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Abstract—Several techniques have been developed for recovering reflectance properties of real surfaces under unknown illumination.

However, in most cases, those techniques assume that the light sources are located at inifinity, which cannot be applied safely to, for

example, reflectance modeling of indoor environments. In this paper, we propose two types of methods to estimate the surface

reflectance property of an object, as well as the position of a light source from a single view without the distant illumination assumption,

thus relaxing the conditions in the previous methods. Given a real image and a 3D geometric model of an object with specular reflection

as inputs, the first method estimates the light source position by fitting to the Lambertian diffuse component, while separating the

specular and diffuse components by using an iterative relaxation scheme. Our second method extends that first method by using as

input a specular component image, which is acquired by analyzing multiple polarization images taken from a single view, thus

removing its constraints on the diffuse reflectance property. This method simultaneously recovers the reflectance properties and the

light source positions by optimizing the linearity of a log-transformed Torrance-Sparrow model. By estimating the object’s reflectance

property and the light source position, we can freely generate synthetic images of the target object under arbitrary lighting conditions

with not only source direction modification but also source-surface distance modification. Experimental results show the accuracy of

our estimation framework.

Index Terms—Finite distance illumination, light source position estimation, reflectance parameter estimation, specular reflectance.

�

1 INTRODUCTION

PHOTOMETRIC modeling of real objects and their environ-

ment is an important issue in the fields of computer

vision and computer graphics. It has many useful applica-

tions and one of them is augmented reality, which allows us

to see a real world scene with those objects virtually and

seamlessly superimposed on it. To create such realistic

synthetic images, virtual objects have to be shaded
consistently under the real illumination condition of the

scene, which can be attained if we know the surface

reflectance properties of the object and the properties of

illumination including their positions. Researchers refer to

this problem as the inverse rendering problem.
Several methods have been developed to simultaneously

recover the surface reflectance properties and the lighting.
These techniques can be divided into two categories:
techniques using multiple views [13], [21], [22], [16], [17]
and those using a single view [7], [29], [23], [24], [25], [11] as
inputs, except 3D geometric models of the object. In the

latter category, for example, Ikeuchi and Sato [7] developed

an algorithm to determine both the surface reflectance

properties and the light source direction from a single image

based on analysis of a simplified Torrance-Sparrow reflec-

tion model [30]. Sato et al. [23], [24], [25] proposed a method

for estimating the complex illumination distribution of a

real scene by using a radiance distribution inside shadows

cast by a real object. Tominaga and Tanaka [29] adopted the

Phong model to determine the surface reflectance properties

and the direction of illumination from a single color image.

However, all of these methods assume that the light and

viewing positions are distant, thus, they follow parallel

illumination and orthogonal projection and do not offer a

solution for real scene under light and viewing positions at

finite distances. In general, the distant illumination assump-

tion is not correct if the light source-surface distance is not

so large, compared to the surface size, like reflectance

modeling of indoor environments (Fig. 1) or photometric

analysis of endoscope images [18]. One of the drawbacks of

using the distant illumination assumption is when a planar

surface is observed from a single view. In this case, surface

normals, light directions, and viewing directions at all

surface points produce the same angle. As a result, no fitting

process can be applied (Fig. 2a).

Recently, a method similar to the method proposed in

this paper has been introduced to recover the reflectance

properties of multiple objects from a single view [1]. While

we take a similar approach to separate the image into

regions according to their type of reflection and fit reflection

models to each regions, we will also recover the light source
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position and the reflectance properties of textured surfaces

with specular reflection.
Our goal is to recover the light source position and

surface reflectance properties from a single view of an
object captured under a single light source at a finite
distance (Fig. 2b) and then create a new photo-realistic
synthetic image under novel light source conditions with
not only source direction modification but also light
source-surface distance modification. Given a real image
that has specular regions, our first method consists of
two main aspects: First, we determine rough diffuse
regions and the peak pixels of the whole image, which
are usually located at the specular region. From these peak
pixels and rough diffuse region, we initialize the values of
the light source direction and source-surface distance,
respectively, as well as Lambertian diffuse parameters.
Then, based on these initial values, we simultaneously
estimate the actual values of the light source position and
reflectance properties using an iterative separating-and-
fitting relaxation technique. However, this recovery meth-
od is largely limited to the following: 1) the diffuse
reflection property is homogeneous Lambertian and 2) the
specular peak must be visible somewhere on the surface of
the target object while avoiding saturation.

We attempt to extend the above method by removing
these restrictions and presenting an improved method for
recovering the reflectance property and the light source
position, only assuming that the target object has a
homogeneous specular reflection property. First, the spec-
ular and diffuse reflection components are separated. Given
the obtained component image for specular reflection (called
the specular component image) and 3D geometric model of
an object as an input, the second method initially estimates
the light source position and the specular reflection
parameters based on a linearized Torrance-Sparrow reflec-
tion model. These parameters are then refined by using the
original Torrance-Sparrow reflection model.

The main advantages of our methods are: 1) it works

given only a single view and a 3D geometric model of the

scene and 2) unlike past methods, we estimate the

three dimensional light source positions as well.

This paper is organized as follows: Section 2 describes

previous work related to inverse rendering from a single

view.Section3describes thebasesnecessary toouralgorithm.

