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Abstract

Material recognition for real-world outdoor surfaces has

become increasingly important for computer vision to sup-

port its operation “in the wild.” Computational surface

modeling that underlies material recognition has transi-

tioned from reflectance modeling using in-lab controlled

radiometric measurements to image-based representations

based on internet-mined images of materials captured in

the scene. We propose a middle-ground approach that takes

advantage of both rich radiometric cues and flexible image

capture. We develop a framework for differential angular

imaging, where small angular variations in image capture

provide an enhanced appearance representation and signif-

icant recognition improvement. We build a large-scale ma-

terial database, Ground Terrain in Outdoor Scenes (GTOS),

geared towards real use for autonomous agents. This pub-

licly available database1 consists of over 30,000 images

covering 40 classes of outdoor ground terrain under vary-

ing weather and lighting conditions. We develop a novel

approach for material recognition called a Differential An-

gular Imaging Network (DAIN) to fully leverage this large

dataset. With this network architecture, we extract char-

acteristics of materials encoded in the angular and spa-

tial gradients of their appearance. Our results show that

DAIN achieves recognition performance that surpasses sin-

gle view or coarsely quantized multiview images. These re-

sults demonstrate the effectiveness of differential angular

imaging as a means for flexible, in-place material recogni-

tion.

1. Introduction

Real world scenes consist of surfaces made of numer-

ous materials, such as wood, marble, dirt, metal, ceramic

and fabric, which contribute to the rich visual variation we

find in images. Material recognition has become an active

1http://ece.rutgers.edu/vision/

Figure 1: (Top) Example from GTOS dataset comprising

outdoor measurements with multiple viewpoints, illumi-

nation conditions and angular differential imaging. The

example shows scene-surfaces imaged at different illumi-

nation/weather conditions. (Bottom) Differential Angular

Imaging Network (DAIN) for material recognition.

area of research in recent years with the goal of providing

detailed material information for applications such as au-

tonomous agents and human-machine systems.

Modeling the apparent or latent characteristic appear-

ance of different materials is essential to robustly recog-

nize them in images. Early studies of material appearance

modeling largely concentrated on comprehensive lab-based

measurements using dome systems, robots, or gonioreflec-

tometers collecting measurements that are dense in angu-

lar space (such as BRDF, BTF) [10]. These reflectance-

based studies have the advantage of capturing intrinsic in-
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(a) Asphalt (b) Brick (c) Plastic cover (d) Metal cover (e) Stone-cement (f) Pebble (g) Snow

Figure 2: Differential Angular Imaging. (Top) Examples of material surface images Iv . (Bottom) Corresponding differential

images Iδ = Iv − Iv+δ in our GTOS dataset. These sparse images encode angular gradients of reflection and 3D relief

texture.

variant properties of the surface, which enables fine-grained

material recognition [27, 33, 42, 47]. The inflexibility of

lab-based image capture, however, prevents widespread use

in real world scenes, especially in the important class of

outdoor scenes. A fundamentally different approach to re-

flectance modeling is image-based modeling where surfaces

are captured with a single-view image in-scene or “in-the-

wild.” Recent studies of image-based material recognition

use single-view internet-mined images to train classifiers

[1, 7, 20, 28] and can be applied to arbitrary images casu-

ally taken without the need of multiview reflectance infor-

mation. In these methods, however, recognition is typically

based more on context than intrinsic material appearance

properties except for a few purely local methods [34, 35].

Between comprehensive in-lab imaging and internet-

mined images, we take an advantageous middle-ground. We

capture in-scene appearance but use controlled viewpoint

angles. These measurements provide a sampling of the full

reflectance function. This leads to a very basic question:

how do multiple viewing angles help in material recogni-

tion? Prior work used differential camera motion or ob-

ject motion for shape reconstruction [2,3,43], here we con-

sider a novel question: Do small changes in viewing an-

gles, differential changes, result in significant increases in

recognition performance? Prior work has shown the power

of angular filtering to complement spatial filtering in mate-

rial recognition. These methods, however, rely on a mirror-

based camera to capture a slice of the BRDF [48] or a light-

field camera to achieve multiple differential viewpoint vari-

ations [44] which limits their application due to the need

for specialized imaging equipment. We instead propose to

capture surfaces with differential changes in viewing angles

with an ordinary camera and compute discrete approxima-

tions of angular gradients from them. We present an ap-

proach called angular differential imaging that augments

image capture for a particular viewing angle v a differ-

ential viewpoint v + δ. Contrast this method with lab-

based reflectance measurements that often quantize the an-

gular space measuring with domes or positioning devices

with large angular spacing such as 22.5◦. These coarse-

quantized measurements have limited use in approximating

angular gradients. Angular differential imaging can be im-

plemented with a small-baseline stereo camera or a moving

camera (e.g. handheld). We demonstrate that differential

angular imaging provides key information about material

reflectance properties while maintaining the flexibility of

convenient in-scene appearance capture.

To capture material appearance in a manner that pre-

serves the convenience of image-based methods and the

important angular information of reflectance-based meth-

ods, we assemble a comprehensive, first-of-its-kind, out-

door material database that includes multiple viewpoints

and multiple illumination directions (partial BRDF sam-

pling), multiple weather conditions, a large set of surface

material classes surpassing existing comparable datasets,

multiple physical instances per surface class (to capture

intra-class variability) and differential viewpoints to support

the framework of differential angular imaging. We concen-

trate on outdoor scenes because of the limited availability

of reflectance databases for outdoor surfaces. We also con-

centrate on materials from ground terrain in outdoor scenes

(GTOS) for applicability in numerous application such as

automated driving, robot navigation, photometric stereo and

shape reconstruction. The 40 surface classes include ground

terrain such as grass, gravel, asphalt, concrete, black ice,

snow, moss, mud and sand (see Figure 2).

We build a recognition algorithm that leverages the

strength of deep learning and differential angular imaging.

The resulting method takes two image streams as input, the

original image and a differential image as illustrated in Fig-
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Datasets samples classes views illumination in scene scene image camera

parameters

year

CUReT [11] 61 61 205 N N N 1999

KTH-TIPS [18] 11 11 27 3 N N N 2004

UBO2014 [46] 84 7 151 151 N N N 2014

Reflectance disk [48] 190 19 3 3 N N Y 2015

4D Light-field [44] 1200 12 1 1 Y N N 2016

NISAR [5] 100 100 9 12 N N N 2016

GTOS(ours) 606 40 19 4 Y Y Y 2016

Table 1: Comparison between GTOS dataset and some publicly available BRDF material datasets. Note that the 4D Light-

field dataset [44] is captured by the Lytro Illum light field camera.

ure 1. We optimize the two-stream configuration for mate-

rial recognition performance and call the resulting network

DAIN–differential angular imaging network.

We make three significant contributions in this paper: 1)

Introduction of differential angular imaging as a middle-

ground between reflectance-based and image-based mate-

rial recognition; 2) Collection of the GTOS database made

publicly available with over 30000 in-scene outdoor images

capturing angular reflectance samples with scene context

over a large set of material classes; 3) The development of

DAIN, a material recognition network with state-of-the-art

performance in comprehensive comparative validation.

2. Related Work

Texture recognition, the classification of 3D texture im-

ages and bidirectional texture functions, traditionally relied

on hand-designed 3D image features and multiple views

[8, 24]. More recently, features learned with deep neu-

ral networks have outperformed these methods for texture

recognition. Cimpoi et al. [7] achieves state-of-art results

on FMD [36] and KTH-TIPS2 [18] using a Fisher vector

representation computed on image features extracted with a

CNN.

The success of deep learning methods in object recog-

nition has also translated to the problem of material recog-

nition, the classification and segmentation of material cat-

egories in arbitrary images. Bell et al., achieve per-pixel

material category labeling by retraining the then state-of-

the-art object recognition network [37] on a large dataset of

material appearance [1]. This method relies on large im-

age patches that include object and scene context to recog-

nize materials. In contrast, Schwartz and Nishino [34, 35]

learn material appearance models from small image patches

extracted inside object boundaries to decouple contextual

information from material appearance. To achieve accu-

rate local material recognition, they introduced intermediate

material appearance representations based on their intrinsic

properties (e.g., “smooth” and “metallic”).

