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Abstract

Three-dimensional geometric data play fundamental
roles in many computer vision applications. However, their
scale-dependent nature, i.e. the relative variation in the
spatial extents of local geometric structures, is often over-
looked. In this paper we present a comprehensive frame-
work for exploiting this 3D geometric scale variability.
Specifically, we focus on detecting scale-dependent geomet-
ric features on triangular mesh models of arbitrary topol-
ogy. The key idea of our approach is to analyze the geomet-
ric scale variability of a given 3D model in the scale-space
of a dense and regular 2D representation of its surface ge-
ometry encoded by the surface normals. We derive novel
corner and edge detectors, as well as an automatic scale
selection method, that acts upon this representation to de-
tect salient geometric features and determine their intrinsic
scales. We evaluate the effectiveness and robustness of our
method on a number of models of different topology. The re-
sults show that the resulting scale-dependent geometric fea-
ture set provides a reliable basis for constructing a rich but
concise representation of the geometric structure at hand.

1. Introduction

Three-dimensional geometric data play increasingly vi-
tal roles in various computer vision applications, ranging
from navigation to inverse rendering. Despite their ubiq-
uitous use, little attention has been given to the fact that
real-world 3D geometric data can contain significant scale
variation in their local geometric structures. For instance,
in a 3D human face model, both the tip of the nose and
dimples are discriminative geometric features suitable for
representing the underlying surface. The spatial extents of
such geometric features, however, significantly differ from
one another – they lie at entirely different scales. While
this geometric scale variability can be deemed to be another
cause of error in subsequent processing, it can in turn be ex-
ploited as an additional source of information to enrich the
representation of the actual object/scene geometry. In this

paper we focus on extracting scale-dependent 3D geomet-
ric features, a unified set of geometric features detected at
their own intrinsic scales, in geometric data given as mesh
models.

Several methods have been proposed in the past that ac-
count for the geometric scale variability in 3D feature de-
tection. Most of these methods are loosely based on the
2D scale-space theory – the analysis of scale variability in
intensity images. In 2D scale-space theory, the space of im-
ages across different scales, the scale-space, is constructed
by successively convolving the image with Gaussian ker-
nels of increasing standard deviation [11, 15, 26, 27]. Rich
visual features, including corners, edges, and blobs, can
then be detected in this scale-space and their intrinsic scales
can be identified [16].

Previous methods essentially apply the 2D scale-space
theory to 3D geometric data by replacing pixel intensities
with the 3D vertex coordinates of the mesh model. How-
ever, directly “smoothing” the 3D points, for instance with
Gaussian kernels [18] or mean curvature flow [22], mod-
ifies the extrinsic geometry of the original model. This
can lead to alterations of the global topology of the ge-
ometric data, in particular through fragmentation of the
original model [25], which leads to an erroneous scale-
space representation. Most past methods also use the Eu-
clidean distance between 3D points as the distance metric
in the operator for constructing the scale-space representa-
tion [8, 12, 14, 21]. This, however, can lead to the creation
of erroneous features in the scale space, due to local topo-
logical changes within the support region of the operator 1.
Finally, past methods are tailored to detect one type of a
feature, either corners [8] or edges [20], or use empirical
measures for detecting them [19].

In this paper, we present a comprehensive method for
extracting scale-dependent 3D geometric features. We aim
to construct a sound scale-space type representation from
which a variety of scale-dependent features can be ex-
tracted. The key insight behind our method is that we

1For instance, if two surfaces from different parts of the model lie close
to each other, the support region of the scale-space operator will mistakenly
include both surfaces.
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should construct a scale-space representation of the surface
geometry of the 3D model at hand, since we are interested
in the scale-dependent geometric features lying on the sur-
face. For this reason, we consider the normal field on the 2D
surface of the 3D model as the base representation of the 3D
geometry. While higher-order geometric entities such as the
mean curvature [13] can be used instead, surface normals
are a better choice since it is the first-order partial deriva-
tives of the raw geometric data which is less affected by
noise compared to higher-order partial derivatives.