In particular, we introduce a simplified Torrance-Sparrow

reflection model that we use. Section 4 explains our first

method for estimating reflectance parameters of the surface

and the light source position from a real image. In Section 5,

we describe our second algorithm using a specular compo-

nent image as the input. Section 6 shows several results.

Conclusions and future works are given in Section 7.

2 PREVIOUS WORK

Wediscuss previous work associated with inverse rendering

from a single view (recovering one or more of the surface

reflectance, lighting, or texture, given a single image or

multiple images taken from a single view). This section lists

someof theprevious research in roughly chronological order.

Pentland [19] recovers the direction of a single light

source using a statistical approach, assuming a uniform

distribution of the directions of the surface normals (e.g., a

sphere). Ikeuchi and Sato [7] determine the specular and

diffuse reflection parameters, as well as the direction of a

single source from a single image and a geometric model of

the object, using a simplified Torrance-Sparrow reflection

model. Yang and Yuille [35] analyze the intensities and

surface normals along the occluding boundaries to estimate

the directions of multiple light sources. Zheng and

Chellappa [37] reconstruct the shape, illuminant direction,

and texture from a single image of a Lambertian surface,

using shading information along image contours. Hougen

and Anuja [5] determine the light source directions and its

intensities from a single image of Lambertian object of

known geometry by solving a set of linear equations for

image irradiance. Marschner and Greenberg [11] propose a

technique (called the inverse lighting) to reconstruct the
directional distribution of light from an image of a

Lambertian surface and the 3D geometric model by

producing a set of basis images and finding a linear

combination of those basis images that matches the input

image. Kim et al. [8] estimate the illuminant direction from

a single image of a Lambertian surface, while also

recovering the shape of the surface, using image regions

corresponding to bumps. Sato et al. [23], [24], [25] propose a

method to simultaneously recover the illumination distri-

bution (directions and intensities of light sources) and the

surface reflectance by analyzing intensity information in-

side shadows cast on the scene by the object. Tominaga and

Tanaka [29] utilize the dichromatic reflection model and the

Phong model and successfully recovered the reflectance,

light direction, and its color, texture, and shape under a

single light source. Boivin and Gagalowicz [1] propose a

method for estimating multiple reflectance properties

(diffuse, specular, isotropic, and anisotropic texture) of the
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Fig. 1. An example of a synthesized image of indoor environment by

estimating the surface reflectance properties: (a) real image and

(b) synthesized image (the brown wall).

Fig 2. Illuminant and viewpoint assumptions.



different surfaces from a single image and 3D geometric

model of indoor scene. Their method successively fits

multiple reflection models from the simplest to the most

complex and it minimizes the error between the real and

synthesized images with regard to the reflection para-

meters. Zhang and Yang [36] detect critical points where the

surface normal is perpendicular to some light source

direction from a single image of a Lambertian sphere of

known geometry and then determine the directions and

intensities of the multiple light sources. Wang and Samaras

[31] extend Zhang and Yang’s method by allowing

Lambertian objects of arbitrary known shapes. This ap-

proach maps the surface normals onto a sphere and then

segments the surface into regions, with each region

illuminated by a different set of sources. Finally, illuminant

direction estimation is performed by a recursive least

squares technique. Miyazaki et al. [12] present a simulta-

neous recovery of the shape, surface reflection, texture, and

the directions of multiple sources with polarization analysis

of multiple images taken from a single view. Recently,

multiple cues are combined to robustly estimate the

multiple directional illuminants. Wang and Samaras [32]

develop a method based on shadow and a method based on

shading independently and integrate the two methods. Li

et al. [10] determine the directions of multiple light sources

from a single image using shading, shadow, and specular

reflection. This technique still works for textured surfaces.

Most of the above methods assume distant illumination

(directional light sources) and then recover one or more of

the direction of a single light source, directions, and

intensities of multiple light sources, surface reflectance, or

texture from a single image of a scene. Our method differs

from these previous works in that it simultaneously

estimates the position of a single light source and surface

reflectance without distant illumination assumption.

3 REFLECTION MODEL

In this section, we give a brief overview on the reflection

model used in our method. Generally, reflection models are

described by linear combinations of two reflection compo-

nents: the diffuse and the specular reflections. This model

was formally introduced by Shafer [27] as the dichromatic

reflection model. The diffuse reflection component repre-

sents reflected rays arising from internal scattering inside

the surface medium. The specular reflection component, on

the other hand, represents light rays immediately reflected

on the object surface.
Specifically, we use the Torrance-Sparrow reflection

model [30] by assuming that the Fresnel reflectance
coefficient is constant and the geometric attenuation factor
is 1. Using this reflection model, the specular reflection of
an object’s surface point is given as

Ic ¼
�
kd;c cos �i þ

ks;c
cos �r

exp

�
� �2

2�2

��
Lc; ð1Þ

where index c represents R, G, and B components, Ic is the

image pixel value, �i is the angle between the light source

direction and the surface normal, �r is the angle between the

viewing direction and the surface normal, and � is the angle

between the surface normal and the bisector of the viewing

direction and the light source direction (see Fig. 3). Lc is

given by:

Lc ¼
Lq;c

r2
; ð2Þ

where Lq;c is the radiance of the point light source in each

color band and r is the distance between the point light

source and the object surface point.

kd;c and ks;c are coefficients for the diffuse and specular

reflection components, respectively, and � is the surface

roughness measured as the standard deviation of micro-

facet orientations. In the original Torrance-Sparrow reflec-

tion model, coefficient ks;c contained the Fresnel reflectance

coefficient F and the geometric attenuation factor G. Here,

we assume that G ¼ 1 and F is constant. These assumptions

are valid when the viewing angle �r and the illuminating

angle �i are at most 60 degrees [14].
Using a 3D geometric model and by accomplishing

camera calibration, the angle �r can be obtained for each
image pixel. Angles � and �i are unknown since these
angles require the light source direction, which is unknown
at this moment.