In addition to the apparent appearance, materials can be

discerned by their radiometric properties, namely the bidi-

rectional reflectance distribution function (BRDF) [30] and

the bidirectional texture function (BTF) [11], which essen-

tially encode the spatial and angular appearance variations

of surfaces. Materials often exhibit unique characteristics

in their reflectance offering detailed cues to recognize the

difference of subtle variations in them (e.g., different types

of metal [27] and paint [42]). Reflectance measurements,

however, necessitate elaborate image capture systems, such

as a gonioreflectometer [30,45], robotic arm [25], or a dome

with cameras and light sources [12,27,42]. Recently, Zhang

et al. introduced the use of a one-shot reflectance field cap-

ture for material recognition [48]. They adapt the parabolic

mirror-based camera developed by Dana and Wang [9] to

capture the reflected radiance for a given light source di-

rection in a single shot, which they refer to as a reflectance

disk. More recently, Zhang et al. showed that the reflectance

disks contain sufficient information to accurately predict the

kinetic friction coeffcient of surfaces [49]. These results

demonstrate that the angular appearance variation of mate-

rials and their gradients encode rich cues for their recog-

nition. Similarly, Wang et al. [44] uses a light field cam-

era and combines angular and spatial filtering for material

recognition. In strong alignment with these recent advances

in material recognition, we build a framework of spatial

and angular appearance filtering. In sharp contrast to past

methods, however, we use image information from standard

cameras instead of a multilens array as in Lytro. We explore

the difference of using a large viewing angle range (with

samples coarsely quantized in angle space) by using differ-

ential changes in angles which can easily be captured by a

two-camera system or small motions of a single ordinary

camera.

Deep learning has achieved major success in object clas-

sification [4,19,23], segmentation [17,22,32], and material

recognition [7, 26, 49, 50]. In our goal of combining spatial

and angular image information to account for texture and re-

flectance, we are particularly motivated by the two-stream

fusion framework [15, 37] which achieves state-of-art re-

sults in UCF101 [38] action recognition dataset.
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(a) material classes (b) one sample at multiple viewing directions

Figure 3: (a) The 40 material categories in the GTOS dataset introduced in this paper. (Right) The material surface obser-

vation points. Nine viewpoint angles separated along an arc spanning 80◦ are measured. For each viewpoint, a differential

view is captured ±5◦ in azimuth from the original orientation (the sign is chosen based on robotic arm kinematics.)

Datasets: Datasets to measure reflectance of real world

surfaces have a long history of lab-based measurements

including: CUReT database [11], KTH-TIPS database by

Hayman et al. [18], MERL Reflectance Database [29],

UBO2014 BTF Database [46], UTIA BRDF Database

[16], Drexel Texture Database [31] and IC-CERTH Fabric

Database [21]. In many of these datasets, dense reflectance

angles are captured with special image capture equipment.

Some of these datasets have limited instances/samples per

surface category (different physical samples representing

the same class for intraclass variability) or have few surface

categories, and all are obtained from indoor measurements

where the sample is removed from the scene. More recent

datasets capture materials and texture in-scene, (a.k.a. in-

situ, or in-the-wild). A motivation of moving to in-scene

capture is to build algorithms and methods that are more rel-

evant to real-world applications. These recent databases are

from internet-mined databases and contain a single view of

the scene under a single illumination direction. Examples

include the the Flickr Materials Database by Sharan et al.

[36] and the Material in Context Database by Bell et al. [1].

Recently, DeGol et al. released GeoMat Database [13] with

19 material categories from outdoor sites and each category

has between 3 and 26 physical surface instances, with 8 to

12 viewpoints per surface. The viewpoints in this dataset

are irregularly sampled in angle space.

3. Differential Angular Imaging

We present a new measurement method called differen-

tial angular imaging where a surface is imaged from a par-

ticular viewing angle v and then from an additional view-

point v + δ. The motivation for this differential change

in viewpoint is improved computation of the angular gra-

dient of intensity ∂Iv/∂v. Intensity gradients are the basic

building block of image features and it is well known that

discrete approximations to derivatives have limitations. In

particular, spatial gradients of intensities for an image I are

approximated by I(x + ∆) − I(x) and this approximation

is most reasonable at low spatial frequencies and when ∆ is

small. For angular gradients of reflectance, the discrete ap-

proximation to the derivative is a subtraction with respect to

the viewing angle. Angular gradients are approximated by

I(v + δ)− I(v) and this approximation requires a small δ.