We first parameterize the surface of the mesh model on
a 2D plane. We then interpolate over the surface normals
at each 2D-embedded vertex of the mesh model to obtain
a dense and regular 2D representation (vector field) of the
original surface, which we refer to as the normal map. This
representation is independent of the mesh resolution and
thus the results are robust to different samplings of the sur-
face. Since the parameterization introduces distortion to the
relative distances between the surface points, we compute
a distortion map which encodes the relative change in the
model edge lengths. We compute the discrete scale-space
of the normal map (geometric scale-space) by convolving
the vector field with Gaussian kernels of increasing stan-
dard deviation. The Gaussian kernel is modified to account
for the distortion induced by the unwrapping. This ensures
the use of the geodesic distances as the distance metric. As a
result, constructing and analyzing the geometric scale-space
is equivalent to analyzing the scale-space of the normal field
on the surface of the 3D model, however, algorithmically in
a much simpler way since we compute it in a regular and
dense 2D domain.

A rich set of scale-dependent features can be extracted
from the resulting scale-space representation. In particu-
lar, we derive detectors to extract geometric corners and
edges at different scales. In order to establish these de-
tectors we carefully derive the first- and second-order par-
tial derivatives of the normal map. Finally, we derive an
automatic scale selection method analogous to that of 2D
scale-space theory to identify the natural scale of each fea-
ture and to unify all features into a single set. The result is
a set of scale-dependent 3D geometric features that provide
a rich and unique basis for representing the 3D geometry
of the original data. For instance, these scale-dependent
geometric features may directly be used for matching and
aligning different 3D models robustly against local occlu-
sions and distortions. They can also be used for deriving
various local and global geometric representations, such as
scale-invariant local geometric descriptors that can be use-
ful in 3D object recognition or hierarchical feature-based
global representations that can enable efficient 3D registra-
tion. The effectiveness of the proposed method is evaluated
on several 3D models of different topology and its robust-
ness to noise and mesh sampling density variation is demon-
strated.

(a) (b) (c)

Figure 1. 2D normal and distortion map of a 3D model. (a) shows
the original model. (b) illustrates the dense 2D normal map. Ob-
serve that geometric features such as the creases on the palm are
clearly visible. (c) shows the distortion maps corresponding to
the normal maps. Darker regions have been shrunk relative to the
brighter regions. Iso-contour lines illustrate the various levels of
distortion induced by the embedding.

2. Scale-Space of a 3D Model
Geometric features that represent a given 3D mesh

model reside on the model’s surface. For this reason, we
must construct a scale-space type of a representation that
faithfully encodes the scale variability of its surface geom-
etry. We represent the given geometry with its surface nor-
mals and compute a dense and regular 2D representation of
it by parameterizing the surface on a 2D plane. We then
build a scale-space of this surface normal field by deriving
and applying a scale-space operator that correctly accounts
for the geodesic distances on the surface.

2.1. 2D Representation of the Surface Geometry

We construct a 2D representation of the 3D geometry
given as a 3D mesh model by first unwrapping the surface
of the model onto a 2D plane. Specifically, given a mesh
M and the planar domain D we seek a bijective parameter-
ization φ : D → M from a discrete set of planar points
to the mesh vertex set. Ideally, this mapping would be iso-
metric, however in general an isometric embedding cannot
be achieved and shrinkage and expansion of mesh edges
will occur. Since we later accurately account for the intro-
duced distortion in the distance metric, any embedding al-
gorithm may be used 2. For this work, we compute an initial
parameterization based on the estimation of the harmonic
map [4], and iteratively refine it using a method proposed
by Yoshizawa et al. [28] which minimizes the distortion in
the surface area of the triangulation.

The results of the above embedding is a 2D sparse “im-
age” of the 3D mesh vertices. In order to construct a regular
and dense representation of the original surface, we inter-
polate a geometric entity associated with each of the ver-
tex points in the 2D domain. Surface normals are a natu-
ral choice for this entity due to the fact that they are less
affected by noise as compared to higher-order derivative

2Readers are referred to [5] for a recent survey on various R3 to R2

parameterization algorithms.
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quantities such as curvature. Furthermore, they convey di-
rectional information of the surface geometry as opposed to
scalar quantities such as mean or Gaussian curvature. Note
that 3D coordinates cannot be used since they form the ex-
trinsic geometry of the surface. Given a parameterization φ
we construct a dense normal map N : R2 → S2, where N
maps points in D to the corresponding 3D normal vector.
Figure 1 (b) shows an example of such a normal map. The
resulting normal map provides a dense and regular 2D rep-
resentation of the original 3D geometry. Most importantly,
the density of the normal map is independent of the mesh
resolution of the given 3D model, therefore subsequent fea-
ture detection can be achieved at arbitrary precisions on the
surface and is robust to changes in the sampling density on
the original 3D model.

