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Abstract

We present a novel non-rigid surface registration method
that achieves high accuracy and matches characteristic fea-
tures without manual intervention. The key insight is to con-
sider the entire shape as a collection of local structures that
individually undergo rigid transformations to collectively
deform the global structure. We realize this locally rigid
but globally non-rigid surface registration with a newly de-
rived dual-grid Free-form Deformation (FFD) framework.
We first represent the source and target shapes with their
signed distance fields (SDF). We then superimpose a sam-
pling grid onto a conventional FFD grid that is dual to the
control points. Each control point is then iteratively trans-
lated by a rigid transformation that minimizes the difference
between two SDFs within the corresponding sampling re-
gion. The translated control points then interpolate the em-
bedding space within the FFD grid and determine the over-
all deformation. The experimental results clearly demon-
strate that our method is capable of overcoming the diffi-
culty of preserving and matching local features.

1. Introduction
The goal of non-rigid surface registration is to deform

the surface of a source shape to match the surface of a target
shape. Non-rigid registration finds many applications in a
wide range of areas including object modeling [2], and med-
ical imaging [11, 19]. Non-rigid registration is, however,
very challenging as an infinite number of solutions may ex-
ist. Past research on non-rigid registration has mainly fo-
cused on imposing appropriate regularization on the defor-
mation to arrive at unique solutions [3].

We claim that an ideal surface registration should match
characteristic features on the source shape to the corre-
sponding features on the target shape. Prior work has at-
tempted to accomplish this mainly by explicitly identifying
corresponding features either by manual intervention or by
feature extraction [4].

(c) (d)

(b)(a)

Figure 1. Our method deforms a source shape (a) to the target
shape (b) by rigidly aligning local structures (c) that collectively
form a free form deformation grid in a coarse-to-fine fashion (d).

We search for this ideal registration by computing a
shape-preserving deformation that brings the original shape
into alignment with the target shape. We build on the key
insight that the entire shape can be considered as a collec-
tion of local structures, each of which transforms rigidly to
align with counterparts of the target shape and collectively
deform the overall global structure. That is, we try to retain
the local structures that determine the characteristics of the
shape by guiding the deformation with the rigid movements
of local structures to match the target as a whole.

We adopt an implicit shape representation, the signed
distance field (SDF), to represent the shapes and the space
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around the surfaces (Section 3). We also define a similarity
metric between two SDFs that describes the spatial differ-
ence between the source and the target shapes (Section 4).

To go along with this spatial similarity metric, we choose
to represent the deformation using a spatial deformation
method, namely, free-form deformation (FFD) [14]. By sur-
rounding the source shape with a control point grid, we are
able to model and visualize the spatial deformation required
to match the surface of the source shape to the surface of the
target shape.

We propose a novel dual-grid FFD representation to
achieve the locally rigid, globally non-rigid registration.
The secondary grid, which we call the sampling grid, is su-
perimposed over the FFD control point grid that controls
the overall deformation. The sampling grid is subdivided
into sampling regions so that each control point is enclosed
by one sampling region. Each sampling region acts as a
guide for finding the optimal translation of the control point
within. The control point is translated based on the rigid
transformation required to minimize the difference between
the signed distance fields in the corresponding sampling re-
gion. Deformation is determined by the new positions of
the control points (Section 4).

We demonstrate the effectiveness of the method through
a number of experiments using 2D contour images (Sec-
tion 5). We also show that the method can easily be ex-
tended to handle 3D range data (Section 6). The results
show that our method can match the overall shape and at
the same time establish accurate correspondences of local
features. This characteristic is desirable for many appli-
cations of non-rigid registration as it enables meaningful
shape comparison and analysis.

2. Related Work
Non-rigid registration has long been an active area of

research due to its applicability to various fields. Most
of the work on non-rigid registration mainly focuses on
defining the similarity between shapes and introducing reg-
ularization on deformation. We refer the readers to sur-
veys [7, 11, 20] for thorough introduction to general non-
rigid registration methods.

Shape-preserving non-rigid registration is starting to be
considered as an important method to obtain accurate cor-
respondences between two shapes. There have been var-
ious attempts to obtain deformation capable of maintain-
ing the features. Thirion [16] and Vercauteren et al. [18]
proposed methods to obtain smooth deformation field in
order to avoid any folding or tearing. Recently, Oxholm
and Nishino [9] proposed a Gaussian mixture-based method
with novel energy terms introduced to preserve local shapes.
However, their method targets 2D intensity images, and it is
unclear how it can be applied to 2D contour or 3D surface
data.