Consequently, differential angular imaging provides more

accurate angular gradients.

The differential images as shown in Figures 1 and 2

have several characteristics. First, the differential image

reveals the gradients in BRDF/BTF at the particular view-

point. Second, relief texture is also observable in the dif-

ferential image due to non-planar surface structure. Finally,

the differential images are sparse. This sparsity can provide

a computational advantage within the network. (Note that

I(v + δ) and I(v) are aligned with a global affine transfor-

mation before subtraction.)
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4. GTOS Dataset

Ground Terrain in Outdoor Scenes Dataset We collect

the GTOS database, a first-of-its-kind in-scene material re-

flectance database, to investigate the use of spatial and an-

gular reflectance information of outdoor ground terrain for

material recognition. We capture reflectance systematically

by imaging a set of viewing angles comprising a partial

BRDF with a mobile exploration robot. Differential angu-

lar images are obtained by also measuring each of Nv = 9
base angles v = (θv, φv), θv ∈ [−40◦,−30◦, . . . , 40],
and a differential angle variation of δ = (0, 5◦) result-

ing in 18 viewing directions per sample as shown in Fig-

ure 3 (b). Example surface classes are depicted in Figure 3

(a). The class names are (in order of top-left to bottom-

right): cement, asphalt, painted asphalt , brick, soil, muddy

stone, mud, mud-puddle, grass, dry leaves, leaves, asphalt-

puddle, mulch, metal grating, plastic, sand, stone, artifi-

cial turf, aluminum, limestone, painted turf, pebbles, roots,

moss, loose asphalt-stone, asphalt-stone, cloth, paper, plas-

tic cover, shale, painted cover, stone-brick, sandpaper, steel,

dry grass, rusty cover, glass, stone-cement, icy mud, and

snow. The Nc = 40 surface classes mostly have between

4 and 14 instances (samples of intra-class variability) and

each instance is imaged not only under Nv viewing direc-

tions but also under multiple natural light illumination con-

ditions. As illustrated in Figure 1, sample appearance de-

pends on the weather condition and the time of day. To cap-

ture this variation, we image the same region with Ni = 4
different weather conditions (cloudy dry, cloudy wet, sunny

morning, and sunny afternoon). We capture the samples

with 3 different exposure times to enable high dynamic

range imaging. Additionally, we image a mirrored sphere to

capture the environment lighting of the natural sky. In ad-

dition to surface images, we capture a scene image to show

the global context. The robot measurement device is de-

picted in Figure 4. Although, the database measurements

were obtained with robotic positioning for precise angular

measurements, our recognition results are based on subsets

of these measurements so that an articulated arm would not

be required for an in-field system. The total number of sur-

face images in the database is 34,243. As shown in Table 1,

this is the most extensive outdoor in-scene multiview mate-

rial database to date.

5. DAIN for Material Recognition

Differential Angular Imaging Network (DAIN) Con-

sider the problem of in-scene material recognition with im-

ages from multiple viewing directions (multiview). We de-

velop a two-stream convolutional neural network to fully

leverage differential angular imaging for material recogni-

tion. The differential image Iδ sparsely encodes reflectance

angular gradients as well as surface relief texture. The spa-

Figure 4: The measurement equipment for the GTOS

database: Mobile Robots P3-AT robot, Cyton gamma 300

robot arm, Basler aca2040-90uc camera with Edmund Op-

tics 25mm/F1.8 lens, DGK 18% white balance and color

reference card, and Macmaster-Carr 440C Stainless Steel

Sphere.

tial variation of image intensity remains an important recog-

nition cue and so our method integrates these two streams

of information. A CNN is used on both streams of the net-

work and then combined for the final prediction result. The

combination method and the layer at which the combination

takes place leads to variations of the architecture.

We employ the ImageNet [14] pre-trained VGG-M

model [4] as the prediction unit (labeled CNN in Figure 5).