In order to accurately construct a scale-space representa-
tion of the original surface geometry, we require the relative
geodesic distance between any two points on the normal
map 3. This geodesic distance can be computed by account-
ing for the distortion introduced by the embedding. Given a
point u = (s, t) ∈ D that maps to a 3D mesh vertex φ(u)
we may define its distortion ε(u) as the average change in
edge lengths connected to each vertex:

ε(u) =
1

|A(u)|
∑

v∈A(u)

‖ u− v ‖
‖ φ(u)− φ(v) ‖

, (1)

whereA(u) is a set of vertices adjacent to u. We construct a
dense distortion map by again interpolating over the values
defined at each vertex. Figure 1(c) depicts the distortion
map of the hand model in Figure 1(a).

2.2. Multiple Normal Maps
Mesh parameterization algorithms often require 3D

models to contain a natural boundary loop that is mapped
to the boundary of the planar domain. For 3D models that
do not contain such boundaries, we need to introduce cuts
that map to the boundaries of the 2D domains, for instance
one boundary cut for a genus-0 model, and compute multi-
ple normal maps corresponding to different surface regions.
At the same time, in general, surface regions mapped close
to the boundary of the 2D domain are significantly distorted.
In such areas the local neighbor of a 3D vertex is mapped
into a highly skewed region, which can introduce errors in
the subsequent filtering.

We introduce boundary cuts such that they avoid surface
regions that are most likely to contain discriminative fea-
tures. Specifically, for each 3D boundary cut, we manu-
ally select end points and automatically trace vertices with
low curvature 4. Furthermore, we construct a complimen-
tary parameterization where portions of the model that were

3Note that there is also a global scaling between the 3D mesh model
and its parameterized 2D image.

4This is the exact opposite of methods that try to minimize the overall
distortion in the resulting parameterization [9].

(a) (b) (c)
Figure 2. Representing a 3D model using multiple normal maps.
The heat map (a) illustrates the density of 3D vertices mapped to
each point in the normal map shown in Figure 1(b). Many surface
points on each finger are mapped to identical 2D points. (b) and
(c) show two supplementary normal maps corresponding to two
fingers of the model shown in Figure 1, which can be automatically
computed given (a).

mapped to the perimeter of the original embedding are
mapped to the central region of D. By using this compli-
mentary parameterization together with the original embed-
ding, we can ensure that every surface region is mapped to
a region in the normal map where the local structure is well
preserved.

There can also be a considerable loss of information due
to the finite resolution of the planar domain D. Often when
a model has large appendages the discretization of the nor-
mal map results in 2D points which correspond to multiple
mesh vertices. To compensate for this many-to-one map-
ping, we first compute a density map of vertices as shown
in Figure 2(a). By clustering the points of this histogram
into disjoint sets and parameterizing the corresponding por-
tions of the mesh in each cluster, we construct a comprehen-
sive set of supplementary normal maps. Figure 2(b) and (c)
show two such supplementary normal maps corresponding
to two fingers of the model shown in Figure 1. By represent-
ing the 3D model using multiple normal maps, we ensure
that all portions of the surface are covered by the represen-
tation.

2.3. Geometric Scale-Space
Given the normal map(s) N and its distortion map(s)

ε we construct a scale-space representation of the original
surface geometry. This geometric scale-space should en-
code the evolution of the surface normals on the 3D model
while it is gradually smoothed. In other words, it is equiva-
lent to computing the (2-)harmonic flow of a harmonic map
from R2 to S2 [24]. The harmonic map is the minimizer of
the harmonic energy,

min
N:R2→S2

∫ ∫
D

‖ ∇N ‖2 dsdt , (2)

and the harmonic flow corresponds to the gradient-descent
flow of the Euler-Lagrange equation of the harmonic en-
ergy,

∂Ni

∂t
= ∆Ni + Ni ‖ ∇N ‖2 (i = 1, 2, 3) , (3)

where Ni is the i-th component of N and t corresponds to
the scale level in the geometric scale-space.
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(a) Scale σ = 1 (b) Scale σ = 3 (c) Scale σ = 5 (d) Scale σ = 7

Figure 3. The scale-space representation of the 3D hand shown in Figure 1 and Figure 2(b,c). As the standard deviation increases fine
model details are smoothed away leaving only coarse geometric structures. For example the finger nail is quickly smoothed away, while
the prominent creases on the palm remain visible even at the coarsest scale. Although the sizes of the finger nails in the two supplementary
normal maps are different, the rate of smoothing is consistent due to the use of the geodesic Gaussian kernel that accounts for the distortion
induced by the embedding.