Free-form deformation (FFD) [14] is a deformation
method where an object is embedded inside a grid consist-
ing of control points. The space and the object inside the
grid is deformed by moving the control points of the FFD
grid. This deformation method has been used extensively
for image and shape registration. Rueckert et al. [13] max-
imizes the mutual information, which is used as the sim-
ilarity metric for deformation. Rohlfing et al. [12] intro-
duced an incompressibility constraint to preserve the vol-
ume of the image for smooth deformation. Although FFD
is used to model local deformations, local rigidity is also
significant for retaining local features of the object being
deformed. We propose to achieve this by introducing a lo-
cally rigid sampling grid over the conventional FFD grid.
The rigid transformation of each sampling region on the
sampling grid is obtained through minimization of the dif-
ference between two SDFs.

Recently, implicit shape representation has gained atten-
tion in various fields [5], including registration. Paragios et
al. [10] proposed a global-to-local registration framework
using distance functions. Huang et al. [4] extended this
method by introducing an initial registration step and a lo-
cal non-rigid registration by FFD based on signed distance
fields. Munim and Farag [8] proposed to use the vector
distance function instead of the signed distance function.
These methods are similar to our method since they attempt
to spatially register two shapes through optimization of spa-
tial information. These methods, however, do not automat-
ically find deformations that match characteristic local fea-
tures. Huang et al. manually selected feature points on both
the source and the target images to identify a deformation
that aligns those correspondences. Local rigidity serves to
preserve and match such local structures without any man-
ual intervention.

3. Shape Representation
We first compute an implicit representation of the source

and target shapes using the signed distance field (SDF). For
the sake of simplicity, we explain this for 2D shapes but the
same computation easily extends to 3D shapes.

Given a data shape A, we consider an arbitrary point x.
From this arbitrary point, we search for the closest point on
the data shape A, which we denote as ax ∈ A. We assume
that the surface normal of the shape is available at this point,
which is expressed as nax . The signed distance φA(x) of
point x to the shape A is defined as the normal projected
distance

φA(x) = nT
ax

(x − ax) . (1)

One drawback of using the implicit representation is the
increase in data. In other works that use the implicit rep-
resentation, the field far from the object surface is omit-
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Figure 2. The signed distance is calculated by finding the closest
point from the point x and the normal of the closest point.

ted from the registration process to reduce computational
cost (i.e., narrow-band representation). We, however, do
not omit any of the parts of the field in order to maintain
the consistency between local rigidity and global deforma-
bility. We, instead, sample the space for faster calculation
of distance fields. We spread the sampling points in the
space evenly. By calculating the signed distance at uni-
formly spread sampling points, we produce the SDF ΦA

around the shape A.

4. Local Rigidity, Global Deformability
We propose a dual-grid FFD framework to achieve lo-

cally rigid and globally non-rigid deformation. Figure 3 il-
lustrates the overview of this framework. Here, we consider
a registration process between a source shape A consisting
of points a ∈ A and a target shape B consisting of points
b ∈ B. First, as in other methods using FFD, we prepare
a grid that surrounds the source shape A, which will be de-
formed in this process. This grid consists of FFD control
points whose locations control the deformation of the field
within. In Figure 3, the FFD grid is shown as a gray grid.

In addition to this FFD grid, we add another grid, which
we refer to as the sampling grid. We define each block of
this sampling grid as sampling region S consisting of sam-
pling points s. In Figure 3, this grid is shown in red. The
sampling grid is defined relative to the FFD grid so that a
single FFD control point Pi is immersed in a single sam-
pling region SPi . This is achieved by defining the sampling
region for each FFD control point by connecting the mid-
points of the edges of the FFD grid connected to the control
point of interest. This ensures that the sampling regions
will be mutually exclusive and no space is sampled more
than once. We place the same number of sampling points s
and space them uniformly within each sampling region by
defining them relative to the midpoints of the control points
at the corners of the sampling region. This is to ensure that
each region is thoroughly sampled even when the deforma-
tion of the FFD grid alters the shape of sampling regions.

Figure 3. The sampling grid (red) is placed over the conventional
FFD control point grid (gray). Each sampling region S transforms
rigidly, moving the underlying control point P embedded within.
The sampling grid is defined relative to the FFD grid so that the
sampling grid completely covers the FFD grid without any overlap
even after the FFD grid is deformed.

