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Estimating the illumination and the reflectance properties of an object surface from a few images is an important
but challenging problem. The problem becomes even more challenging if we wish to deal with real-world objects
that naturally have spatially inhomogeneous reflectance. In this paper, we derive a novel method for estimating the
spatially varying specular reflectance properties of a surface of known geometry as well as the illumination dis-
tribution of a scene from a specular-only image, for instance, recovered from two images captured with a polarizer
to separate reflection components. Unlike previous work, we do not assume the illumination to be a single point
light source. We model specular reflection with a spherical statistical distribution and encode its spatial variation
with a radial basis function (RBF) network of their parameter values, which allows us to formulate the simulta-
neous estimation of spatially varying specular reflectance and illumination as a constrained optimization based on
the I-divergence measure. To solve it, we derive a variational algorithm based on the expectation maximization
principle. At the same time, we estimate optimal encoding of the specular reflectance properties by learning the
number, centers, and widths of the RBF hidden units. We demonstrate the effectiveness of the method on images of
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synthetic and real-world objects. © 2011 Optical Society of America
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1. INTRODUCTION

Real-world objects and scenes exhibit various visual intrica-
cies resulting from the complex interaction of light with their
surfaces. This interaction can be described by that of the in-
cident illumination with the surface geometry modulated by
the reflectance properties of the object surface. Inverting this
complex process to estimate their sources, namely, the illumi-
nation, geometry, and reflectance from images, has important
applications in a wide range of areas. For instance, estimated
illumination can be used to “unshade” the scene, recovered
object/scene geometry provides a direct 3D cue, and inferred
reflectance properties can offer unique material classifica-
tions, all of which become invaluable in practical applications,
such as object/scene recognition and tracking. These esti-
mates of the scene information can be directly used for image
synthesis as well—to achieve photorealistic renderings of the
object/scene under novel lighting and from novel viewpoints.

Sifting out all three constituents from a single observation,
namely, recovering illumination, geometry, and reflectance
properties from a single image, is, however, devastatingly
ill posed. A more realistic and practical problem is to recover
as much information from as few images as possible, making
fewer assumptions as needed. Among all the possible problem
settings, estimating illumination and reflectance properties
from images assuming known geometry has drawn large inter-
est due to its direct relevance to photometric scene under-
standing (estimating radiometric properties of a scene from
images). Past methods recover the illumination [1] or the re-
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flectance properties [2,3] separately, assuming the other to be
known, or recover both [4] from a large set of images of object
surfaces with known geometry. To make the problem tract-
able, these approaches, however, assume that the reflectance
properties of the object surface are more or less uniform. For
instance, Sato et al. [2] assume that the specular reflectance
properties of the object surface change very smoothly on the
surface such that they can be represented with a small set of
sparsely sampled points on the object surface. If we further
assume that the specular reflectance properties of the object
surface are completely homogeneous across the surface, we
may drastically reduce the number of required input images
and still simultaneously estimate those parameter values as
well as the illumination [5-8]. This inverse problem is, how-
ever, inherently ill posed and becomes even harder if we wish
to account for the spatial variation of material properties on
the surface.

Real-world surfaces usually have reflectance properties
that vary across their surfaces, and their variations are not
necessarily always smooth. Devising a computational method
for estimating both the illumination and reflectance properties
of such general object surfaces from a few images would be a
vital step to make photometric scene understanding methods
work in the real world. Zickler et al. [9] proposed a framework
for recovering spatially varying reflectance properties from a
sparse set of images based on the spatial coherence between
spatial and angular data. They formulated reflectance estima-
tion as the problem of interpolating scattered data in a mixed
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spatial and angular domain and stably recovering the spatially
varying reflectance by considering the trade-off relation be-
tween spatial and angular reflectance resolution. In their
work, however, the illumination was assumed to be known
in advance. To our knowledge, the problem of recovering spa-
tially varying specular reflectance and scene illumination from
a sparse set of images has not been tackled before.

In this paper, we derive a novel method for estimating the
spatially varying specular reflectance properties of a surface
of known geometry as well as the illumination distribution
from a specular-only image (one that only contains the spec-
ular reflection of the surface). Such an image can be captured,
for instance, using polarization to separate reflection com-
ponents. The remaining reflectance property, i.e., the diffuse
reflection, can be estimated by unshading the preseparated
diffuse-only image using the estimated illumination, for in-
stance, by assuming Lambertian reflection. Unlike previous
methods that achieve the same goal, but from a large number
of images, we do not assume the illumination to be a single
point light source [10]. In contrast to the method by Zickler
et al. [9], we analytically model the surface reflectance, in par-
ticular its specular component, to derive a sound variational
method that can jointly estimate the illumination and reflec-
tance from a sparse angular and spatial sampling.

We make minimal assumptions about the scene illumina-
tion and specular reflectance property. We assume that the
illumination environment is composed of a set of discrete dis-
tant point light sources (directional illumination) with the
same color (thus, finite area light sources are not included),
and the specular peak corresponding to all sources can be ob-
served in the input specular image. The number and direction
of distant point light sources can be estimated by using con-
ventional methods, as in [5,6]. For simplicity, we use a semi-
automatic method for achieving this estimation. The light
source directions can be easily obtained by calculating the
perfect mirror direction at each specular peak pixel and, thus,
the unknown illumination parameters to be estimated are the
light source intensities.

The key contribution of the proposed method is its formu-
lation of the simultaneous estimation of spatially varying spec-
ular reflectance and illumination as a variational probabilistic
inference problem. This particular formulation enables us to
devise canonical statistical error measures and derive a robust
joint estimation algorithm for minimizing it, which are vital to
solving the otherwise ill-conditioned problem. To this end, we
model specular reflection with a spherical statistical distribu-
tion and encode the spatial variation with radial basis func-
tions (RBFs) of its parameters. We then formulate the joint
estimation as a constrained optimization based on Csiszar’s
I-divergence measure [11] (hereinafter referred to as the
“I-divergence”) and derive an iterative algorithm similar to ex-
pectation maximization (EM) [12] to solve it. We demonstrate
the effectiveness of the method on synthetic and real-world
scenes. The results show that we can successfully estimate
both the scene illumination and spatially varying specular re-
flectance properties from a single image and, as a result, the
full reflectance properties may be estimated from only two
images from the same view. To our knowledge, this paper
is the first to demonstrate such capability.
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2. RELATED WORK

Computationally inverting the radiometric image formation to
estimate various combinations of the three key ingredients of
scene appearance, namely, the geometry, reflectance, and il-
lumination, has been an important area of research in compu-
ter vision and optics communities. Among all the possible
problem settings, joint estimation of reflectance and illumina-
tion, as well as joint estimation of reflectance and geometry,
have been of particular relevance in these disciplines. Here,
we review some of the representative works that tackle these
two joint estimations that are relevant to our work. Other joint
estimations are excluded from this section, as they are either
less relevant for practical scenarios (joint estimation of illumi-
nation and geometry) or remain open to canonical approaches
(joint estimation of all three factors).