In (1), we can observe that the values of ðkd;c; ks;cÞ and Lc

cannot be separated by only knowing the value of Ic. Thus,
we redefine the reflection parameters as:

Kd;c ¼ kd;c Lq;c; Ks;c ¼ ks;c Lq;c: ð3Þ

With these definitions, we can rewrite (1) as:

Ic ¼
Kd;c cos �i

r2
þ Ks;c

r2 cos �r
exp

�
� �2

2�2

�
: ð4Þ

In this paper, we refer to ~KKs ¼ ðKs;R;Ks;G;Ks;BÞ and � as

the specular reflection parameters and ~KKd ¼ ðKd;R;Kd;G;Kd;BÞ
as the diffuse reflection parameters. Note that ~KKd and ~KKs

contain the light source intensity ~LLq ¼ ðLq;R; Lq;G; Lq;BÞ. In
Sections 4 and 5, we remove the subscript c, as the same

computation is executed independently for each color band.

If the estimated roughness parameters do not have the

same value from the three color channels, we finally

determine the roughness parameter by calculating an

average of those values.
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Fig. 3. Geometric model of reflection.



4 SOURCE POSITION AND REFLECTANCE

RECOVERY WITH DIFFUSE-BASED CONSTRAINTS

We now describe the algorithm for estimating the position

of the light source and reflectance parameters from a single

image and a 3-D geometric model of the object. Usually, to

estimate the surface reflectance stably, e.g., [26], first, one

separates reflection components and then uses a fitting

algorithm to obtain the parameters. However, this approach

is unfeasible for an unknown light source position.

Consequently, under this condition, we can hardly make

the surface reflectance and light source position estimation

process completely separated. One of the strategies to solve

this problem is to use a certain relaxation technique of

iterative separating-and-fitting.
In this method, we assume:

1. the camera parameter is known;
2. interreflection, cast shadows, and saturated pixel

values are avoided (hence, it is limited to convex

objects);
3. the scene is illuminated by a single point light

source;
4. at least one specular peak is visible on the surface of

the target object;
5. the surface reflection can be uniformly modeled as a

linear combination of the Lambertian diffuse model

with constant albedo (inside Kd) and the Torrance-

Sparrow specular model; and
6. the object in interest is segmented out in the image as

other methods similarly assume.

4.1 Light Source Distance

The light source direction at object’s surface point P

satisfying � ¼ 0 can be written as

LLp ¼ 2ðNNT
p VV pÞNNp � VV p; ð5Þ

where LLp is a unit vector with a light source direction and a

starting point P , VV p is a unit vector with a viewing direction

and a starting point P , and NNp is a unit normal vector at P .

NNT
p VV p denotes the scalar product of NNp and VV p with the

transpose notation T . Then, the location vector LL of the light

source can be expressed as

LL ¼ PP þ tLLp; ð6Þ

where PP is the location vector of P and t is the distance

between PP and LL.
We can regard the specular peak ðip; jpÞ as the pixel

location of P . Because of the off-specular peak, the point P

will not be the specular peak. However, it will be plenty

close for practical purposes except at grazing angles. As a

consequence, once we obtain ðip; jpÞ, PP can be calculated

using the camera projection matrix, which is LLp directly

computable from (5). However, to estimate the light source

position, we also need the value of t (the light source

distance), which is unknown.

In the next section, we describe how to estimate t and the

reflectance parameters in (4) simultaneously.

4.2 Model Fitting to Lambertian Diffuse Component

To obtain the initial guesses of the light source distance and

reflectance parameters, we need the following two steps:

First, we extract the diffuse region �d

�d ¼
�
ði; jÞ 2 � j ði� ipÞ2 þ ðj� jpÞ2 > T 2

�
; ð7Þ

where � is the set of 2D points of object’s surface points and

T is a positive integer concerning the radius of the specular

region. In many cases, it is difficult to automatically identify

the optimal value of T without any knowledge of the

surface roughness � which is to be estimated. Therefore, we

manually specify the value of T . However, as our method

uses an alternating procedure of simultaneously estimating

the diffuse and specular reflection components, the final

result does not depend largely upon the value of T (as

described later in Section 5.3). Then, we determine the light

source distance t by fitting the diffuse term of (4) to the

diffuse region, which means

t� ¼ argmin
t

X
ði;jÞ2�d

"
uði; j; tÞ � 1

Nd

X
ði;jÞ2�d

uði; j; tÞ
#2
; ð8Þ

where �d andNd are the set and the number of the 2D points

in the diffuse region image, uði; j; tÞ is defined as

uði; j; tÞ ¼ Iði; jÞrði; j; tÞ2

cos �iði; j; tÞ
; ði; jÞ 2 �d; ð9Þ

where Iði; jÞ is the pixel value observed at 2D point ði; jÞ in
the original image, rði; j; tÞ is the distance between the light

source and the surface point of 2D point ði; jÞ under the

light source distance t, and �iði; j; tÞ is the incident angle at

this surface point.

