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Abstract. Despite the ubiquitous use of range images in various com-
puter vision applications, little has been investigated about the size vari-
ation of the local geometric structures captured in the range images. In
this paper, we show that, through canonical geometric scale-space anal-
ysis, this geometric scale-variability embedded in a range image can be
exploited as a rich source of discriminative information regarding the
captured geometry. We extend previous work on geometric scale-space
analysis of 3D models to analyze the scale-variability of a range image
and to detect scale-dependent 3D features – geometric features with their
inherent scales. We derive novel local 3D shape descriptors that encode
the local shape information within the inherent support region of each
feature. We show that the resulting set of scale-dependent local shape
descriptors can be used in an efficient hierarchical registration algorithm
for aligning range images with the same global scale. We also show that
local 3D shape descriptors invariant to the scale variation can be de-
rived and used to align range images with significantly different global
scales. Finally, we demonstrate that the scale-dependent/invariant local
3D shape descriptors can even be used to fully automatically register
multiple sets of range images with varying global scales corresponding
to multiple objects.

1 Introduction

Range images play central roles in an increasing number of important computer
vision applications ranging from 3D face recognition to autonomous vehicle nav-
igation and digital archiving. Yet, the scale variation of geometric structures
captured in range images are largely ignored or simply viewed as perturba-
tions of the underlying geometry that need to be accounted for in subsequent
processing. Although several methods, mostly, for extracting scale-invariant or
multi-resolution features or descriptors from range images based on smoothing
3D coordinates or curvature values of the vertices have been proposed in the
past [1,2,3,4,5,6], they are prone to topological errors induced by the lack of
canonical scale analysis as discussed in [7]. Most important, they do not fully
exploit the rich discriminative information encoded in the scale-variability of lo-
cal geometric structures that can in turn lead to novel computational methods
for processing range images.
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In this paper, we introduce a comprehensive framework for analyzing and ex-
ploiting the scale-variability of geometric structures captured in range images
based on canonical analysis of its geometric scale-space. We derive novel local
3D shape descriptors that naturally encode the inherent scale of local geometric
structures. The geometric scale-space analysis of range images can be viewed
as an extension of previous work on geometric scale-space analysis of 3D mesh
models by Novatnack and Nishino [7]. The key idea underlying the newly de-
rived geometric scale-space construction and analysis is that a range image is
readily a 2D projection of the surface geometry of a 3D shape. We show that
we may directly compute a geometric scale-space of a range image in this 2D
projection with unique 2D operators defined on the surface geodesics. Based on
the geometric scale-space analysis we detect scale-dependent geometric features,
more specifically corners, and their inherent spatial extents. We show that we
can encode the geometric information within the spatial extent of each feature
in a scale-dependent local 3D shape descriptor that collectively form a sparse
hierarchical representation of the surface geometry captured in the range images.
We demonstrate how this representation can be exploited to robustly register a
set of range images with a consistent global scale. Furthermore, we show how
we may define a local 3D shape descriptor that is invariant to the variation of
the inherent local scale of the geometry, which can be used to register a set of
range images with unknown or inconsistent global scales.

We demonstrate the effectiveness of the novel scale-dependent/invariant lo-
cal 3D shape descriptors by automatically registering a number of models of
varying geometric complexity. These registration results can be used as approxi-
mate alignments which can then be refined using a global registration algorithm
that together realize fully automatic registration of multiple range images with-
out any human intervention. We further demonstrate the effectiveness of our
framework by fully automatically registering a set of range images correspond-
ing to multiple 3D models, simultaneously. Note that previous work on fully
automatic range image registration assume that the range images capture a
single object or scene [8,9,10,11,12,13]. We, on the other hand, show that the
novel scale-dependent/invariant descriptors contain rich discriminative informa-
tion that enables automatic extraction of individual objects from an unordered
mixed set of range images capturing multiple objects. To our knowledge, this
work is the first to report such capability.

2 Geometric Scale-Space of a Range Image

We first construct and analyze the geometric scale-space of a range image. This
part of our framework can be viewed as an extension of the work by Novatnack
and Nishino [7] to range images. Readers are referred to [7] for details. The key
insight underlying the extension of this approach to range images is that each
range image is already a dense and regular projection, mostly a perspective pro-
jection, of a single view of the surface of the target 3D shape. Furthermore, the
distortion map used for accounting for the distortions induced by the embedding
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in [7] is unnecessary, as the geodesics can be approximated directly from the
range image itself.

We build the geometric scale-space of a range image R : D → R
3, where

D is a 2D domain in R
2, by first constructing a normal map N in the same

domain by triangulating the range image and computing a surface normal for
each vertex. As noted in [7], it is important to use the surface normals as the base
representation since directly smoothing 3D coordinates can result in topological
changes and higher-order derivative geometric entities such as the curvatures
can be sensitive to noise.