Joint estimation of reflectance and geometry has drawn
wide attention, especially in the computer vision community.
This joint estimation is a key hurdle to extend conventional
three-dimensional (3D) reconstruction methods to handle
real-world surfaces that inevitably have more complex reflec-
tance properties than a constant Lambertian albedo. Nayar
et al. [13] proposed to determine the shape and reflectance pa-
rameters of Lambertian, specular, and hybrid surfaces using a
photometric sampling method. The shape information is esti-
mated without prior knowledge of the relative strengths of the
Lambertian and specular reflection components. Sato and
Ikeuchi [14] analyzed a sequence of RGB color images in a
four-dimensional space, referred to as the temporal-color
space, to recover albedo values of specular and diffuse reflec-
tion components and the shape of the object. Yuile et al. [15]
generalized the singular value decomposition (SVD) approach
for estimating shape and Lambertian albedo from multiple
images to include ambient background illumination. They
analyzed the linear ambiguity remaining after SVD and devel-
oped an iterative algorithm to improve the accuracy of the es-
timates by detecting shadows as outliers and removing them.
Zhao and Chellappa [16] presented a symmetric shape-from-
shading (SF'S) approach to recover shape and spatially vary-
ing albedo from a single image of symmetric Lambertian
objects. They related the self-ratio image irradiance equation
to the standard image irradiance equation used in SFS. Prior
to that, Zheng and Chellappa [17] introduced a method that
estimates all three factors in a restricting setting, namely, a
single light source with Lambertian albedo surface. They es-
timated the direction of a single light source and Lambertian
albedo of the surface, taking into consideration the effect of
self-shadowing, and then computed the surface shape by
imposing a smoothness constraint. Smith and Hancock [18]
embedded a statistical model of facial shape within a SFS al-
gorithm. They presented two SFS-based methods for fitting
the model to image brightness data. Birkbeck et al. [19] pre-
sented a method that alternatively reconstructs shape and
general reflectance of both textured and nontextured surfaces
from images. Their algorithm recovers the geometry of objects
with large concavities and specular reflections.

A few methods that handle inhomogeneous reflectance and
go beyond previous assumptions of simplistic textured
Lambertian plus homogeneous specular reflection have been
introduced. Alldrin et al.[20] introduced a method for simul-
taneously estimating nonparametric inhomogeneous bidirec-
tional reflectance distribution function (BRDF) of a surface
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as well as the 3D shape from images of an object taken under
varying points of source lighting directions. The method re-
quires many images, on the order of at least tens, as it uses
a data-driven reflectance model based on a bivariate approx-
imations of isotropic reflectance functions. Biswas et al. [21]
solved the general SFS problem of estimating the shape and
albedo of an object with a varying albedo map and unknown
illuminant direction from a single image. Their method effec-
tively utilized the statistics of errors in illumination and normal
information for robust estimation of albedo for images illumi-
nated by single and multiple light sources. These past works
largely focus on dealing with spatially varying Lambertian re-
flectance for 3D reconstruction. We believe that a variational
approach, as we propose in this paper, for joint estimation of
reflectance and illumination can be generalized to further ex-
tend such work to deal with more general spatially inhomoge-
neous reflectance in the context of geometry recovery.

Joint estimation of reflectance and illumination is another
important, challenging problem that finds many practical ap-
plications, especially in computer vision and graphics ranging
from robust tracking to photorealistic image synthesis. Ikeu-
chi and Sato [22] used a simplified Torrance—Sparrow reflec-
tion model to estimate its parameters together with the
Lambertian diffuse albedo and the light source direction using
iterative least squares optimization from a single image of an
object with known geometry. Sato et al. [23] analyzed the ra-
diance distribution inside shadows cast by an object in the
scene to recover the illumination distribution and the surface
reflectance properties. In particular, they introduced an adap-
tive sampling framework for efficient estimation. Tominaga
and Tanaka [24] analyzed the color histogram of a single color
image of an object to estimate the parameters of the Phong
reflection model as well as the direction and the color of a
directional light source. Ramamoorthi and Hanrahan [7] de-
rived a signal-processing framework for inverse rendering.
They represented the reflected light field with a convolution
of the lighting and BRDF in the angular space and demon-
strated a method for factoring the light field to simultaneously
estimate the lighting and BRDF. Nishino et al. [6] presented a
method to estimate a diffuse texture map, the specular reflec-
tance parameter, and the illumination distribution from a few
images of an object taken from different viewpoints under sta-
tic illumination. They achieved the simultaneous estimation
by formulating the specular reflection mechanism as a two-
dimensional blind convolution on the surface of a hemisphere,
and then running an iterative algorithm to deconvolve it. Hara
et al. [5] proposed to simultaneously estimate the illumination
of a scene and the specular reflectance property of a surface
from single-view images. They modeled the specular reflec-
tion as a finite mixture of a directional statistics distribution
and estimated the mixture parameters corresponding to the
illumination and reflectance parameters.

These past methods fundamentally assume homogeneous
reflectance, except for Lambertian albedo variation expressed
as texture. Recently, Yu et al. [25] recovered spatially varying
diffuse/specular albedo maps together with an illumination
map from multiview images by using a tensor factorization fra-
mework. This method fundamentally relies on a data-driven
representation and inevitably requires tens of images cap-
tured from different viewpoints. In order to handle the appear-
ance of real-world surfaces and estimate their reflectance
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properties as well as the scene illumination from as few
images as possible, we need to be able to model and jointly
estimate spatially varying, inhomogeneous surface reflec-
tance in a compact analytical form. We focus on achieving this
from as few as two input images taken from a single view. To
our knowledge, joint estimation of inhomogeneous reflec-
tance and illumination from such few images has not been
studied in the past.