Since (8) is difficult to be solved analytically, we search

the optimal source distance t� in the finite, discrete solution

space �t ¼ ftmin; tmin þ�t; . . . ; tmax ��t; tmaxg, where tmin,

tmax, and �t are the user-defined lower bound, upper

bound, and step length with respect to t, respectively. The

step length �t should be chosen comparable to or larger

than the sampling interval (spatial resolution) R of the

input image (�t=R�>1).
Second, we estimate the diffuse reflection parameters Kd

using t� by minimizing the squared error as

K�d ¼ argmin
Kd

X
ði;jÞ2�d

�
Iði; jÞ �Kd cos �iði; j; t�Þ

rði; j; t�Þ2
�2

: ð10Þ

The solution K�d can be expressed as

K�d ¼

X
ði;jÞ2�d

Iði; jÞ

X
ði;jÞ2�d

cos �iði; j; t�Þ
rði; j; t�Þ2

: ð11Þ

4.3 Separating-and-Fitting Iterative Relaxation
Refinement

The specular component of the input image can be obtained

by subtracting the aforementioned diffuse estimate from the
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input image. The pixel value at point ði; jÞ in the specular

image can be computed as

I�s ði; jÞ ¼ Iði; jÞ �K�d cos �iði; j; t�Þ
rði; j; t�Þ2

; ði; jÞ 2 �: ð12Þ

To accomplish fitting the specular reflection model to the
residual image I�s , we need to solve a nonlinear optimiza-
tion problem as

argmin
Ks;�

X
ði;jÞ2�

�
I�s ði; jÞ �

Ks

rði; j; t�Þ2 cos �rði; jÞ

� exp
h
��ði; j; t�Þ2

2�2

i�2

:

ð13Þ

To obtain desirable solutions, we use a two-step algorithm.
The detail is as follows.

4.3.1 Initial Estimation of (Ks; �):

We rewrite the specular reflection model as

Isði; j; tÞ ¼
Ks

rði; j; tÞ2 cos �rði; jÞ
exp
h
��ði; j; tÞ2

2�2

i
; ði; jÞ 2 �:

ð14Þ

In order to solve (13), the following equation can be
derived by the logarithmic transformation of (14):

yði; jÞ ¼ � 1

�2
xði; jÞ þ lnKs ði; jÞ 2 �; ð15Þ

where

xði; jÞ ¼ �ði; j; t�Þ2

2
; ð16Þ

yði; jÞ ¼ ln
h
I�s ði; jÞrði; j; t�Þ

2 cos �rði; jÞ
i
; ð17Þ

by which we can plot a set of data pairs ðxði; jÞ; yði; jÞÞ,
ði; jÞ 2 �. By line fitting on these 2D points based on a least-
squares method, and then by comparing the coefficients of
the regression line with (15), we obtain the initial estimates
K�s and �� of the specular reflection parameters as

K�s ¼ expðbÞ; ð18Þ

�� ¼
ffiffiffiffiffiffiffiffi
� 1

a

r
; ð19Þ

where a < 0 and b are, respectively, the slope and Y-inter-
cept of the least-squares regression line.

4.3.2 Refinement of (Ks; �):

The estimated specular reflection parameters in the first
step is based on the logarithm fitting, thus the synthesized
image based on the initial estimates (K�s ; �

�) is still quite
different from the input image. In this step, we search for
the solution of (13) locally around the initial guesses
ðK�s ; ��Þ through a two-fold iteration algorithm as follows:

Algorithm updating rule for (Ks; �)

1. Set iteration count k 0. Set Kð0Þs  K�s . Set �
ð0Þ  

��. Set I�s ði; jÞ  Iði; jÞ � K�d cos �iði;j;t
�Þ

rði;j;t�Þ2 . Repeat Step 2�
Step 4 until convergence.

2.

Kðkþ1Þs  

X
ði;jÞ2�

I�s ði; jÞ

X
ði;jÞ2�

1

rði; j; t�Þ2 cos �rði; jÞ
exp
h
��ði; j; t�Þ2

2ð�ðkÞÞ2
i :

3. Set iteration count l 0. Set �ð0Þ  1
�ðkÞ

. Repeat
Step 3a � Step 3b until convergence.

a.

�ðlþ1Þ  �ðlÞ � �
X
ði;jÞ2�

" 
I�s ði; jÞ

� Kðkþ1Þs

rði; j; t�Þ2 cos �rði; jÞ
exp

"
��ði; j; t�Þ2ð�ðlÞÞ2

2

#!2

� Kðkþ1Þs �ði; j; t�Þ2�ðlÞ

rði; j; t�Þ2 cos �rði; jÞ
exp

"
��ði; j; t�Þ2ð�ðlÞÞ2

2

##
:

b. l ðlþ 1Þ.

4. �ðkþ1Þ  1

�ðlÞ
, k ðkþ 1Þ.

5. K�s  KðkÞs , ��  �ðkÞ:

Note that the optimum value of � has to be chosen
carefully (if it is too small, it is slow to converge; if too large,
oscillations may occur). In this paper, � has been experi-
mentally chosen small (� ¼ 1:0� 10�7) enough so that the
iterates converge safely. Typically, for the input synthetic
image in Fig. 6, the above algorithm took 25 iterations and
3 minutes to converge.