The first input branch is the image Iv at a specific viewing

direction v. The second input branch is the differential im-

age Iδ . The first method of combination shown in Figure 5

(a) is a simple averaging of the output prediction vectors ob-

tained by the two branches. The second method combines

the two branches at the intermediate layers of the CNN, i.e.

the feature maps output at layer M are combined and passed

forward to the higher layers of the CNN, as shown Figure 5

(b). We empirically find that combining feature maps gen-

erated by Conv5 layer after ReLU performs best. A third

method (see Figure 5 (c)) is a hybrid of the two architec-

tures that preserves the original CNN path for the original

image Iv by combining the layer M feature maps for both

streams and by combining the prediction outputs for both

streams as shown in Figure 5 (c). This approach is the best

performing architecture of the three methods and we call it

the differential angular imaging network (DAIN).

For combining feature maps at layer M , consider fea-

tures maps xa and xb from the two branches that have width

W , height H , and feature channel depth D. The output fea-

ture map y will be the same dimensions W ×H ×D. We

can combine feature maps by: (1) Sum: pointwise sum of

xa and xb, and (2) Max: pointwise maximum of xa and xb.

In Section 6 we evaluate the performance of these methods

of combining lower layer feature maps.
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(a) Final layer (prediction) combination method (b) Intermediate layer (feature maps) combination method

(c) DAIN (differential angular image network)

Figure 5: Methods to combine two image streams, the original image Iv and the differential image Iδ = Iv+δ − Iv . The best

performing configuration is the architecture in (c), which we refer to as differential angular imaging network (DAIN).

5.1. Multiple Views

Our GTOS database has multiple viewing directions on

an arc (a partial BRDF sampling) as well as differential im-

ages for each viewing direction. We evaluate our recogni-

tion network in two modes: (1) Single view DAIN, with

inputs from Iv and Iδ , with v representing a single viewing

angle; (2) Multi view DAIN, with inputs Iv and Iδ , with

v ∈ [v1, v2, ..., vN ]. For our GTOS databse, v1, v2, ..., vN
are viewing angles separated by 10◦ representing a N×10◦

range of viewing angles. We empirically determine that

N = 4 viewpoints are sufficient for recognition. For a base-

line comparison we also consider non-differential versions:

Single View with only Iv for a single viewing direction and

Multi View with inputs Iv , v ∈ [v1, v2, ..., vN ].

To incorporate multi view information in DAIN we use

three methods: (1) voting (use the predictions from each

view to vote), (2) pooling (pointwise maximum of the com-

bined feature maps across viewpoints), (3) 3D filter + pool-

ing (follow [40] to use a 3×3×3 learned filter bank to con-

volve the multi view feature maps). See Figure 6. After 3D

filtering, pooling is used (pointwise maximum across view-

points). The computational expense of this third method

due to learning the filter weights is significantly higher.

6. Experiments

In this section, we evaluate the DAIN framework for ma-

terial recognition and compare the results on GTOS with

several state-of-the-art algorithms. The first evaluation de-

termines which structure of the two stream networks from

Figure 5 works best on the GTOS dataset, leading to the

choice in (c) as the DAIN architecture. The second evalua-

tion considers recognition performance with different vari-

ations of DAIN recognition. The third experimental eval-

uation compares three other state-of-the-art approaches on

our GTOS-dataset, concluding that multiview DAIN works

best. Finally, we apply DAIN to a lightfield dataset to show

performance in another multiview material dataset.

Training procedure We design 5 training and testing

splits by assigning about 70% of ground terrain surfaces of

each class to training and the rest 30% to testing. Note that,

to ensure that there is no overlap between training and test-

ing sets, if one sample is in the training set, all views and

illumination conditions for that sample is in the training set.

Each input image from our GTOS database is resized

into 240 × 240. Before training a two branch network,

we first fine-tune the VGG-M model separately with orig-

inal and differential images with batch size 196, dropout

rate 0.5, momentum 0.9. We employ the augmentation

method that horizontally and vertically stretch training im-

ages within ±10%, with an optional 50% horizontal mirror

flips. The images are randomly cropped into 224 × 224 ma-

terial patches. All images are pre-processed by subtracting

a per color channel mean and normalizing for unit variance.

The learning rate for the last fully connected layer is set to

10 times of other layers. We first fine-tune only the last fully

connected layer with learning rate 5 × 10−2 for 5 epochs;

then, fine-tune all the fully connected layers with learning
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Figure 6: Multiview DAIN. The 3D filter + pooling method to combine two streams (original and differential image) from

multiple viewing angles. W , H , and D are the width, height, and depth of corresponding feature maps, N is the number of

view points.

rate 10−2 for 5 epochs. Finally we fine-tune all the layers

with leaning rate starting at 10−3, and decrease by a factor

of 0.1 when the training accuracy saturates. Since the snow

class only has 2 samples, we omit them from experiments.