3. SPHERICAL TORRANCE-SPARROW
MODEL

The key idea underlying the proposed method is to cast the
joint estimation of illumination and specular reflectance prop-
erties as a probabilistic inference problem so that a joint es-
timation algorithm based on statistical principals can be
derived. A crucial step to derive this formulation is to repre-
sent the illumination and the reflectance properties with the
same parametric form that, at the same time, enables statis-
tical interpretation. To this end, we consider encoding the
specular light interaction with a spherical distribution, i.e.,
a directional statistics distribution. In particular, we adopt the
spherical Torrance-Sparrow reflection model introduced by
Hara et al. [5]. It is worth noting that our proposed method
can be adapted to use a wide variety of other BRDF models,
including the Blinn—Phong model, and microfacet models,
such as the original Torrance-Sparrow. The spherical
Torrance—-Sparrow reflection model, however, has the strong
advantage of being expressed in a spherical domain that
allows us to encode both the reflectance and illumination
in a unified analytic expression.

The spherical Torrance-Sparrow reflection model is based
on and approximates the Torrance—Sparrow reflection model.
The original Torrance-Sparrow reflection model [26] repre-
sents specular reflection with the aggregated light reflection
from a collection of microfacets lying within an infinitesimally
small surface region corresponding to a pixel, each having
perfect mirror reflection but whose orientations are sta-
tistically distributed. Assuming that the distribution of the
orientations of microfacets can be modeled with the von
Mises—Fisher distribution [27,28]—a Gaussian distribution
on the unit sphere (see Fig. 1)—the spherical Torrance—
Sparrow reflection model [5] represents specular reflection as

7 (5K FG
Ig = / P25 L (0:, ;) exp[-2k sin? o] sin 0,d60;dp;, (1)
2 Jo cosé6,

where Ig denotes a three-band color vector of the specular

reflection radiance. As in the original Torrance-Sparrow
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Fig. 1. Spherical Torrance-Sparrow reflection model [5] represents
the microfacet orientation distribution of the Torrance—Sparrow re-
flection model [26] with a directional statistics distribution, namely,
the von Mises—Fisher distribution [27].
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reflection model, Ky is the color vector of the specular reflec-
tion, F' is the Fresnel reflectance coefficient, G is the geome-
trical attenuation factor, 6, is the angle between the viewing
direction and the surface normal, and 6; and ¢; are the polar
and azimuth angles, respectively. L;(0;, ¢;) is the illumination
radiance per unit solid angle coming from the direction
(05, d;), sin0;d0;d¢; is the infinitesimal solid angle, and « is
the angle between the surface normal and the bisector of
the viewing direction and the light source direction [26]. Simi-
lar to the spherical Torrance-Sparrow reflection model, x en-
codes the surface roughness, which is related to the surface
roughness o of the original Torrance—Sparrow reflection mod-
el [26] by x ~ 1/46%. Note that the value of this vector sub-
sumes the normalization factor of the exponential function,
the reflectivity of the surface, and the scaling factor between
scene radiance and a pixel value.

As in the case of the original Torrance-Sparrow reflection
model [26], we may simplify Eq. (1) by assuming that the
Fresnel factor and the geometric attenuation factor remain
constant, which is valid for nongrazing angle incident light
[29]. Then the specular image irradiance Ig(x) at image coor-
dinate x = (x,y)7 of surface point P(x) can be written as

/ A cos@ Li0:-:)

x exp[-2x(x )sm a(x)] sin 0;d0;dg¢;. (2)

We assume that the illumination environment can be de-
composed into a set of distant point light sources of uniform
color L, which is valid as long as we have an environmental
illumination, e.g., the object size is much smaller compared to
the distance to the closest light source, of roughly the same
color. Under this assumption, Eq. (2) can be further reduced
and discretized

Is(x) = Is(x)L, ®3)

2ﬂ KS

I el
s(x) = Ny coso,(

ZLZ exp[-2i(x) sin® o (x)],  (4)
where all the parameters are scalars: L; is the magnitude of the
color vector of the lth point light source and N, is the number
of nodes in the geodesic hemisphere [6].

4. PROBABILISTIC FORMULATION

The spherical Torrance-Sparrow reflection model provides a
clean directional statistics interpretation of the specular re-
flection as described in Eq. (4), which encodes the interaction
of illumination, i.e., the distribution of L; on a unit hemisphere
and the reflectance parameters K and « in a unified represen-
tation. We can now formulate the joint estimation of illumina-
tion and reflectance properties as simultaneously estimating
all parameters in this equation. To proceed, we first rewrite
Eq. (4) as

L
%) =3 7, (5)
=1
Ty(x) = LK (x) expl-x(x)oy(x)] (6)
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where I(x) = Ig(x)cos0,(x), L, =2zL;/N;, and w,(x)=
2sin? (x). Here, we assume that the extrinsic camera param-
eters as well as the shape and position of the object are
known. Thus, 6,.(x) is known. Note, however, that the two un-
known parameters L, and K,(x) cannot be uniquely deter-
mined from Egq. (6): the equation is bilinear in these two
parameters. Hence, we impose an additional constraint with-
out loss of generality:

ZL:E, =1, (7)

=1

which corresponds to redefining L as the relative radiance of
the Ith light source.