Using the above algorithm, we can obtain the estimates
ðK�s ; ��Þ of the specular reflection parameters. However,
ðK�d;K�s ; ��; t�Þ are still inaccurate since they are computed
based only on the rough diffuse regions. Therefore, we have
to update the diffuse reflection component, as described in
the following equations:

I�dði; jÞ ¼ Iði; jÞ � K�s
rði; j; t�Þ2 cos �rði; jÞ

exp
h
��ði; j; t�Þ2

2ð��Þ2
i
;

ði; jÞ 2 �:

ð20Þ

After that, we reestimate the light source distance and
diffuse reflection parameters based on the following
equation.

argmin
Kd;t2�t

X
ði;jÞ2�

�
I�dði; jÞ �

Kd cos �iði; j; tÞ
rði; j; tÞ2

�2

: ð21Þ

We can solve (21) through an iteration algorithm as follows:

Algorithm updating rule for (Kd; t)

1. Set iteration count k 0. Set K
ð0Þ
d  K�d . Set

tð0Þ  t�. Se t I�dði; jÞ  Iði; jÞ � K�s
rði;j;t�Þ2 cos �rði;jÞ

�
exp
h
� �ði;j;t�Þ2

2ð��Þ2
i
. Repeat Step 2 � Step 4 until

convergence.
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2.

K
ðkþ1Þ
d  

X
ði;jÞ2�

I�dði; jÞ

X
ði;jÞ2�

cos �iði;j;tðkÞÞ
rði;j;tðkÞÞ2

:

3.

tðkþ1Þ  argmin
t2�t

X
ði;jÞ2�

�
I�dði; jÞ �

K
ðkþ1Þ
d cos �iði; j; tÞ

rði; j; tÞ2
	2
:

4. k ðkþ 1Þ.

5. K�d  K
ðkÞ
d , t�  tðkÞ.

Typically, for the input synthetic image in Fig. 6, the
above algorithm took 20 iterations and 8 minutes to
converge. Finally, the above two algorithms are repeated
alternately until the reflectance parameters and light source
position become no longer changed in values or until they
reach the maximum number of iterations. Using t�, we can
obtain the light source position LL� by using (6).

5 SOURCE POSITION AND REFLECTANCE

RECOVERY WITHOUT DIFFUSE-BASED

CONSTRAINTS

A major limitation of the algorithm of the last section is its
homogeneous Lambertian approximation of the diffuse
reflection. In order to avoid this restriction, our second
method takes as input a specular component image instead
of a real image except a 3D geometric model of an object.
Also, the first technique assumed that the specular peak can
be identified, though invisible specular peaks or saturated
pixels are not uncommon. We also remove this constraint in
the second method. In this method, we assume 1) the
camera parameter is known, 2) interreflection and cast
shadows are avoided (hence, it is limited to convex objects),
and 3) the specular reflectance property can be uniformly
modeled according to the Torrance-Sparrow model.

Using the specular reflection component, the algorithm

for initially estimating the light source position, as well as

the specular reflectance properties, is explained in

Section 5.1. We describe the refinement of their estimated

values in Section 5.2. As for the case of textured surfaces,

including specular reflecion, we describe how to determine

the diffuse reflection parameters in Section 5.3.

5.1 Recovery Based on Log-Linearized
Torrance-Sparrow Model

In this section, we explain how to estimate the specular
reflectance parameters as well as the source position from a
specular component image. As stated in Section 4.1, a
three dimensional source position is represented here by a
twofold set hp; ti, where p ¼ ðip; jpÞ is the image pixel
location of the specular peak satisfying � ¼ 0 and t is the
source distance. The source position is discretized in the
solution space hp; ti with a Cartesian product �p � �t,

where �p and �t are the user-defined finite, discrete search
spaces with regard to p and t, respectively. At this stage, we
search for the optimal values of hp; ti by a discrete
optimization technique, whereas the method of Section 4
does only the source distance t for a fixed p.

Assuming that hp; ti is unknown, the linearized reflection
model can be obtained based on the logarithmic transfor-
mation described in Section 4.3 as:

Y ði; j; p; tÞ ¼ � 1

�2
Xði; j; p; tÞ þ lnKs; ði; jÞ 2 �; ð22Þ

where

Xði; j; p; tÞ ¼ �ði; j; p; tÞ2

2
; ð23Þ

Y ði; j; p; tÞ ¼ ln


Isði; jÞrði; j; p; tÞ2 cos �rði; jÞ

�
: ð24Þ

Based on (22), our basic idea is to find hpþ; tþi that yields the
strongest negative linear relationship between Xði; j; p; tÞ
and Y ði; j; p; tÞ by minimizing a correlation coefficient as

argmin
ðp;tÞ2�p��tX

ði;jÞ2�

�
Xði; j; p; tÞ �Xðp; tÞ


�
Y ði; j; p; tÞ � Y ðp; tÞ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ði;jÞ2�

�
Xði; j; p; tÞ �Xðp; tÞ


2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ði;jÞ2�

�
Y ði; j; p; tÞ � Y ðp; tÞ


2s
2
66664

3
77775;

ð25Þ

where Xðp; tÞ and Y ðp; tÞ are sample means:

Xðp; tÞ ¼ 1

N

X
ði;jÞ2�

Xði; j; p; tÞ; ð26Þ

Y ðp; tÞ ¼ 1

N

X
ði;jÞ2�

Y ði; j; p; tÞ ; ð27Þ

where N is the number of the 2D points belonging to �.
To solve (25), we apply a similar discretization approach

to the one mentioned in Section 4.2. Once the optimal
solution ðpþ; tþÞ is obtained, the specular reflection para-
meter ðKþs ; �þÞ can be calculated from (18) and (19). The
important thing to note here is that higher t, as well as higher
�, generates a more blurred specular reflection (t is the light
source distance and � is the surface roughness) and, hence,
(t; �) seems not to be determined uniquely from only a
specular component image, which makes this inverse
problem ill-conditioned or ill-posed. However, in practice,
t (and, therefore, also �) can be determined uniquely from a
given specular component image, as shown in the appendix.