4.1. Local Rigid Registration

In this method, we consider each sampling region as a
rigid space that moves independently in order to minimize
the difference of the SDFs within each region. These local
rigid transformations will then be consolidated to form a
global deformation through the FFD control points. The
error function for a sampling region S can then be written
as the sum of the distances across all the points s ∈ S

E = d(ΦA,ΦB) =
∑
s∈S

(
φB(s) − φA(s)

)2

. (2)

We solve for the optimal rigid transformation for each
sampling region SP that minimizes the above error func-
tion. To register the two SDFs, we use the iterative reg-
istration method proposed by Lucas and Kanade [6]. We
solve for the optimal transformation that minimizes the dif-
ference between the SDF of the source image and the SDF
of the target image, which is warped onto the coordinate
frame of the source image. The energy function would then
be written as

E =
∑
s

(
φB

(
T(s;w)

)
− φA(s)

)2

, (3)

where T is the transformation function and w represents
the transformation parameters. In the case of 2 dimensional
images, the parameters consist of translations ts = (tx, ty)
and the angle of rotation θ about the origin (i.e., the corre-
sponding control point of the sampling region). The Lucas-
Kanade algorithm iteratively solves for the increments in
the parameters ∆w and updates the estimated parameters
w by solving for the error function redefined as

E =
∑
s

(
φB

(
T(s;w + ∆w)

)
− φA(s)

)2

. (4)
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Figure 4. The difference between the signed distance field ΦA of
the sampling region of the source image A and the signed distance
field ΦB of the target image B is minimized by the rigid transfor-
mation T of the sampling region. This transformation guides the
movement of the FFD control point, which determines the overall
global deformation in the following step.

Taylor expansion can be used to linearize this expression

E =
∑
s

(
φB

(
T(s;w)

)
+∇φB

∂T
∂w

∆w−φA(s)
)2

, (5)

where ∇φB represents the gradient of the signed distance.
We use the unit vector directed from the transformed sam-
pling point to the object surface. The partial derivative of
the error function with respect to ∆w is

∂E
∂∆w=2

P

s

[
∇φB

∂T
∂w

]T[
φB

(
T(s;w)

)
+∇φB

∂T
∂w∆w−φA(s)

]
.

(6)
This yields the additional values to the parameters ∆w

∆w = H−1
∑
s

[
∇φB

∂T
∂w

]T[
φA(s) − φB

(
T(s;w)

)]
,

(7)
where H is the Gauss-Newton approximation to the Hessian
matrix which can also be written as

H =
∑
s

[
∇φB

∂T
∂w

]T [
∇φB

∂T
∂w

]
. (8)

There are cases where the Hessian matrix is ill-
conditioned. This is likely to happen when the sampling
region is away from the object surface and the signed dis-
tance field inside the region does not contain much infor-
mation concerning the surface. The sampling region with
the ill-conditioned Hessian can disturb the overall registra-
tion result. We allow the movement of control points whose
Hessian’s condition number is within the bottom 15 percent
of all the control points and do not update the rest of the
control points.

In the final step, we update the parameters by adding the
incremental values to the initial parameters w + ∆w. This

P

P1

R1

R2

P2

P3

R3

R4

P4

d4

d3

d2

d1

Figure 5. The control point at the center P is also translated by
the rotations computed for neighboring control points from their
corresponding sampling regions.

rigid registration process is conducted until convergence is
obtained for each of the sampling regions.

In this process, we solved for the rigid transformation of
each sampling region that minimizes the difference of cor-
responding SDFs. It is worth noting that we do not at any
point consider that the space within each sampling region
stays rigid. The rigid transformation obtained in this pro-
cess only guides the movement of the FFD control points,
which determines the overall deformation.

Deformation is defined by the coordinates of the control
points on the FFD grid. The translation vector can there-
fore be applied to move the control points, but the rotation,
which rotates the sampling region around the control point,
has no effect on the displacement of its center, that is, the
control point itself. We realize the rotation computed from
a sampling region of a single FFD control point by rotat-
ing the local coordinate frame with its origin at the control
point. This means that the rotation computed for a single
control point must rotate the four neighboring control points
around that point, and in turn the control point must be ro-
tated around each of the neighboring control points by the
rotation computed from corresponding sampling regions.
Figure 5 illustrates the neighborhood which influences each
control point. To include the effect that a control point re-
ceives from the neighboring n control points, we convert
the rotation of neighboring control points Ri into transla-
tion tR of the control point at the center P

tR =
n∑
i

wdRi(P − Pi) , (9)

where wd = wi
Pn

j wj
is the weight based on the distance

between the control points and wi =
Pn

k dk

di
is the inverse of

the normalized distance. di represents the distance between
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the control point at the center P and the neighboring control
point Pi. The weight term is introduced based on the basic
notion that the closer a sampling region is, the more the
control point P should be influenced by it. This assigns
more weight to the control points Pi that are closer to P.
The weights are normalized so that the total of the neighbor
weights sum to one to avoid excessive effect from control
points that are very close to each other.