In order to represent inhomogeneous specular reflectance
properties, we assume that the variation of the values of the
two parameters K (x) and «x(x) can be encoded with a set of
RBFs defined on a uniform grid in the image plane

I
K02 x0) —ew S KO0]. @

i=1

k(x) > k(x;0) =

Zwﬁ (9)

where the logarithm of the approximating function K(x; ©)
for K (x) is represented as a weighted sum of I RBFs
{®;(x)}]_, with unknown weight coefficients ® = {K;}{_,,
while the approximating function x(x; 8) for x(x) is directly re-
presented as a weighted sum of J RBFs {¢j(x)}3.’:1 with un-
known weight coefficients 6 = {«; }’]:r Also, we use the
RBF network for function approximation in the physical
parameter space, while most conventional methods directly
approximate the observed data (e.g., [9]). Such approaches
that essentially just interpolate the observed data would
not provide a physical interpretation of the surface reflec-
tance. In contrast, representing the parameters of the reflec-
tion model with an RBF network directly provides a physical
interpretation of the surface variation, e.g., its glossiness or
roughness. Here, we use a Gaussian distribution for each RBF
2
D, (x) = exp{—%} G=12-.0),  (10)

_ lIx - ¢l o
‘ﬁi(X)feXP{—T} U=12-J). (11)
Ty
where C; and R; are the center and width (variance) for ®;(x),
respectively, and ¢; and 7; are the center and width (variance)
for ¢;(x), respectively. Typically, the RBFs for function ap-
proximation are chosen such that the number of basis func-
tions is less than the number of data samples, the centers are
spaced at regular intervals, and the widths are double the
center intervals. Based on this heuristic, the initial values
of {I.J.{C;.R;}}_, {c;.7; }']=1} were set to constant values
(Section 5) and then properly optimized (Section 6). We
empirically found the optimization results to be robust to
changes in these constant initial values.
By substituting Egs. (8) and (9) into Egs. (5) and (6), we
obtain
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Ix) = I(x0) =) Ti(x; ), (12)

I

J
7i(x562) = Lyexp [ Ky (x) - o)) K,»qu(x)}
Jj=1

=1
ijqﬁj } (13)

where Q= {0,0,£} = ({K;}_,, {KJ iy {Ll
{0.0.L;} = {{K;}\_,. {x; 1. L}

The problem of simultaneously estimating the specular re-
flection parameters {K(x), x(x)} and illumination £ = {L,}} |
has thus been formulated as determining the unknown param-
eters @ = {{K;}_,. {x;},. {L;}},} in Egs. (12) and (13).
From Eq. (13), the joint estimation of the spatially varying in-
homogeneous reflectance and illumination leads to optimizing
the weight coefficients €2; of each lth RBF network for approx-
imating its corresponding continuous function ln(Z,(x )
whose hidden units are {{®;(x)}_,, {o,(x)¢;(x)}/ iy, 1} and
whose second-layer weights are {{K;}_;,{- K]} - InL}
(Fig. 2). Although {w;(x)¢ (X)} {_, are not, strictly speaking,
radially symmetric (we refer to' them as “pseudo-RBFs”), just
like the common RBFSs, these basis functions yield coefficient
matrices whose nonzero matrix elements are concentrated
around the diagonal due to their locality and smoothness
and, hence, numerically stable learning can be expected to
be achieved even if the number of unknown weight coeffi-
cients is large.

= exp []nLl + ZK D, (x

i=1

1} and Ql:

5. PARAMETER ESTIMATION AS
PROBABILISTIC INFERENCE

We formulate parameter estimation, €2, as a probabilistic in-
ference problem, in which the predicted specular intensities
should become as close as possible to the observed intensi-
ties. Since we have expressed the predicted values as a direc-
tional statistics distribution I (x), we may naturally measure
the discrepancy between this distribution and the observed
distribution, which we define as D(x) that encodes the input
specular image irradiance at x multiplied by cos 6,.(x), using a
statistical measure. In particular, we use the /-divergence [11],
which is a generalization of the well-known Kullback-Leibler
divergence and is a natural discrepancy measure for non-
negative data:

Input

Pseudo-RBFs

Output

Fig. 2. We formulate the joint estimation of spatially varying, inho-
mogeneous reflectance and illumination as learning the hidden units
of a pseudo-RBF network.
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_ //S {D(x)logjz( (;Xg)l)—[D(x)—j(x;Q)]}dx, (14)

where S is the image region corresponding to the target sur-
face area. The goal is then to minimize this I-divergence with
respect to Q@ = {{K;}1_,. {x;}7] yuy {L,}F |}, subject to the con-
straint given by Eq. (7). The numbers (A = {I,J}) and the
centers and widths (I = {{C;,R;}}_, . {¢;.7; 3.’:1}) of the
RBF hidden units in Egs. (10) and (11) were fixed constant
in this section.

The advantage of this statistical formulation is that we can
devise sound probabilistic inference algorithms to solve the
otherwise tangled joint estimation problem. In other words,
we can leverage established alternating minimization algo-
rithms that do not just empirically iterate between minimizing
the error function with respect to each parameter set, but are
constructed based on the principals of EM with sound prob-
abilistic interpretations. The problem is well studied in the sig-
nal processing and machine learning communities. Kameoka
et al. [30] derived an iterative algorithm, which is formally si-
milar to EM, to minimize the I-divergence. In this section, we
derive a variational estimation algorithm for minimizing the
statistical discrepancy measure in Eq. (14) based on the fun-
damentals of their iterative algorithm.

The derived EM algorithm is not guaranteed to converge to
the global optimum as other EM-based algorithms. We may
consider a more greedy approach, like the annealing-based
EM algorithms [31,32], for guaranteed global optimum, but
this will incur significant computational overhead. An efficient
computation of such an approach is left for future work.

First, let us introduce a set of functions, m = {m;(x)}£,,
that satisfies both m;(x) € (0,1) and Y>_F , my(x) = 1 for Vi €
{1,2,---,L} and Vx € S and partitions the values of D(x) into
L light sources. We refer to these functions as the masking
functions. Note that the masking functions take on fractional
values that each encode the spatial contribution of the corre-
sponding light source. Also, the number, L, of distant point
light sources can be estimated by using methods as in [5].
In this paper, we focus on the problem of simultaneous esti-
mation of inhomogeneous specular reflectance and point light
source intensities, and assume L is assumed to be known.
Using these functions, we obtain a useful variational upper
bound

://{Zm )D(x >log%

L
= [ { P05 - P - Tt
(15)

where D,(x) = my(x)D(x)(l=1,2,---,L).

We may then first minimize E*(Q, m) with respect to m(x)
while keeping 2 fixed, which leads to E(Q2) = E*(Q2,m), and
preserving the inequality in Eq. (15). The masking functions
m(x) that minimize E* (€2, m) can be obtained analytically as
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Ty(x; %)

M) = ST )

(1=12---.L). (16)

Then, we may minimize E* (2, m) with respect to © while
keeping m fixed. These two computations are iterated until
convergence.