The existence and uniqueness of the harmonic map for
R2 → S2 has been shown [6, 23]. Thus we are able to
construct a unique geometric scale-space based on the nor-
mal map 5. However, it has been shown that the harmonic
flow is only partially regular and can create singularities in
finite time. This means that the geometric scale-space com-
puted based on the normal map may not satisfy the causal-
ity assumption – “any feature at a coarse level of resolu-
tion is required to possess a cause at a finer level of reso-
lution” [11]. However, the cases where the harmonic flow
is known to blowup are when the initial data (original nor-
mal map in our case) is highly symmetric and at least C1-
continuous [1, 10], which is very rare for real-world geo-
metric data. Deriving the exact conditions that lead to non-
causal geometric scale-space is a difficult problem which
we leave as future work. For all the models in our exper-
iments, we did not observe any singularities created in the
computed geometric scale-space.

To construct a (discrete) geometric scale-space, instead
of iteratively computing the gradient-descent flow of Equa-
tion 3, we convolve the normal map with a Gaussian kernel
and renormalize the normals at each level 6. As in 2D scale-
space theory [15], the standard deviation of the Gaussian is
monotonically increased from fine to coarse scale levels.

We use the geodesic distance as the distance metric to
accurately construct a geometric scale-space that encodes
the surface geometry. Given a 2D isotropic Gaussian cen-
tered at a point u ∈ D, we define the value of the geodesic

5On the other hand, the harmonic energy for B3 → S2 has infinite
number of solutions [3] and hence a unique geometric scale-space cannot
be constructed if the Euclidean distance is used.

6Observe that Equation 3 can be seen as a diffusion equation with
an additional term rooting from the unit vector constraint. The iterative
computation of harmonic flow is usually computed by first computing the
gradient-descent flow for the diffusion term and renormalizing the vectors
at each step [2].

Gaussian kernel at a point v as

g(v;u, σ) =
1

2πσ2
exp

[
−d(v,u)2

2σ2

]
(4)

where d : R2 × R2 → R is the geodesic distance between
the 3D surface points φ(v) and φ(u). The geodesic dis-
tance between two 3D points φ(v) and φ(u) is defined as
the discretized line integral d(u,v) between v and u in the
distortion map, which can be computed as

d(v,u) ≈
∑

vi∈P(v,u), 6=u

ε(vi)−1 + ε(vi+1)−1

2
‖ vi−vi+1 ‖ ,

(5)where P(v,u) = [v,v1,v2, ...,vn,u] is a list of points
sampled on the line between v and u. The density of this
sampling determines the quality of the approximation of the
original geodesic distance.

Using this geodesic Gaussian kernel, we compute the
normal at point u for scale level σ as

Nσ(u) =

∑
v∈W

N(v)g(v;u, σ)

‖
∑

v∈W
N(v)g(v;u, σ) ‖

, (6)

where W is a set of points in a window centered at u. The
window size is also defined in terms of the geodesic dis-
tance and is set proportional to σ at each scale level. In
our implementation, we grow the window from the center
point while evaluating each point’s geodesic distance from
the center to correctly account for the points falling inside
the window. Figure 3 shows the normal map of the hand
model and two supplementary normal maps at four scale
levels. As the standard deviation of the Gaussian increases
fine model details are smoothed away, leaving only coarse
geometric structures.
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3. Feature Detection in Geometric Scale-Space
In order to detect salient features in the geometric scale-

space, we first derive the first- and second-order partial
derivatives of the normal map Nσ . Novel corner and edge
detectors are then derived using these partial derivatives. An
automatic scale-selection algorithm is introduced to unify
the features detected at each scale into a single set of scale-
dependent geometric features.