4.2. Global Non-rigid Registration

We apply the rigid transformation obtained from each
sampling region to the corresponding control point. Using
these coordinates we move the FFD grid and apply the FFD
deformation to the source shape. This process of computing
the rigid transformation locally and applying it to the con-
trol points to deform globally is iterated until convergence.

Deformation of a point a = (x, y) using cubic B-spline
FFD is computed by the weighted sum of the translations of
the control points

F(a) =
∑

i

∑
j

Bi(u)Bj(v)P , (10)

where B denotes the B-spline basis function and u, v rep-
resent the relative coordinates of x and y within the FFD
grid.

The global deformation of the point a on the surface A
is obtained by adding the translations ts and tR to the co-
ordinates of the control points

F(a) =
∑

i

∑
j

Bi(u)Bj(v)(
P + αSP

(ts,i,j + tR,i,j)
)

. (11)

When computing the translation of a control point from
its sampling region, we weight the influence of the sampling
region according to the area using the weight α. This en-
sures that if the sampling region, which is defined relatively
to the FFD grid, becomes smaller in the course of iterative
computation of the deformation, its influence is lessened
and eventually vanishes if it becomes degenerate. There-
fore, α becomes smaller when the area of the sampling re-
gion S is smaller, and becomes larger when S is larger

αSP,k =
SP,k

SP,0
, (12)

where SP,0 and SP,k are the area of sampling region around
P at the initial stage and at the k-th iteration. This is nor-
malized by dividing it by the largest value αm

αSP,k =
αSP,k

αm
. (13)

5. Experimental Results
We evaluate the proposed method on 2D images using

the silhouette data from the database provided by Sharvit et
al. [15] and Bronstein et al. [1]. We extracted the con-
tour data from these silhouette images and used them to
test the registration accuracy. We compared the result of
our method with the results of the distance-based method
by Huang et al. [4]. First, we obtained the results from
Huang et al.’s method without the feature constraint. We
then gave explicit feature correspondences to Huang et al.’s
method and adjusted the parameters, such as the weight on
the feature constraint and the bandwidth of SDFs, to acquire
the best possible registration results. The feature points that
were provided are marked as blue dots on the source and the
target image. These features are not given to our method,
and are just used to quantitatively evaluate the registration
accuracy. We also marked other features that were not given
to any of the methods. These points, which are marked as
pink dots, are also used to evaluate the accuracy of regis-
tration to gauge whether each method is capable of match-
ing characteristic structures without explicit assignment of
feature correspondences. For Huang et al.’s method with
the feature constraint, this evaluates whether the registration
computed from the given feature correspondences can prop-
agate to align other features that were not specified. The
corresponding features on the target surface are marked as
white dots for visualization. In this section we present the
registration results of “Device,” “Fgen,” “Misk,” “Fish,” and
“Dude” from the database of Sharvit et al. [15] and “Pliers”
and “Scissors” from the database of Bronstein et al. [1].

We used the same number of control points for the FFD
grid in all of the methods. Huang et al.’s method uses a
coarse-to-fine approach and subdivides the FFD grid once
the registration converges in the coarse stage. We applied
the same approach to all the methods for comparison.

The registration results are shown in Figure 6. Figure 7
shows the residual error between all the feature points. In
the case of Figure 6 (a), the previous methods come close to
successful registration. However, the marked feature points
did not match precisely. The result from our method is
very accurate. Although these two shapes are quite differ-
ent from each other, the assumption of local rigidity main-
tained the relative positions of the features and successfully
matched them to the corresponding features.

In case of Figure 6 (b), our method, the method by
Huang et al. with the feature constraint and the feature-
less version of Huang et al.’s method performed well and
matched the surfaces and the blue feature points. At the
same time, our method was able to accurately register the
pink non-feature points. These two examples show that our
method treats all the locations on the surface evenly and au-
tomatically achieves feature correspondence without any a
priori correspondences.
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Huang et al. Our methodHuang et al. (with features)source target

(1)

(a)

(2)

(2)

(b)

(1)

(c)

(1) (2)

(2)(1)

(d)

(2)

(e)

(1)

(2)(1)

(f)

(g)

(2)(1)

Figure 6. Contour data from the database by Sharvit et al. [15] and Bronstein et al. [1] were used to evaluate the accuracy of the proposed
method: (a) Device, (b) Fgen, (c) Misk, (d) Fish, (e) Dude, (f) Pliers, and (g) Scissors. The source images (1) were registered to the target
images (2). The accuracy of the method by Huang et al., even with the explicit features, lowered as the local structure of the shapes became
complex. Our method was successful in all the cases.