We now derive the update equations for €2. First, the partial
derivatives of E*(0®,m) [Eq. (15)] with respect to an I-
dimensional vector K = [K|,---,K;]T and a J-dimensional
vector k = [k, - -, k;]T are

E__Z//Dl

aE+ Z / Dy

where D(x) = [@;(x),---, P (x)]" and P(x) =
[$1(x),--,¢;(x)]T. Note that, in this paper, the partial
derivatives of E*() with respect to column vectors

=[K;, -, K;]T andk = [k, - - -, ky]T are defined as column

- 7,(x; )| P (x)dx, (17)

- (% )]y (x)p(x)dx,  (18)

0E* _ [oE* | 0ENIT OET _ [9E* . 90EN|T

vectors G = [§i—. 5] and G- =[5 501
respectively.

Using these partial derivatives, {K\"™"}/_, and {K](t_l) i

can be updated using gradient-based local minimization tech-
niques, such as steepest descent and conjugate gradient,
where {K (e=1) }I and {K J_| are the values assumed by
{K;},_, and {x;}7_, atthe t - lth step of Algorithm 1 described
later in this sectlon, respectively.

To derive the update rule for {L,;}- |, we must account for
the constraint given by (7). Here, we minimize the Lagrange
function

J(Q.m.2) =E*(Q.m) - (il ) (19)

where /1 is a Lagrange multiplier. ~
The partial derivatives of J (€2, m, ) with respect to L; and A
are

[-Dy(x) + Z;(x; ) ]dx — 4 l=1,---,L),
e L CRE ) ( )

(20)
L ~
=-Y L+1 (21)
=1
Setting Egs. (20) and (21) to zero, we obtain
B q(z+1)
L=-—"_ (l=1,---,L), (22)
2 _p§t+l)
L ~
=Y Li+1=0, (23)
=1
(t+1) (t+1)\ L .
where {pl L and {q, } are the values obtained from

the values of {K\""V}!_ and {K ) 7, as
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// K (x) expl-+! (x)oy(x)]dx  (1=1.--.L). (24)

/ D (=1---.L), (25)

where K()() exp> i 1K(t) (%)), & (x) = j:lK](t)(/’J(X)’
and D" (x) = m\" (x)D(x).

To update Ll, we solve L + 1 simultaneous Egs. (22) and
(23) with L+1 unknowns {{L;}F,,4}. By substituting
Eq. (22) into Eq. (23), we get a fractional equation with an
unknown variable A:

L (t+1)
l

gl ( Z q

+1=0. (26)
=1 A- p/

(t+1)
Hence, we numerically solve this equation using the Newton—
Raphson method, which iterates the following procedure until
convergence:

gD (3

)L(thl) = j,(fx) LA ShS——
POSIFIEN

(27)
Finally, by substituting those values into each of Eq. (22),
{L}- | can be updated as follows:

(t+1) q )

F (1) _ 1 _

Ll —_W (l—l,"',L), (28)
where {IZ;HI) L | are the values assumed by {L,}-, at the
t + 1th step of Algorithm 1. The iterative algorithm in this sec-

tion can be summarized as follows.

Algorithm 1

Step 1. Initialize:
Set QO <{{K V| (VYL AL} 1) Set t<=0.
Step 2. Repeat the steps below untll convergence.
E-step: set m(+1) <=argminE*(Q 0. m).

M-step: set Q(+D <=argmmE+(Q m(*). Set t<t+ 1.
Step 3. Output:

Set K(x )<=exp[ i 1K

Set {L}, <L} .

D, (x)]. Set x(x)&< Y7, k¢ (x).

6. REFINEMENT OF THE RBF
NETWORK STRUCTURE

To obtain a minimal RBF network that explains the input data
faithfully, we remove the unnecessary hidden units while op-
timizing the network parameters Q and I'. Z,(x; £;) in Eq. (13)
and E*(Q,m) in Eq. (15) are hereinafter also denoted as
Z,(x; €, T) and E+ (2, T, m), respectively.

A. Updating C; and ¢;

The partial derivatives of E*(®,m) with respect to a I x 2
matrix C = [Cy,---,C;]T and a J x 2 matrix ¢ = [¢1, -, ¢;]T
are

aE+ Z // Dyix

= Zy(x; . D] (x)x" - ¥y(x)]dx,

(29)
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E)E”r r
Z | [P0 = T . D)o ()81 (x)x" - ¢z (x))dx

(30)

where W (x) (¢;(x)) is an I (J) dimensional vector

D, (x @, (x Ky (X K, X
Ky 211( ),”K[Ré( )}T ( 147%( ). .. J‘%( )]T), and Wy(x) (¥u(x))

L
. K, P
matrix | IR% e, ..

is a Ix2

J x2)
([Kl(i‘z(x)cl . _KJtI:é(X)
1 J

. KICII%ZI(X) C[]T

¢;]7). Note that derivation of a scalar E+

with respect to a matrix C=[C;---C;]T is defined

AT _ [E* . ENT
as 5¢ = loey ac,] .

Using these partial derivatives, {C;}{_, and {¢;}7_; can be
updated using gradient-based local minimization techniques,
such as steepest descent and conjugate gradient.

B. Updating R; and r;

R; and r; are updated using the {C;}]_, and {¢;}]_, values,
respectively, at each iteration of the above update process
as follows:

iMZHCr—CM 7 Zucj gll, (31

i'EMI ]EN]

where M, (V;) is the set of M (V) nearest neighbors of
{CYo e }']:1) from C; (c)).

C. Pruning the Hidden Units

The problem of approximating functions using a minimal RBF
network is well studied in the neural network community.
Yingwei et al. [33] proposed a pruning strategy to remove
those hidden units that make little contribution to the output
of the network.