3.1. Derivatives of the Normal Map

We first derive the first-order partial derivatives of the 2D
normal map in the horizontal (s) and vertical (t) directions.
In the following we describe them only for the horizontal (s)
direction. The partial derivatives in the vertical direction (t)
may be derived by simply replacing s with t.

At any point in the normal map the horizontal direction
corresponds to a unique direction on the tangential plane
at the corresponding 3D point. The first-order derivative is
thus the directional derivative of the normal along this spe-
cific direction in the tangential plane, known as the normal
curvature. In the discrete domain D the normal curvature
in the horizontal (Cs) direction at a point u = (s, t) may be
computed by numerical central angular differentiation:

Ns(u) =
∂N(u)

∂s
= Cs(u) ≈

sin( 1
2θ(u−1,u+1))

L(u−1,u+1)
, (7)

where u±1 = (s ± 1, t), θ(u−1,u+1) is the angle between
the normal vectors N(u−1) and N(u+1), and L(u−1,u+1)
is the chord length between the 3D points φ(u−1) and
φ(u+1). Because the normal curvature is a function of adja-
cent points in the 2D domain D the chord length L is simply
the geodesic distance between these points. After applying
the discrete geodesic distance in Equation 5 we obtain

Ns(u) ≈
sin( 1

2θ(u−1,u+1))
d(u−1,u+1)

. (8)

Note that because the angle between the two normal vectors
is in the range [0, π], the first-order derivative is nonnegative
at both convex and concave surface points – it is unsigned.

The second-order derivative of the normal map can be
derived as

Nss(u) =
∂2N(u)

∂s2
=

∂Cs(u)
ds

. (9)

After applying the chain rule to Equation 7 we obtain

Nss(u) ≈ ∂θ(u−1,u+1)
∂s

cos
(

1
2θ(u−1,u+1)

)
L(u−1,u+1)

− ∂L(u−1,u+1)
∂s

2 sin
(

1
2θ(u−1,u+1)

)
L(u−1,u+1)2

.

Since we can safely assume that the parameterization in-
duces a uniform distortion between every adjacent point in
D, the derivative of the chord length L will be zero, and

(a) σ = 3 (b) σ = 7

Figure 4. Corners detected on the 2D normal map. (a) illustrates
the 20 strongest corners on the 2D representation of the hand
model at scale σ = 3. Observe that the corner points on the palm
are primarily located where two creases converge, or where there
is an acute bend in one crease. (b) shows the strongest corner on
two of the finger normal maps at scale σ = 7. At this coarse scale
the corners are detected on the tip of the finger.

the second term vanishes. After applying numerical cen-
tral differentiation to θ and using the half angle formula, the
second-order derivative reduces to

Nss(u) ≈
θ(u−2,u)− θ(u+2,u)

d(u−1,u+1)

q
1
2

(1 + N(u−1) ·N(u+1))

d(u−1,u+1)
.

(10)
This form is particularly attractive as it enables us to com-

pute the second-order derivative in terms of the original nor-
mal vectors, and the change in the local angle. The noise
associated with higher-order derivatives is reduced as we
have avoided an additional numerical differentiation of the
first-order derivatives.

3.2. Corners
Consider, the hand model shown in Figure 1. We wish

to detect geometrically meaningful corners such as the fin-
ger tips as well as the points on the sharp bends of the
palm prints. In other words, we are interested in detect-
ing two different types of geometric corners, namely points
that have high curvature isotropically or in at least two dis-
tinct tangential directions. The rich geometric information
encoded in the normal maps enable us to accurately detect
these two types of 3D corners using a two-phase geometric
corner detector.

We begin by computing the Gram matrix M of first-
order partial derivatives of the normal map Nσ at each
point. The Gram matrix at a point u is defined as
M(u; σ, τ) =X
v∈W

»
Nσ

s (v)2 Nσ
s (v)Nσ

t (v)
Nσ

s (v)Nσ
t (v) Nσ

t (v)2

–
g(v;u, τ) , (11)

where W is the local window around the point u. M has
two parameters, one that determines the particular scale in
the scale-space representation (σ), and one that determines
the weighting of each point in the Gram matrix (τ )7. The

7In our experiments we set τ = σ/2
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Figure 5. Edges detected at one scale level (σ = 1). The edges
are detected accurately on surface points with locally maximum
curvature, namely 3D ridges and valleys. Here the the creases of
the palm form the edges.

corner response at a point u is defined as the maximum
eigenvalue of M. However, due to the unsigned first-order
derivative the resulting corner set will contain not only the
aforementioned two desired types of geometric corners, but
will also contain points lying on 3D edges.