For the two branch network, we employ the fine-tuned

two-branch VGG-M model with batch size 64 and learning

rate starting from 10−3 which is reduced by a factor of 0.1

when the training accuracy saturates. We augment train-

ing data with randomly stretch training images by ±25%
horizontally and vertically, and also horizontal mirror flips.

The images are randomly cropped to 224 × 224 material

patches. We first backpropagate only to feature maps com-

bination layer for 3 epochs, then fine tunes all layers. We

employ the same augmentation method for the multiview

images of each material surface. We randomly select the

first viewpoint image, then subsequent N = 4 view point

images are selected for experiments.

Evaluation for DAIN Architecture Table 2 shows the

mean classification accuracy of the different three branch

combination methods depicted in Figure 5. Inputs are sin-

gle view images (Iv) and single view differential images

(Iδ). Combining the two streams at the final prediction layer

(77% accuracy) is compared with the intermediate layer

combination (74.8%) or the hybrid approach in Figure 5 (c)

(79.4%) which we choose as the differential angular imag-

ing network. The combination method used is Sum and the

feature maps are obtained from Conv5 layers after ReLU.

DAIN Recognition Performance We evaluate DAIN

recognition performance for single view input (and dif-

ferential image) and for multiview input from the GTOS

database. Additionally, we compare the results to recog-

nition using a standard CNN without a differential image

stream. For all multiview experimental results we choose

the number of viewpoints N = 4, separated by 10◦ with the

starting viewpoint chosen at random (and the correspond-

ing differential input). Table 3 shows the resulting recog-

nition rates (with standard deviation over 5 splits shown

as a subscript). The first three rows shows the accuracy

without differential angular imaging, using both single view

and multiview input. Notice the recognition performance

for these non-DAIN results are generally lower than the

DAIN recognition rates in the rest of the table. The mid-

dle three rows show the recognition results for single view

DAIN. For combining feature maps we evaluate both Sum

and Max which have comparable results. Notice that sin-

gle view DAIN achieves better recognition accuracy than

multiview CNN with voting (79.4% vs. 78.1%). This is an

important result indicating the power of using the differen-

tial image. Instead of four viewpoints separated by 10◦ a

single viewpoint and its differential image achieves a better

recognition. These results provide design cues for building

imaging systems tailored to material recognition. We also

evaluate weather using inputs from the two viewpoints di-

rectly (i.e. Iv and Iv+δ) is comparable to using Iv and the

differential image Iδ . Interestingly, the differential image as

input has an advantage (79.4% over 77.5%). The last three

rows of Table 3 show that recognition performance using

multiview DAIN beats the performance of both single view

DAIN and CNN methods with no differential image stream.

We evaluate different ways to combine the multiview image

set including voting, pooling, and the 3D filter+pooling il-

lustrated in Figure 6.

The CNN module of our DAIN network can be replaced

by other state-of-the-art deep learning methods to further

improve results. To demonstrate this, we change the CNN

module in a single view DAIN (Sum) (with inputs Iv , Iδ)

to ImageNet pre-trained ResNet-50 model [19] on split1.

Combining feature maps generated from the Res4 layer (the

fourth residual unit) after ReLU with training batch size

196, recognition rate improves from 77.5% to 83.0%.

Table 4 shows the recognition rates for multiview

DAIN that outperforms three other multi-view classification

method: FV+CNN [6], FV-N+CNN+N3D [13], and MVCNN
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Method

Final

Layer

Combina-

tion

Intermediate

Layer

Combination

DAIN

Accuracy 77.0±2.5 74.8±3.4 79.4±3.4

Table 2: Comparison of accuracy from different two stream

methods as shown in Figure 5. The feature-map combi-

nation method for (b) and (c) is Sum at Conv5 layers af-

ter ReLU. The reported result is the mean accuracy and the

subscript shows the standard deviation over 5 splits of the

data. Notice that the architecture in (c) gives the best per-

formance and is chosen for the differential angular imaging

network (DAIN).