1. For every observation (x,,¥,), compute the outputs of
all hidden units o} (k = 1, - - -, K) and find the largest absolute
hidden unit output value ||o%.||-

2. Remove the hidden units for which the normalized out-
put 7 | is less than a threshold 6 for M consecutive
observatlons

As a postprocessing step of our method, we adopt this prun-
ing strategy, which determines the numbers of hidden units
(AN). Our preliminary experiments, however showed that

|| in the de-

or, n

the use of 7 = || Z || instead of 7 = || -
k= l

finition of the normahzed output in step 2 of Algorithm 1
yielded better results. Thus, based on the definition of

= Z . ||, we select the following pruning criterion:
Ko, w0, (x)x\ g (x
II%H N LX)y (/)(Jt)( ) <&, (32)
i-1 K @(x) i1 ol(X)K; (x)

The iterative algorithm presented in this section can be sum-
marized as follows. Note that, since the process of updating
R; and r; (Subsection 6.B) does not necessarily minimize
Eq. (1_5), step 2c of Algorithm 2 is computed outside the
M-step.
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Algorithm 2

Step 1. Initialize:
Set F<={{C,,R %1 1 {ej. {} -
Set Q© ¢{{K ik 0} —1» {L )
Set t<0.
Step 2. Repeat the steps 2a through 2c until convergence.
Step 2a. Set I'<T.
Step 2b. Repeat the following EM steps until convergence.
E-step: set m(*) <argminE* (Q", T, m)

M-step: set Q) <argminE* (Q, T, m(t+1), Set t<t + 1.
Q

Step 2c. Update T (see Subsections 6.A and 6.B).
Step 3. Remove the unnecessary hidden units (see Subsection 6.C).
Step 4. Output:
Set
K, (x) € explSL, K1, (x)] = explSL,
Set x(x )/;27 K<>¢J( x) =YL« p(xe, r])
Set (L}, <L}

(X§ Ci,R;)].

7. EXPERIMENTAL RESULTS

We evaluated the effectiveness of the proposed method on a
synthetic scene and a real scene. The experimental conditions
are summarized in Table 1.

A. Synthetic Scene

We first evaluate the accuracy of the method using a synthetic
image of a specular object. The simulated setup allows us to
quantitatively evaluate the accuracy of the specular reflec-
tance parameter and illumination estimates. We rendered
an image of a 3D model [Fig. 3(a)] with spatially varying in-
homogeneous specular reflectance whose parameter values
are shown in Figs. 4(a) and 4(b). The illumination consisted
of five point light sources. This synthetic image [Fig. 3(b)] was
then used as the input to the proposed algorithm. From the
input image, we semiautomatically detected a set of locally
brightest points by manually drawing a set of their candidate
regions (their number is fixed), and then, automatically find-
ing the brightest point in each candidate region, used the view-
ing direction reflected about the surface normals at those
surface points as the point source directions.

We located RBF centers C; and ¢; at regular intervals in the
input image and fixed the values of RBF widths, R; and r;, at
the interval between RBF centers ({C;, R;}_; and {¢;,7;}7_,
were equally set). The initial states of ¢; and 7; are illustrated
in Fig. 3(c). The center and radius of each circle in Fig. 3(c)
indicate ¢; and one quarter r;, respectively. The final
states of ¢; and 7; are shown in Fig. 3(d). Figures 4(a) and

Table 1. Experimental Conditions

Initial values for K-, K; 09
unknown parameters Kl oKy 8.0
Ly, I 1/L
Cy,---,C; 15 (located every 15 pixels)
Ry, -, Ry 15
¢y,--+,¢; 15 (located every 15 pixels)
PR e 15
Values for the Uk 1.0x10*
constant parameters e 1.0x 1073
He 1.0x 102
Ue 1.0x 1071
M, N 8
8 0.005
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(d)

(@ (b)
Fig. 3. (a) Surface geometry used to render the synthetic specular
image. (b) Synthetic specular image. (c¢) Initial values of ¢; and ;.
(d) Final values of ¢; and 7;.

4(b) [respectively, Figs. 4(c) and 4(d)] show the ground truth
and estimated K (x) (also the ground truth and estimated x(x),
respectively) encoded in RGB.

Figure 5 shows the results of relighting: rendering the ob-
ject under different novel lighting conditions. Specular images
were rendered using the estimated parameter values with the
spherical Torrance-Sparrow reflection model, which were
then composed together with the relit diffuse images. The dif-
fuse images were relit by simply taking the ratio of the inci-
dent irradiance between the original and new illumination
environment, assuming Lambertian reflection. Figures 5(a)
and 5(b) [also Figs. 5(c) and 5(d), respectively] show the
synthesized images using the ground truth and estimated
values of K(x), x(x), and {il L |, respectively. In Figs. 5(a)
and 5(b), we turned off three light sources in the original
illumination environment of five light sources. In Fig. 5(c)
and 5(d), we set point light sources uniformly distributed over
all the directions using a geodesic dome.

The ground truth and estimated point source intensities are
tabulated in Table 2. The results clearly show that the pro-
posed method successfully estimates the illumination and in-
homogeneous specular reflectance properties from a single
specular reflection image with high accuracy.

B. Real Scene

We also evaluated the effectiveness of the proposed method on
real scenes. We set up a scene consisting of an assortment of
fruits and vegetables: a watermelon, an orange pepper, a man-
go, and a squash [Fig. 6(a)], and a scene of a mask made in Ne-
pal [Fig. 6(e)]. The illumination (three point light sources) and
viewpoint conditions of both is the same. We used a digital sin-
gle-lens reflex (SLR) camera (Canon 30D) to capture the image.
In order to obtain a specular-only image, we used a polarization
filter [34,35] in front of the light sources and camera lens,
whose orientations were manually set to be perpendicular
to each other to capture a diffuse-only image and then captured
another image where the polarization filters were set to be par-

L L)
(a) (b)

Fig. 4.
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(b) © (d

(@)

Fig. 5. Synthesized image under novel lighting conditions.

Table 2. Estimated Light Intensities

Light 1 Light 2 Light 3 Light 4 Light 5

Estimated light intensity 0.1084 0.2010 0.2525 0.2410 0.1971
Ground truth 0.10 0.20 0.25 0.25 0.20

By
a (c) (d)

(b)

(f) (8) (h)

Fig. 6. (Color online) (a), (¢) One out the input images. (b), (f) Other
input image taken with orthogonal polarization filters to observe dif-
fuse reflection only. (c), (g) Specular image computed by subtracting
(b) from (a). (d), (h) Synthesized specular image using the estimated
illumination and specular reflectance properties.