5.2 Three-Step Numerical Optimization

Figs. 17 and 18 in the Appendix show the correlation
coefficients with regard to variations of the light source
distance t for different angles. Estimates of t (and, hence,
also p, Ks, and �) obtained using the method in the last
section can deviate from the true values under the influence
of noise, as shown in Fig. 18. In this stage, we formulate a
nonlinear optimization problem with respect to Ks, � , p,
and t as:
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argmin
Ks;�;ðp;tÞ2�p��t

X
ði;jÞ2�

�
Isði; jÞ �

Ks

rði; j; p; tÞ2 cos �rði; jÞ

� exp
h
��ði; j; p; tÞ2

2�2

i�2

;

ð28Þ

where r and � are redefined as functions of ði; j; p; tÞ. Since
finding the least squares solution (28) is equivalent to

maximizing the likelihood, we are able to handle indepen-

dent Gaussian noise in addition to the true value at each

pixel which well approximates practical camera noise. To

solve (28), we apply a 3-step iterative algorithm using

ðKþs ; �þ; pþ; tþÞ as the initial guess. The procedure is

described in the following:

Algorithm updating rule for (Ks; �; p; t)

1. Set iteration count k 0. Set Kð0Þs  Kþs . Set

�ð0Þ  �þ. Set pð0Þ  pþ. Set tð0Þ  tþ. Repeat Step 2
� Step 5 until convergence.

2.

Kðkþ1Þs  X
ði;jÞ2�

Isði; jÞ

X
ði;jÞ2�

1

rði; j; pðkÞ; tðkÞÞ2 cos �rði; jÞ
exp

"
��ði; j; pðkÞ; tðkÞÞ2

2ð�ðkÞÞ2

# :

3. Set iteration count l 0. Set �ð0Þ  1
�ðkÞ

. Repeat

Step 3a � Step 3b until convergence.

a.

�ðlþ1Þ  

�ðlÞ � �
X
ði;jÞ2�

"�
Isði; jÞ �

Kðkþ1Þs

rði; j; pðkÞ; tðkÞÞ2 cos �rði; jÞ

� exp
h
��ði; j; pðkÞ; tðkÞÞ2ð�ðlÞÞ2

2

i	2
� Kðkþ1Þs �ði; j; pðkÞ; tðkÞÞ2�ðlÞ

rði; j; pðkÞ; tðkÞÞ2 cos �rði; jÞ

exp
h
��ði; j; pðkÞ; tðkÞÞ2ð�ðlÞÞ2

2

i#
:

b. l ðlþ 1Þ:

4. �ðkþ1Þ  1

�ðlÞ
:

5.

ðpðkþ1Þ; tðkþ1ÞÞ  argmin
ðp;tÞ2�p��t

X
ði;jÞ2�

�
Isði; jÞ�

Kðkþ1Þs

rði; j; p; tÞ2 cos �rði; jÞ
exp
h
��ði; j; p; tÞ2

2ð�ðkþ1ÞÞ2
i�2

;

k ðkþ 1Þ:

6. Kþs  KðkÞs ; �þ  �ðkÞ; pþ  pðkÞ; tþ  tðkÞ.

Typically, for the input synthetic image in Fig. 7, the
above algorithm took 100 iterations and 20 minutes to
converge. We show the outline of the overall algorithm in
Fig. 4.

5.3 Diffuse Reflection Parameter Estimation

Unlike the method of Section 4, the method of this section
does not directly estimate the diffuse reflection parameters.
However, to synthesize new images under novel illumina-
tion conditions, we need to determine those values
according to some appropriate diffuse reflection model. In
the case of textured surfaces with specular reflection, we
determine the Lambertian reflectance parameters for each
pixel, i.e., texture, as

Kþd ði; jÞ ¼
rði; j; pþ; tþÞ2Idði; jÞ
cos �iði; j; pþ; tþÞ

; ði; jÞ 2 �; ð29Þ

where Id is the separated diffuse component image and �i is
the incident angle. pþ and tþ are, respectively, the estimated
specular peak and light source distance in the last
subsection. Note that shadowing is not considered in our
method.

6 EXPERIMENTS

In this section, we present results of several experiments
using synthetic and real images. First, the experiments
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Fig. 4. Basic steps of the proposed method.



using synthetic images demonstrate that our methods can
use the simplified Torrance-Sparrow reflection model to
correctly estimate the light source position even if the
observed image is generated under a more complex
reflection model. In these experiments, we generate the
input synthetic image using RADIANCE [20] as rendering
software Note that RADIANCE employs Ward’s BRDF
model [33].

