light-stripe range finder with a liquid crystal shutter and a contact digitizer, respectively. For

the hemispherical object, we use a polarization filter [9] to separate the diffuse and specular

reflection components, as shown in Figure 10. Note that other techniques, including color-based

methods [30], can be used instead and that the beetle object does not have the diffuse reflection

component but only the specular reflection component.

We obtained Figures 11 and 12 and correctly estimated the number of light sources as in

the same way as in the cases of Figures 5 and 6. Figure 13 shows the results of testing the

robustness to initial values and convergence of our EM algorithm. These results show that

the EM algorithm in our method converges fast, independent of the initial state. As shown in

Figure 14, we rendered these input scenes using the estimated reflection parameters and lighting

conditions. The directions and intensities of light sources are tabulated in Tables II and III. The
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(a) (b)

Fig. 11. (a) Illumination sphere computed from Figure 9 (b). (b) Illumination sphere estimated as a mixture of

vMF distributions.

Fig. 12. Change in as the number of mixture components decreases (the hemispherical object). Since

( ) is not significant and ( ) is significant at level, we determine the number of mixture

components (i.e., light sources) as .

estimates of were and for the hemispherical and beetle objects, respectively.

Figures 15 and 16 show the results of synthesizing the object’s appearance under novel lighting

conditions in the same way as Figures 8 except that the shadows are not rendered. One can see

that these images relit by our method are nearly exact for real images.

V. CONCLUSIONS

Given single-view images taken under multiple point light sources and a geometric model of

the target object in the scene, we have proposed a method to simultaneously estimate the illu-
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Light 1

Light 2

Light 3

Fig. 13. Learning curves of our EM algorithm for the estimation of the light sources. The curves show the

directional error for the 3 point light sources consisting the illumination environment. The solid line, the

dashed line, and the dotted line correspond to the first source (Light 1), the second source (Light 2), and the

third source (Light 3), respectively. Different curves for the same light source depict results from different

initial estimates. The estimates converge fairly quickly with a couple of iterations regardless of the initial error.

Fig. 14. Synthetic images rendered using the estimated reflection parameter and illumination distribution.

mination condition and the surface reflectance property based on a rigorous directional statistics

approach. By first representing the specular reflection as a mixture of probability distributions

on the unit sphere and then using the EM algorithm to estimate the mixture parameters, we are

able to estimate not only the direction and intensity of the light sources but also the number

of light sources and the specular reflectance property. We can use the results to render the ob-

ject under novel lighting conditions. These results clearly demonstrate the advantage of using

a directional statistics based approach for inverse rendering. We believe that other reflectance
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TABLE II

ESTIMATION RESULTS FOR THE HEMISPHERICAL OBJECT.

Light 1 Light 2 Light 3

Estimated light direction

Ground truth

Estimated light intensity

Ground truth

TABLE III

ESTIMATION RESULTS FOR THE BEETLE OBJECT.

Light 1 Light 2 Light 3

Estimated light direction

Ground truth

Estimated light intensity

Ground truth

models described with half-angle vector parameterization can be incorporated albeit minor mod-

ifications in the derivation. We also believe that multiple images [18], [40], [39], [20], [21], [43],

[28] will increase the sampling density of the mixture of vMF distributions and hence increase

the accuracy of the estimates. The future works include recovery of nonhomogeneous specular

reflectance properties and the distances to light sources.
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