The second-order derivatives of the normal map can be
used to prune the corners lying along the 3D edges. We first
prune the corner points that are not centered on zero cross-
ings in both the horizontal and vertical directions. Next we
keep only those points where the variance of the second-
order partial derivatives around the point u are within a con-
stant factor of each other. The closer this constant factor is
to 1, the greater the geometric variance of the selected cor-
ner points in both tangential directions. Figure 4 illustrates
corners detected on the hand model shown in Figure 1 at
one scale level. Once the corners are detected in 2D they
can be mapped back to the 3D model. Because the 2D nor-
mal map is dense, the corresponding location of the corners
in 3D are independent of the input model’s triangulation.

3.3. Edges
In order to find edges at each scale level in the geometric

scale-space we use the second-order derivatives of the nor-
mal map. Although the first-order derivative is unsigned,
locating edges using the zero crossing of the second-order
derivative is sufficient, as the sign only affects the profile of
the derivative values around the zero crossing, and not the
actual location of the zero crossing.

Similar to the classic work of Marr and Hildreth [17] for
2D images, given a normal map, we begin by computing the
Laplacian, defined as

∇2Nσ = Nσ
ss + Nσ

tt (12)
Next we construct a binary image that contains the zero-
crossing of the Laplacian. This set of zero crossings con-
tains points centered on curvature maxima, as well as spu-
rious edge points arising from uniform or slow changing
curvature regions. We remove the spurious edge points by
thresholding the magnitude of the first-order derivative, and

(a) (b)

Figure 6. Scale-dependent geometric corners (a) and edges (b) de-
tected on the hand model. The corners are represented with 3D
spheres which are colored and sized according to their respective
scale (blue and red correspond to the finest and coarsest scales, re-
spectively). The corners accurately represent the geometric scale
variability of the model, for instance with fine corners on the palm
creases and coarse corners at the tips of the fingers. The edges also
encode the geometric scale variability, tracing edge segments that
arise at different scales.

the variance of the second-order derivative. This ensures
that edges are detected in high curvature regions, and lie
along portions of the surface with a significant variation in
the surface geometry.

Figure 5 shows an example result of edge detection on
the hand model at one scale level (σ = 1). Again, these
edges are localized on the surface of the 3D model inde-
pendent of the mesh resolution. Additional post-processing
may also be applied to the edges once they are mapped onto
the 3D model. In latter experiments, we first compute a
minimum spanning tree of the 3D edge points, where the
magnitude of the edge response in 2D determines the weight
of the 3D point similar to [20]. Then we decompose the tree
into a set of disjoint edge paths via caterpillar decomposi-
tion and fit NURBs curves to each of these paths to obtain
smooth parametric 3D edges.

3.4. Automatic Scale Selection

Once features are detected in each of the scale-space nor-
mal maps Nσ , they can be unified into a single feature set.
Although a feature may have a response at multiple scales,
it intrinsically exists at the scale where the response of the
feature detector is maximized. By determining this intrin-
sic scale for each feature we obtain a comprehensive scale-
dependent 3D geometric feature set.

In order to find the intrinsic scale of a feature we search
for local maxima of the normalized feature response across
a set of discrete scales, analogous to the 2D automatic scale
selection method [16]. The derivatives are normalized to
account for a decrease in the derivative magnitude as the
normal maps are increasingly blurred. We define the nor-
malized first-order derivatives Ñσ

s and Ñσ
t as
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Ñσ
s = σγNσ

s and Ñσ
t = σγNσ

t , (13)

where γ is a free parameter that is empirically set for each
particular feature detector. The corresponding normalized
second-order derivatives are defined as

Ñσ
ss = σ2γNσ

ss and Ñσ
tt = σ2γNσ

tt . (14)

Normalized feature responses are computed by substituting
the normalized derivatives into the corner and edge detec-
tors presented in the previous two sections. The final scale-
dependent geometric feature set is constructed by identify-
ing the points in scale-space where the normalized feature
response is maximized along the scale axis and locally in
a spatial window. Figure 6 illustrates the scale-dependent
geometric corners and edges of the hand model. The scale-
dependent geometric features accurately encode the geo-
metric scale-variability and can clearly be used as a unique
representation of the underlying geometry.