Next, the experiments using real images aim to show the

applicability of our methods to real problems. The sizes of

the objects used in the experiments are approximately the

same as a 15cm cube (each fits into a cube 15cm on a side)

and the light source is not very far (the light source

distance: 80cm-100cm). Color images are captured using a

color CCD video camera and 3D geometric models are

obtained using a light-stripe range finder with a liquid

crystal shutter. A halogen lamp is used as a light source.

The lamp is small enough for us to assume the lamp is a

point light source. To test our method of Section 5 using real

images, we separate the specular and diffuse reflection

components through polarization filters [34], [15]. In order

to illuminate the object with linearly polarized illuminant, a

linear polarization filter is placed in front of the lamp. The

experimental setup for the image acquisition system used in

this experiment is illustrated in Fig. 5.
Note that color-based techniques can be also applied to

separate the diffuse and specular reflection components [9],

[28]. Unlike the polarization technique, the technique

requires only a single image as input. However, to our

knowledge, the polarization technique can most accurately

separate the specular and diffuse reflection components.

For this reason, we have adopted the polarization technique

in our experiments.

6.1 Experiment for a Synthetic Image

This section examines the recoverability of light source
position by our method of Section 4 using synthesize image.
Fig. 6a shows the input synthetic image of LL ¼ ð13; 2; 3Þ.
The target object in this experiment is a large board in the
center of the image. By applying our method of Section 4 to
this synthetic image, we obtain LL ¼ ð12:79; 2:00; 3:00Þ. Fig. 6b
illustrates the image rerendered using the obtained illumi-
nation and reflectance parameters. Fig. 6c shows the error
image defined as the difference between the synthesized
image and the original image (red represents higher
intensity compared to the original and blue lower).

6.2 Experiment for a Synthetic Specular
Component Image

This section examines the recoverability of light source
position by our method of Section 5 using synthetic
specular component image. Fig. 7a shows the original
synthetic specular component image whose source position
and 3D geometric models are the same ones used in the
previous experiment. We obtain LL ¼ ð12:80; 1:99; 3:01Þ.
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Fig. 5. Experimental setup.

Fig. 6. Input and synthesized images: (a) input real image, (b) synthesized image, and (c) error image.

Fig. 7. Input and synthesized images: (a) input specular component image, (b) synthesized image, and (c) error image.



Fig. 7b illustrates the image calculated using the estimated

illumination and reflectance parameters. Fig. 7c shows the

error image defined as the difference between the synthe-

sized image and the original specular component image.

6.3 Experiment for a Real Image

This section examines the performance of our method of

Section 4 on several real images to evaluate the accuracy

and stability of this method.

6.3.1 Curved Surface

Fig. 8a shows the input real image of

LL ¼ ð�40:88;�49:36; 80:48Þ ðcmÞ:

We obtain

LL ¼ ð�40:04;�48:83; 79:77Þ ðcmÞ;
~KKs ¼ ð0:123; 0:0258; 0:249Þ;
� ¼ 0:0702; and

~KKd ¼ ð0:494; 0:840; 0:576Þ:

Fig. 8b shows the the synthetic image obtained using these

light source and reflectance parameters. Fig. 8c shows the

error image defined as the difference between the synthetic

image and the original image.
Fig. 9a shows a real image of the target object captured

under a different light source position from that of the
above. Fig. 9b shows a synthetic image rendered under this

light source position using the estimated parameters. Fig. 9c

shows the error image. The main reasons why there are

differences between the estimated brightness and original

brightness distribution are considered as follows: 1) the

input geometric model of the object has errors and 2) the

surface reflection properties are not uniform over the object.
Also, we illustrate the variation of the estimates of

reflection parameters (Fig. 10a) and light source position
(Fig. 10b) with respect to variations of the diffuse region. The
region is manually extracted at the initial stage as explained

in Section 4.2. The horizontal axes in Figs. 10a and 10b
represent the selected threshold value th for the diffuse
region extraction. The left and right vertical axes in Fig. 10a
represent Kd;R and (Ks;R; �), respectively. The left and right
vertical axes in Fig. 10b represent the z-coordinate and error
of the estimates of LL, respectively. As can been seen in
Figs. 10a and 10b, the estimates of reflection parameters and
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Fig. 8. Input and synthesized image: (a) input real image, (b) synthesized image, and (c) error image.

Fig. 9. Synthesized image under a new light position: (a) real image, (b) synthesized image, and (c) error image.

Fig. 10. Stability analysis: (a) reflectance parameter estimation and

(b) light source position estimation.



the light source position are almost constant with respect to
variations of the diffuse region, meaning the manual initial
estimation of diffuse regions does not affect the final
estimate.

6.3.2 Planar Surface

Fig. 11a shows an image of a real bookend. By applying our

method of Section 4 to this color image, we obtain the

synthetic image (Fig. 11b). Fig. 11c shows the error image.

The apparent error (blue area) in the specular reflection area

probably represents that the local search was trapped in a

local minimum because the angle data � for planar surfaces

may vary only relatively slightly.
Figs. 12a and 12b show the synthesized images under

shorter and longer distances of light source position than

that of the above, respectively. Fig. 12c shows the

synthesized image under a different light source direction.

Fig. 12d shows the synthesized image under a different

distance and a different color (a technique that estimates

illuminant color has been used [3]) of the light source.