In order to construct a geometric scale-space of a range image that accurately
encodes the scale-variability of the underlying surface geometry, we define all
operators in terms of the geodesic distance rather than the Euclidean 3D or
2D distances. To efficiently compute the geodesic distance between two points
in a range image, we approximate it with the sum of Euclidean 3D distances
between vertices along the path joining the two points in the range image; given
two points u,v ∈ D we approximate the geodesic distance d(u,v) as

d(u,v) ≈
∑

ui∈P(u,v), �=v

‖ R(ui) − R(ui+1) ‖ , (1)

where P is a list of vertex points in the range image on the path between u and
v. If the path between u and v crosses an unsampled point in the range image
then we define the geodesic distance as infinity. We also parse the range image
and detect depth discontinuities by marking vertex points whose adjacent points
lie further than a predetermined 3D distance and define the geodesic distance
as infinity if the path crosses such points. When approximating geodesics from
a point of interest outwards, the sum can be computed efficiently by storing the
geodesic distances of all points along the current frontier and reusing these when
considering a set of points further away.

We construct the geometric scale-space of a base normal map N by filtering
the normal map with Gaussian kernels of increasing standard deviation σ, where
the kernel is defined in terms of the geodesic distance. The resulting geometric
scale-space directly represents the inherent scale-variability of local geometric
structures captured in range images and serves as a rich basis for further scale-
variability analysis of range image data.

3 Scale-Dependent Features in a Range Image

We may detect geometric features, in our case corner points, and their associated
inherent scale, in other words their (relative) natural support sizes, in the geo-
metric scale-space of a range image. The 3D geometric corners are first detected
at each discrete scale by applying a corner detector proposed for the geometric
scale-space of a 3D model by Novatnack and Nishino [7]. For a point u in the
normal map Nσ at scale σ, the corner response is computed using the Gram
matrix M(u; σ, τ). The Gram matrix is defined in terms of scale-normalized



Scale-Dependent/Invariant Local 3D Shape Descriptors 443

first-order derivatives in the horizontal Ñs

σ
and vertical Ñt

σ
directions, which

themselves are the normal curvatures in these directions (see [7] for details):

M(u; σ, τ) =
∑

v∈W
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Ñs
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(v)2 Ñs

σ
(v)Ñt

σ
(v)

Ñs

σ
(v)Ñt

σ
(v) Ñt

σ
(v)2

]
g(v;u, τ) , (2)

where W is the local window window to be considered, σ is the particular scale
in the geometric scale-space representation, and τ is the weighting of the points
in the Gram matrix.

A set of corner points at each scale is detected by searching for spatial local
maxima of the corner detector responses. Corners lying along edge points are
pruned by thresholding the variance of the second-order partial derivatives. This
results in a set of corner points at a number of discrete scales in the geometric
scale-space. In order to determine the intrinsic scale of each corner, we then
search for local maxima of the corner detector responses across the scales as
was originally proposed for 2D scale-space [14]. The result is a comprehensive
set of scale-dependent corners, where the support size of each corner follows
naturally from the scale in which it was detected. Figure 1 shows the set of
scale-dependent corners detected on two range images of a Buddha model. Note
that the corners are well dispersed across scales, and that there are a large
number of corresponding corner points at the correct corresponding scales.

4 Local 3D Shape Descriptors

Once we detect scale-dependent features via geometric scale-space analysis we
may define novel 3D shape descriptors that naturally encode relevant local ge-
ometric structure. There are a wide variety of 3D shape descriptors that have
been previously proposed [15,16,17,18,19,20]. Many of these suffer from the limi-
tation that they are sensitive to the sampling density of the underlying geometry
and the size of their support region cannot be canonically determined. In our
case, the associated inherent scale of each scale-dependent corner directly tells
us the natural spatial extent (the support size) of the underlying local geometric
structure. This information can then in turn be used to identify the size of the
neighborhood of each corner that should be encoded in a local shape descrip-
tor. At the same time, we construct dense and regular 2D descriptors that are
insensitive to the resolution of the input range images.

4.1 Exponential Map

We construct both our scale-dependent and scale-invariant local 3D shape de-
scriptors by mapping and encoding the local neighborhood of a scale-dependent
corner to a 2D domain using the exponential map. The exponential map is a map-
ping from the tangent space of a surface point to the surface itself [21]. Given a
unit vector w lying on the tangent plane of a point u, there is a unique geodesic
Γ on the surface such that Γ (0) = u and Γ ′(0) = w. The exponential map takes



444 J. Novatnack and K. Nishino

Fig. 1. Scale-dependent corners and scale-dependent local 3D shape descriptors com-
puted based on geometric scale-space analysis of two range images. The scale-dependent
corners are colored according to their inherent scales, with red and blue correspond-
ing to the coarsest and finest scales, respectively. The scale-dependent local 3D shape
descriptors capture local geometric information in the natural support regions of the
scale-dependent features.

a vector w on the tangent plane and maps it to the point on the geodesic curve
at a distance of 1 from u, or Exp(w) = Γ (1). Following this, any point v on
the surface in the local neighborhood of u can be mapped to u’s tangent plane,
often referred to as the Log map, by determining the unique geodesic between
u and v and computing the geodesic distance and polar angle of the tangent to
the geodesic at u in a predetermined coordinate frame {e1, e2} on the tangent
plane. This ordered pair is referred to as the geodesic polar coordinates of v.