Table 3. Estimated Light Intensities

Light 1  Light 2  Light 3
Estimated light intensity (fruits) 0.2826 0.3357 0.3817
Estimated light intensity (mask) 0.2831 0.3470 0.3699
Ground truth 0.2937 0.3371 0.3692

allel. Figures 6(a) and 6(e) show the images taken with parallel
polarization (diffuse + specular), Figs. 6(b) and 6(f) show the
diffuse-only images, and Figs. 6(c) and 6(g) show the specular-
only images computed by subtracting the diffuse-only image
from the other input image.

We also obtained a 3D geometric model of the objects
using a laser range finder (Minolta Vivid 910) whose external

Y

(d)

(a) K,4(x) (ground truth values). (b) K (x) (estimated values). (c) x(x) (ground truth values). (d) x(x) (estimated values).
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400 l400

e 1200

(¢) {(d)

Fig. 7. (Color online) Estimated spatially varying specular reflectance properties: (a), (c) Ks(x), (b), (d) x(x).

(e) () (2) (h)

Fig. 8. (Color online) Synthesized images of the scene under novel
lighting conditions.

orientation was precalibrated with the digital SLR. As in the
previous example, from the specular image, we detected a set
of locally brightest points and used them to estimate the point
source directions. Figures 6(d) and 6(h) show rendered spec-
ular images using the estimated values of K(x), x(x), and
{L,;}%,. The estimated and ground truth point source intensi-
ties are tabulated in Table 3. We measured the ground truth
intensities by capturing an image of a black shiny sphere
placed in the scene. The synthesized specular image clearly
shows that the proposed method successfully estimates the
illumination and inhomogeneous specular reflectance proper-
ties accurately. Note that the errors at the object boundaries,
e.g., between the orange pepper and watermelon, are mainly
caused by inaccuracies in the scanned geometry.

(f)

Figure 7 shows the estimated values of K (x) and x(x) en-
coded in RGB, respectively. One can see that the proposed
method estimates the spatial variation of the specular reflec-
tion properties. For instance, in Figs. 7(a) and 7(b), K,(x) of
the mango and x(x) of the squash are relatively large com-
pared to the other three objects, and even within each object
the values smoothly vary. Such information can be useful to
classify the objects based on material properties. Note that, as
shown in Fig. 7, we cannot estimate the specular reflection
properties where specular reflection is not observed. If neces-
sary, we may directly extrapolate the estimated values using
the RBFs or by assuming uniformity across local regions.

Figure 8 shows the results of relighting. In
Figs. 8(a) and 8(e), we turned off two light sources in the ori-
ginal illumination environment, and in Figs. 8(b) and 8(f), we
moved that light source to the left. In Figs. 8(c) and 8(g), we
changed each color of the three light sources in the original
illumination environment to red, green, and blue. Note that,
although the original illumination needs to consist of light
sources of the same color, this assumption is not required
in relighting. In Figs. 8(d) and 8(h), we set light sources uni-
formly distributed over all the directions using a geodesic
dome. The results clearly show that we can achieve photorea-
listic relighting of the scene with the estimated illumination
and specular reflectance properties, which again strongly sug-
gests that the proposed method accurately estimates these
variables from a single specular image.

100

(2) (h)

Fig. 9. (Color online) (a) Image captured under a particular lighting condition. (b) Specular image separated from (a). (¢) K (x) estimated (b).
(d) x(x) estimated (b). (e) Image captured under a lighting condition different from (a). (f) Specular image separated from (e). (g) K(x) estimated

®). (h) x(x) estimated (f).
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Finally, to verify the correctness of the estimated reflec-
tance properties, we compared the estimated values under
two different illumination conditions. Figures 9(a) and 9(e)
show the captured images under a single light source placed
at two different positions, and Figs. 9(b) and 9(f) show the
corresponding specular images. Figures 9(c) and 9(d) [also
9(g) and 9(h)] show the estimated K,(x) and x(x) encoded
in RGB from the image shown in Fig. 9(b) [the image shown
in Fig. 9(f)]. Since Figs. 9(c) and 9(d) are similar to Figs. 9(g)
and 9(h), respectively, one can see that each estimation was
successfully accomplished.

8. CONCLUSION

We introduced a novel method for simultaneously estimating
the illumination and spatially varying inhomogeneous specular
reflectance properties of an object, given a few images
taken from the same viewpoint (e.g., in our setup two images)
of an object of known geometry. The proposed method repre-
sents specular reflection with a directional distribution and the
spatial variation of its parameter values with a set of RBFs. We
showed that this method enables the formulation of simulta-
neous estimation as a sound probabilistic inference based
on the /-divergence measure, which we solved with an EM-like
algorithm. We showed its effectiveness through experiments
with synthetic and real images. In future work, we would like
to investigate the use of multiple images taken under varying
illumination or viewpoints to densely estimate the specular
reflectance properties across the entire object surface.

ACKNOWLEDGMENTS

This work was supported in part by the Japanese Ministry of
Education, Science, and Culture under grant-in-aid for scien-
tific research 20500155 to K. Hara, the National Science Foun-
dation (NSF) CAREER awards IIS-0746717 and 11S-0964420,
and the Office of Naval Research (ONR) grant N00014-11-1-
0099 to K. Nishino.

REFERENCES

1. G. Kay and T. Caelli, “Inverting an illumination model from
range and intensity maps,” CVGIP, Image Underst. 59, 183-201
(1994).

2. Y. Sato, M. Wheeler, and K. Ikeuchi, “Object shape and reflec-
tance modeling from observation,” in Proceedings of the 24th
Annual Conference on Computer Graphics and Interactive
Techniques (Association for Computing Machinery, 1997), pp.
379-387.

3. P.Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and
M. Sagar, “Acquiring the reflectance field of a human face,” in
Proceedings of the 27th Annual Conference on Computer Gra-
phics and Interactive Techniques (Association for Computing
Machinery, 2000), pp. 145-156.

4. S. Marschner and D. Greenberg, “Inverse lighting for photogra-
phy,” In Proceedings of IS&T/SID Fifth Color Imaging Confer-
ence (The Society for Imaging Science and Technology, 1997),
Pp. 262-265.

5. K. Hara, K. Nishino, and K. Ikeuchi, “Mixture of spherical distri-
butions for single-view relighting,” IEEE Trans. Patt. Anal.
Mach. Intell. 30, 25-35 (2008).