6.4 Experiment for a Real Specular Component
Image

This section examines the applicability of our method

described in Section 5 to real textured surface with the

uniform specular property. Also note that the specular peak

is invisible. Fig. 13a shows a textured object: a poly-coated

board. We apply our method of Section 4 to this object under

the assumption of the perfectly uniform specular reflec-

tance. Fig. 13b and Fig. 13c show, respectively, the specular

and diffuse component images separated using polariza-

tion. Fig. 14a shows the recovered image. Fig. 14b shows the
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Fig. 11. Input and synthesized images: (a) input real image, (b) synthesized image, and (c) error image.

Fig. 12. Synthesized images under novel illumination conditions: (a) shorter source-surface distance, (b) longer source-surface distance, (c) different

source direction, and (d) longer source-surface distance and different source color.

Fig. 13. Input specular component image: (a) original image, (b) specular component image, and (c) diffuse component image.

Fig. 14. Synthesized image: (a) original light position; (b) error image; (c) new light position.



error image (the definition is the same as Fig. 8c) defined as

the difference between the synthesized specular component

image and the input specular component image (Fig. 13b).

There is a minor error in Fig. 8b, which is considered due to

noise in the input specular component image (the specular

and diffuse reflection components are not completely and

accurately separated). Fig. 14c shows the synthesized image

under a different light position. Note that the diffuse

reflection components are recovered by using (29). Fig. 15

shows a plot with the light source distance on the horizontal

axis and the correlation coefficient (25) on the vertical axis,

for a ðip; jpÞ value, in the initial estimation stage. Each graph

in this figure shows a 2D plot with an X-axis and Y -axis

defined in (23) and (24), respectively.
In the second-stage final estimation, we obtain LL ¼

ð3:31;�111:51; 106:0Þ (cm), ~KKs ¼ ð0:246; 0:297; 0:216Þ, and
� ¼ 0:115, where the ground truth for the source position
is LL ¼ ð0:0;�108:9; 99:0Þ (cm). The reasons why the esti-
mated source position is slightly erroneous are considered
as follows: 1) the target object has a transparent coat and,
thus, reflection also occurs under the transparent coat and
2) the specular peak is invisible in the input image and the
image pixel location of the specular peak is erroneous.

7 CONCLUSION

In this paper, we have presented two new methods for
recovering the surface reflectance properties of an object and
the light source position from a single view without the
distant illumination assumption and, hence, those methods
allow the image synthesis of the target object under arbitrary
light source positions. In particular, the second method can
also deal with textured objects with specular reflection.

The first method is done from a single real image and
3D geometric model of the object. For estimating reflectance
parameters of the object stably, this method is based on the
use of the iterative separating-and-fitting relaxation algo-
rithm. Taking a specular component image as input, the
second method estimates the specular reflection parameters
and the light source position simultaneously by linearizing
the Torrance-Sparrow specular reflection model and by
optimizing the sample correlation coefficient. The first
method assumes that the object has a homogeneous
Lambertian diffuse reflection property. The second method
does not require these assumptions and, thus, can handle

diffuse textured and non-Lambertian objects; however, it is
less robust than the first method because no information
about diffuse reflection is available.

We have empirically found that the algorithm converges
and, in all experiments, it converged to a plausible minima.
However, a rigorous analysis on its convergence character-
istics is left as future work. Note that we need to know the
surface normals of the object in the image. This can be
provided by using various techniques including, for
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Fig. 15. Relationship between light source distance and correlation

coefficient.

TABLE 1
List of Symbols



instance, shape-from-shading [4], [6], [2], [35], [12]. In this
paper, we simply used a light stripe range finder to obtain
the range image of the scene. Since the same camera is used
to capture both the range image and the color image, each
pixel in the color image will have 3D coordinates assigned
to it. Hence, the surface normal can be easily computed per
pixel. Although assuming preacquired 3D geometry would
sound restrictive, given the recent advance and wide use of
accurate range finders, we believe this assumption does not
lessen the applicability of our framework in practical
scenarios. We intend to extend the current method to the
cases of erroneous geometric models in future work.

APPENDIX A

LIST OF SYMBOLS

The symbols used in the paper are listed in Table 1.

APPENDIX B

UNIQUENESS AND STABILITY OF LIGHT SOURCE

DISTANCE

In this section, we analyze local uniqueness and stability of
the solutions of (25) using simulation. As shown in Fig. 16,
the xyz-coordinate system is arranged so that the origin is at
the specular peak and the z-axis is parallel to the surface

normal. The four graphs in Fig. 17 show the correlation
coefficients (25) (the values are computed using (4)) with
respect to variations of the light source distance t for
different angles �0. The four curves in each graph correspond
to a planar surface (z ¼ 0), a parabolic one (x2 þ y2 þ 16z
¼ 0), an elliptic one (x2 þ y2 þ 16ðzþ 1Þ2 ¼ 16), and a
hyperbolic one (x2 þ y2 � 16ðz� 1Þ2 ¼ �16), respectively.
Also, the four graphs in Fig. 18 show the correlation
coefficients (25) for the intensities of the pixels that have
been corrupt with Gaussian noise with mean 0 and standard
deviation 5 for different angles �0. Fig. 17 and Fig. 18 show
that the light source distance can be uniquely determined for
flat or quadratic surfaces and that the solutions can be found
more stably for the larger values of �0.
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