4. Experiments
We evaluated the effectiveness and robustness of the

proposed method for computing scale-dependent geomet-
ric features on several 3D models. The method was applied
to 3 different models, in addition to the hand model shown
in Figure 6. One of these models, the Julius Caesar, is of
disk topology and two, the armadillo and Buddha, have a
genus of zero.

4.1. Corner and Edge Detection
Figure 7 illustrates the corners and edges detected on the

three models. The armadillo model has appendages that
were significantly distorted in the 2D representation and
therefore multiple normal maps were used. Additionally
the large distortion at the boundaries of the armadillo was
accounted for using a complimentary parameterization. The
set of scales used to detect the corners and edges depend on
the geometry of the model and were set empirically. Ob-
serve that the set of corners is distributed across scales, and
that the scale of a particular corner reflects the scale of the
underlying surface geometry. For instance the tip of Cae-
sar’s nose is detected at the coarsest scale, while the corners
of the mouth are detected at a relatively finer scale. The
edges are detected along ridges and valleys of the 3D mod-
els existing at different scales, for example the edges on the
prominent creases of the Buddha’s robe, as well as edges
along the finer details of the base.

4.2. Noisy Surface Normals
We tested the resilience of our framework to noisy in-

put data by applying Gaussian random noise with standard
deviation 0.05, 0.075, and 0.1 to the surface normals of
the Julius Caesar model. The features were detected with
the identical parameters used to detect the original corner
set. Figure 8(a) illustrates the results. Although fine scale

corners can arise from the input noise, the detected scale-
dependent geometric corner set are highly consistent with
the those detected on the original model and localized accu-
rately (Figure 7).

4.3. Varying Sampling Densities
We demonstrate the independence of our framework

from surface sampling density by computing scale-
dependent geometric corners on three simplified Julius Cae-
sar models. Specifically, we applied a surface simplifica-
tion algorithm [7] to construct Julius Caesar models with
30, 000, 20, 000 and 10, 000 faces from the original model
with 50, 000 triangle faces. Corners were detected at each
sampling density using the parameters from the original ex-
periment (Figure 7). Figure 8(b) illustrates the results. Al-
though the number of faces changes substantially, the loca-
tion and scale of the corners remain largely constant. This
demonstrates that the density of the 2D representation of the
surface geometry ensures that the framework is independent
of the surface sampling.

5. Conclusion
In this paper we presented a comprehensive framework

for detecting scale-dependent 3D geometric features, in par-
ticular corners and edges, of a 3D model of arbitrary topol-
ogy. This was achieved by constructing and analyzing a
scale-space representation of the surface geometry encoded
by the surface normals embedded in a regular and dense 2D
domain. Experimental results show that we can robustly de-
tect and localize scale-dependent features with our method.

The detected scale-dependent geometric features faith-
fully encode the scale variability of the underlying geome-
try. Our framework is general and enables one to exploit
this hidden dimension of geometric data in any applica-
tion or computational task that relies on 3D geometric data.
The scale-dependent geometric features can also be used
to define various local or global representations of the 3D
geometry. For instance, we are currently investigating the
derivation of scale-invariant descriptors based on the anal-
ysis of the geometric scale-space and concise global repre-
sentations of scale-dependent features that encode the spa-
tial distribution of them.
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[4] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzl. Multiresolution Analysis of Arbitrary Meshes. In EU-
ROGRAPHICS 2002, pages 209–218, 2002.

7



Figure 7. Scale-dependent geometric corner and edge detection results on a disc topology model (Caesar) and two genus zero models
(Buddha and armadillo). The corner and edges are accurately detected across different scales. The resulting scale-dependent geometric
feature set encode the scale variability of the underlying surface geometry resulting in a unique representation of each model.

(a) Models with input noise of 0.05, 0.075 and 0.1 (b) Models with 30,000, 20,000 and 10,000 faces

Figure 8. Scale-dependent geometric corner detection with the presence of noisy surface normals (a), and with varying surface sampling
densities (b). When compared with the corners shown in Figure 7 the results demonstrate that the scale-dependent corners detected with
our framework are largely invariant to significant input noise and variations in the sampling density.