6. K. Nishino, K. Ikeuchi, and Z. Zhang, “Re-rendering from a
sparse set of images,” Tech. Rep. DU-CS-05-12 (Drexel Univer-
sity, 2005).

7. R. Ramamoorthi and P. Hanrahan, “A signal processing frame-
work for inverse rendering,” in Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques
(Association for Computing Machinery, 2001), pp. 117-128.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24.

26.

26.

217.

28.

29.

30.

Vol. 28, No. 2 / February 2011 / J. Opt. Soc. Am. A 145

H. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H. Seidel, “Im-
age-based reconstruction of spatially varying materials,” in Pro-
ceedings of the 12th Eurographics Workshop on Rendering
Techniques, S. J. Gortler and K. Myszkowski, eds. (Springer,
2001), pp. 104-115.

T. Zickler, R. Ramamoorthi, S. Enrique, and P. Belhumeur, “Re-
flectance sharing: predicting appearance from a sparse set of
images of a known shape,” IEEE Trans. Patt. Anal. Mach. Intell.
28, 1287-1302 (2006).

D. Goldman, B. Curless, A. Hertzmann, and S. Seitz, “Shape and
spatially-varying BRDFs from photometric stereo,” IEEE Trans.
Patt. Anal. Mach. Intell. 32, 1060-1071 (2010).

L. Csiszar, “Why least squares and maximum entropy? An axio-
matic approach to inverse problems,” Ann. Stat. 19, 2032-2066
(1991).

A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” J. R. Stat. Soc. Ser. B.
Methodol. 39, 1-38 (1977).

S. Nayar, K. Ikeuchi, and T. Kanade, “Determining shape and
reflectance of Lambertian, specular, and hybrid surfaces using
extended sources,” in Proceedings of the International Work-
shop on Industrial Applications of Machine Intelligence and
Vision (IEEE, 1989), pp. 169-175.

Y. Sato and K. Ikeuchi, “Temporal-color space analysis of reflec-
tion,” J. Opt. Soc. Am. A 11, 2990-3002 (1994).

A. L. Yuille, D. Snow, R. Epstein, and P. N. Belhumeur, “Deter-
mining generative models of objects under varying illumination:
shape and albedo from multiple images using SVD and integr-
ability,” Int. J. Comput. Vis. 35, 203-222 (1999).

W. Y. Zhao and R. Chellappa, “Symmetric shape-from-
shading using self-ratio image,” Int. J. Comput. Vis. 45, 55-75
(2001).

Q. Zheng and R. Chellappa, “Estimation of illuminant direction,
albedo and shape from shading,” IEEE Trans. Patt. Anal. Mach.
Intell. 13, 680-702 (1991).

W. A. P. Smith and E. R. Hancock, “Recovering facial shape
using a statistical model of surface normal direction,” IEEE
Trans. Patt. Anal. Mach. Intell. 28, 1914-1930 (2006).

N. Birkbeck, D. Cobzas, P. F. Sturm, and M. Jagersand,
“Variational shape and reflectance estimation under changing
light and viewpoints,” in Proceedings of the 9th European
Conference on  Computer Vision  (Springer, 2006),
pPp. 536-549.

N. Alldrin, T. Zickler, and D. Kriegman, “Photometric stereo with
non-parametric and spatially-varying reflectance,” in Proceed-
ings of IEEE Conference on Computer Vision and Patlern
Recognition (IEEE, 2008), pp. 1-8.

S. Biswas, G. Aggarwal, and R. Chellappa, “Robust estima-
tion of albedo for illumination-invariant matching and shape re-
covery,” IEEE Trans. Patt. Anal. Mach. Intell. 31, 884-899
(2009).

K. Ikeuchi and K. Sato, “Determining reflectance properties of
an object using range and brightness images,” IEEE Trans. Patt.
Anal. Mach. Intell. 13, 1139-1153 (1991).

L. Sato, Y. Sato, and K. Ikeuchi, “Illumination from shadows,”
IEEE Trans. Patt. Anal. Mach. Intell. 25, 290-300 (2003).

S. Tominaga and N. Tanaka, “Estimating reflection parameters
from a single color image,” IEEE Comput. Graph. Appl. 20,
58-66 (2000).

T. Yu, H. Wang, N.Ahuja, and W.-C. Chen, “Sparse lumigraph re-
lighting by illumination and reflectance estimation from multi-
view images,” in Rendering Techniques 2006: Eurographics
Symposium on Rendering, T. Akenine-Moller and W. Heidrich,
eds. (Eurographics Association, 2006), pp. 41-50.

K. E.Torrance and E. M.Sparrow, “Theory for off-specular
reflection from roughened surfaces,” J. Opt. Soc. Am. 57,
1105-1112 (1967).

R. Fisher, “Dispersion on a sphere,” Proc. R. Soc. Lond., Ser. A.
217, 295-305 (1953).

K. Mardia and P. Jupp, Directional Statistics (Wiley, 2000).

F. Solomon and K. Ikeuchi, “Extracting the shape and rough-
ness of specular lobe objects using four light photometric
stereo,” IEEE Trans. Patt. Anal. Mach. Intell. 18, 449454 (1996).
H. Kameoka, T. Nishimoto, and S. Sagayama, “A multipitch
analyzer based on harmonic temporal structured clustering,”



146

31.

32.

33.

J. Opt. Soc. Am. A/ Vol. 28, No. 2 / February 2011

IEEE Trans. Audio Speech Lang. Process.
(2007).

N. Ueda and R. Nakano, “Deterministic annealing EM algo-
rithm,” Neural Netw. 11, 271-282 (1998).

M. Lavielle and E. Moulines, “A simulated annealing version of
the EM algorithm for non-Gaussian deconvolution,” Stat. Com-
put. 7, 229-236 (1997).

L. Yingwei, N. Sundararajan, and P. Saratchandran, “A sequen-
tial learning scheme for function approximation using minimal

15, 982-994

34.

35.

K. Hara and K. Nishino

radial basis function neural networks,” Neural Comput. 9,
461-478 (1997).

S. Nayar, X. Fang, and T. Boult, “Removal of specularities using
color and polarization,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (IEEE, 1993),
pp. 583-590.

L. Wolff and T. Boult, “Constraining object features using a po-
larization reflectance model,” IEEE Trans. Patt. Anal. Mach.
Intell. 13, 635-657 (1991).