In the case of Figure 6 (c), even though the previous
methods succeeded in matching the outer surface and the
blue features, the featureless version was stuck at a local
minimum. Huang et al.’s method using the features man-
aged to match the inner surface, but the pink feature point
inside the opening failed to match. Our method precisely
matched this structure. In the case of Figure 6 (d), both

the Huang et al.’s method with or without the feature con-
straint failed to match one of the fins that was designated as
a feature. Our method successfully matches the shapes even
without any information of feature correspondence.

In Figure 6 (e), our method and the method by Huang et
al. with the feature constraint performed well and matched
the surfaces. The featureless version of the method by
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Figure 7. The mean square error between the blue feature points
(b) and pink feature points (p) indicates that our method constantly
outperforms other methods.

Huang et al. was stuck at a local minimum. The right
arm of the image was difficult to register for the method by
Huang et al. even with the given features, and required addi-
tional weight on the feature correspondences. However, this
manual operation was still not enough to match the features
on the right arm. This example shows that depending on the
shape being registered, the method by Huang et al. requires
manual parameter setting, as well as manual feature selec-
tion. Our method automatically achieves feature correspon-
dence without any a priori correspondences by preserving
the local features through local rigidity.

In Figure 6 (f), the previous methods were able to reg-
ister the surfaces to some extent, but the accuracy was still
better in our method. The previous methods failed in the
case of Figure 6 (g), where one of the blades could not be
registered to the corresponding part. We tried adding ex-
tra weight to the Huang et al.’s feature constraint, but could
not find the proper parameter that would allow the corre-
sponding parts to match. Our method was able to match the
features together with the assumption of local rigidity and
register the entire surface.

Figure 8 shows the registration result of the shape
“Hand” using the proposed method. Our method was suc-
cessful at registering the two contours. However, the blue
points, which are manually placed on what seemed to be
the fingertips for evaluation of accuracy, did not completely
move to the corresponding fingertips. This is due to the lim-
itation of providing ground truth since it is hard for even a
person to identify where the fingertips are in the images.

These results have demonstrated that our method is able
to deform the source shape to align with the target shape,
while preserving and matching characteristic features of the
shapes. This has been conducted automatically, without any
feature correspondences or manual intervention.

(2)

(1)

(3)

Figure 8. The source image (1) of “Hand” was deformed to the tar-
get image (2). Although the registration (3) is successful in terms
of contour matching, the fingertips on the deformed hand did not
quite match the fingertips of the normal hand due to the limitation
of acquiring features from contours.

6. Extension to 3D

Extending our method to handle 3D surface data is
straightforward. We add the third coordinate z to the vectors
and matrices shown in Section 4. The area of the sampling
region used for calculating the weight α for global deforma-
tion is replaced with the volume of the 3D sampling volume.
The rest of the method is the same as in 2D.

We have tested the 3D version of our method with syn-
thetic 3D range data of a wave and a deformed version of the
wave. Figure 9 (a) shows the registration results. Although
initial globally rigid registration leaves behind a large gap
between the two shapes at two of the corners, our method
was able to register them accurately through the locally
rigid but globally non-rigid registration. In Figure 9 (b),
we randomly deformed the “Stanford Bunny” [17] and reg-
istered the original model to the deformed model. Although
large deformations were applied to the ears and the back,
our method was able to match the corresponding parts. We
also processed 3D data taken from two separate chicken
skulls to test our method on real data. Figure 9 (c) is the
result of registration. Although there is a gap between the
beaks at the initial stage, the locally rigid globally non-rigid
registration successfully aligns them. The experiments on
synthetic and real data in 3D demonstrate that the method is
effective in 3D as well.

7. Conclusion

Our concept of “align locally, deform globally” is based
on the key idea that the shape along with the distance fields
around it should maintain rigidity even in a non-rigid reg-
istration framework. Our method based on this key idea
proved to be very effective in preserving local features
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initial state after deformation

(b)

(a)

(c)

Figure 9. The method was applied to 3D synthetic data of waves
(a), “Stanford Bunny” (b), and real data taken from actual skulls
of chicken (c). The source image (red) was deformed to match
the target image (white). Our method was successful at matching
parts that were apart after initial rigid registration.

and matching them to corresponding features on the target,
which we believe is the most important aspect in non-rigid
registration.

The experimental results have demonstrated the effec-
tiveness of our method in most cases, and both the over-
all accuracy and feature correspondence has been achieved.
Even in cases where initial alignment is difficult to conduct,
the registration was accomplished successfully. All of this
has been achieved without manual intervention.
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