[39]. The table shows recognition rates for a single split

of the GTOS database with images resized to 240 × 240.

All experiments are based on the same pre-trained VGG-M

model. We use the same fine-tuning and training procedure

as in the MVCNN [39] experiment. For FV-N+CNN+N3D

applied to GTOS, 10 samples (out of 606) failed to get ge-

ometry information by the method provided in [13] and we

removed these samples from the experiment. The patch size

in [13] is 100 × 100, but the accuracy for this patch size for

GTOS was only 43%, so we use 240 × 240. We implement

FV-N+CNN+N3D with linear mapping instead of homoge-

neous kernel map [41] for SVM training to save memory

with this larger patch size.

DAIN on 4D Light Field Dataset We tested our multi-

view DAIN (Sum + pooling) method on a recent 4D light

field (Lytro) dataset [44]. ResNet-50 is used as the CNN

module. The recognition accuracy with full images on 5

splits is 83.0±2.1 . Note that a subset of the lightfield data

is used to mimic the differential imaging process, so these

results should not be interpreted as a comparison of our al-

gorithm to [44].

The Lytro dataset has N = 49 views, from the

7 × 7 lenslet array, where each lenslet corresponds

to a different viewing direction. Using (i, j) as an

index into this array, we employ the viewpoints in-

dexed by (4, 1), (4, 3), (4, 5), (4, 7) as the 4 views in

multiview DAIN. We use the viewpoint indexed by

(3, 1), (5, 3), (3, 5), (5, 7) as the corresponding differential

views. This is an approximation of multiview DAIN; the

lightfield dataset does not capture the range of viewing an-

gles to exactly emulate multiple viewpoints and small angle

variations of these viewpoints. Instead of using all N = 49
viewpoints as in [44], we generate comparable recognition

accuracy by only 8 viewpoints.

7. Conclusion

In summary, there are three main contributions of this

work: 1) Differential Angular Imaging for a sparse spatial

Method
First

input

Second

input
Accuracy

single view CNN Iv - 74.3±2.8

multiview CNN, voting Iv - 78.1±2.4

multiview CNN,3D filter Iv - 74.8±3.2

single view DAIN (Sum) Iv Iv+δ 77.5±2.7

single view DAIN (Sum) Iv Iδ 79.4±3.4

single view DAIN (Max) Iv Iδ 79.0±1.8

multiview DAIN (Sum/voting) Iv Iδ 80.0±2.1

multiview DAIN (Sum/pooling) Iv Iδ 81.2±1.7

multiview DAIN (3D filter/pooling) Iv Iδ 81.1±1.5

Table 3: Results comparing performance of standard CNN

recognition without angular differential imaging (first three

rows) to our single-view DAIN (middle three rows) and

our multi-view DAIN (bottom three rows). Iv denotes the

image from viewpoint v, Iv+δ is the image obtained from

viewpoint v+δ, and Iδ = Iv−Iv+δ is the differential image.

The differential angular imaging network (DAIN) has supe-

rior performance over CNN even when comparing single

view DAIN to multiview CNN. Multiview DAIN provides

the best recognition rates.

Architecture Accuracy

FV+CNN [6] 75.4%

FV-N+CNN+N3D [13] 58.3%

MVCNN [39] 78.1%

multiview DAIN (3D filter), pooling 81.4%

Table 4: Comparison with the state of art algorithms on

GTOS dataset. Notice that our method, multiview DAIN,

achieves the best recognition accuracy.

distribution of angular gradients that provides key cues for

material recognition; 2) The GTOS Dataset with ground ter-

rain imaged by systematic in-scene measurement of partial

reflectance instead of in-lab reflectance measurements. The

database contains 34,243 images with 40 surface classes,

18 viewing directions, 4 illumination conditions, 3 exposure

settings per sample and several instances/samples per class.

3) We develop and evaluate an architecture for using dif-

ferential angular imaging, showing superior results for dif-

ferential inputs as compared to original images. Our work

in measuring and modeling outdoor surfaces has important

implications for applications such as robot navigation (de-

termining control parameters based on current ground ter-

rain) and automatic driving (determining road conditions by

partial real time reflectance measurements). We believe our

database and methods will provide a sound foundation for

in-depth studies on material recognition in the wild.
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