[5] M.S. Floater and K. Hormann. Surface Parameterization: A Tutorial
and Survey. In M. S. Floater and M. A. Sabin, editors, Advances in
Multiresolution for Geometric Modelling, pages 157–186. Springer-
Verlag, 2005.

[6] A. Freire. Uniqueness for the Harmonic Map Flow in Two Dimen-
sions. Calculus of Variations and Partial Differential Equations,
3(1):95–105, 1995.

[7] M. Garland and P. Heckbert. Surface Simplification Using Quadric
Error Metrics. In ACM SIGGRAPH, pages 209–216, 1997.

[8] N. Gelfand, N.J. Mitra, L.J. Guibas, and H. Pottmann. Robust Global
Registration. In Symposium on Geometry Processing.

[9] X. Gu, S. Gortler, and H. Hoppe. Geometry Images. In ACM SIG-
GRAPH, pages 355–361, 2002.

[10] R.M. Hardt. Singularities of Harmonic Maps. Bulletin of The Amer-
ican Mathematical Society, 34:15–34, 1991.

[11] J.J. Koenderink. The Structure of Images. Biological Cybernetics,
50:363–370, 1984.

[12] J. Lalonde, R. Unnikrishnan, N. Vandapel, and M. Hebert. Scale
Selection for Classification of Point-sampled 3-d Surfaces”. In Int’l
Conf. on 3-D Digital Imaging and Modeling, 2005.

[13] C.H. Lee, A. Varshney, and D.W. Jacobs. Mesh Saliency. ACM
Trans. on Graphics, 24(3):659–666, 2005.

[14] X. Li and I. Guskov. Multi-scale Features for Approximate Align-
ment of Point-based Surfaces. In Symposium on Geometry Process-
ing, 2005.

[15] T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Aca-
demics Publishers, 1994.

[16] T. Lindeberg. Feature Detection with Automatic Scale Selection.
Int’l Journal of Computer Vision, 30:77–116, 1998.

[17] D. Marr and E. Hildreth. Theory of Edge Detection. Proc. Royal
Society London, 207:187 – 217, 1980.

[18] F. Mokhtarian, N. Khalili, and P. Yuen. Cuvature Computation on
Free-Form 3-D Meshes at Multiple Scales. Computer Vision and
Image Understanding, 83:118–139, 2001.

[19] J. Novatnack, K. Nishino, and A. Shokoufandeh. Extracting 3D
Shape Features in Discrete Scale-Space. In Third Int’l Symposium
on 3D Data Processing, Visualization and Transmission, 2006.

[20] M. Pauly, R. Keiser, and M. Gross. Multi-scale Feature Extraction
on Point-sampled Surfaces. EUROGRAPHICS, 21(3), 2003.

[21] M. Pauly, L. P. Kobbelt, and M. Gross. Point-Based Multi-Scale
Surface Representation. ACM Trans. on Graphics, 25(2), 2006.

[22] M. Schlattmann. Intrinsic Features on Surfaces. In Central European
Seminar on Computer Graphics, pages 169–176, 2006.

[23] M. Struwe. On the Evolution of Harmonic Mappings of Riemannian
Surfaces. Commentarii Mathematici Helvetici, 60(1):558–581, 1985.

[24] B. Tang, G. Sapiro, and V. Caselles. Diffusion of General Data on
Non-Flat Manifolds via Harmonic Maps Theory: The Direction Dif-
fusion Case. Int’l Journal of Computer Vision, 36(2):149–161, 2000.

[25] G. Taubin. A Signal Processing Approach to Fair Surface Design. In
ACM SIGGRAPH, pages 351–358, 1995.

[26] J. Weickert, S. Ishikawa, and A. Imiya. Linear Scale-Space has First
been Proposed in Japan. Journal of Mathematical Imaging and Vi-
sion, 10(3):237–252, 1999.

[27] A.P. Witkin. Scale-Space Filtering: A New Approach to Multi-Scale
Description. In IEEE Int’l Conf. on Acoustics, Speech, and Signal
Processing, pages 150–153, 1984.

[28] S. Yoshizawa, A. Belyaev, and H-P. Seidel. A Fast and Simple
Stretch-Minimizing Mesh Parametrization. In Int’l Conf. on Shape
Modeling and Applications, pages 200–208, 2004.

8