The exponential map has a number of properties that are attractive for con-
structing a 3D shape descriptor, most important, that it is a local operator.
Although fold-overs may occur if this neighborhood is too large, the local nature
of the scale-dependent and scale-invariant descriptors implies this will rarely
happen. In practice we have observed fold-overs on an extremely small number
of features, mostly near points of depth discontinuities. Although the exponen-
tial map is not, in general, isometric, the geodesic distance of radial lines from
the feature point are preserved. This ensures that corresponding scale-dependent
corners will have mostly consistent shape descriptors among different views, i.e.
different range images. In addition, because the exponential map is defined at
the feature point, it does not rely on the boundary of the encoded neighborhood
like harmonic images does [22].

4.2 Scale-Dependent Local 3D Shape Descriptor

We construct a scale-dependent local 3D shape descriptor for a scale-dependent
corner at u whose scale is σ by mapping each point v in the neighborhood of u
to a 2D domain using the geodesic polar coordinates G defined as
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G(u,v) = (d(u,v), θT (u,v)) , (3)

where again d(u,v) is the geodesic distance between u and v and θT (u,v) is the
polar angle of the tangent of the geodesic between u and v defined relative to a
fixed bases {e1, e2}. In practice we approximate this angle by orthographically
projecting v onto the tangent plane of u and measuring the polar angle of
the intersection point. The radius of the descriptor is set proportional to the
inherent scale of the scale-dependent corner σ to encode geometric information
in the natural support region of each scale-dependent corner.

After mapping each point in the local neighborhood of u to its tangent plane
we are left with a sparse 2D representation of the local geometry around u. We
interpolate a geometric entity encoded at each vertex to construct a dense and
regular representation of the neighborhood of u at scale σ. Note that this makes
the descriptor insensitive to resolution changes of the range images. We choose
to encode the surface normals from the original range image, rotated such that
the normal at the center point u points in the positive z direction. The resulting
dense 2D descriptor is invariant up to a single rotation (the in-plane rotation
on the tangent plane). We resolve this ambiguity by aligning the maximum
principal curvature direction at u to the horizontal axis e1 in the geodesic polar
coordinates, resulting in a rotation-invariant shape descriptor. Once this local
basis has been fixed we re-express each point in terms of the normal coordinates,
with the scale-dependent corner point u at the center of the descriptor.

We refer to this dense 2D scale-dependent descriptor of the local 3D shape as
Gσ

u for a scale-dependent corner at u and with scale σ. Figure 1 shows subsets of
scale-dependent local 3D shape descriptors computed at scale-dependent corners
in two range images of a Buddha model.

4.3 Scale-Invariant Local 3D Shape Descriptor

The scale-dependent local 3D shape descriptors provides a faithful sparse rep-
resentation of the surface geometry in different range images when their global
scales are the same or are known, e.g. when we know that the range images
are captured with the same range finder. In order to enable comparison be-
tween range images that do not have the same global scale, we also derive a
scale-invariant local 3D shape descriptor Ĝσ

u.
We may safely assume that the scales of local geometric structures relative

to the global scale of a range image remains constant as the global scale of a
range image is altered. Note that this assumption holds as long as the geometry
captured in the range image is rigid and does not go under any deformation, for
instance, as it is captured with possibly different range sensors. We may then
construct a set of scale-invariant local 3D shape descriptors by first building
a set of scale-dependent local 3D shape descriptors and then normalizing each
descriptor’s size to a constant radius. Such a scale-invariant representation of the
underlying geometric structures enables us to establish correspondences between
a pair of range images even when the global scale is different and unknown.
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5 Pairwise Registration

The novel scale-dependent and scale-invariant local 3D shape descriptors con-
tain rich discriminative information regarding the local geometric structures. As
a practical example, we show the effectiveness of these descriptors in range im-
age registration, one of the most fundamental steps in geometry processing. In
particular, we show how the scale-dependent local 3D shape descriptors form a
hierarchical representation of the geometric structures that can be leveraged in
a coarse-to-fine registration algorithm. We also show how the scale-invariant lo-
cal shape descriptors can be used to establish correspondences and compute the
transformation between a pair of range images with completely different global
scales.

5.1 Similarity Measure

Since each descriptor is a dense 2D image of the surface normals in the local
neighborhood we may define the similarity of the local 3D shape descriptors as
the normalized cross-correlation of surface normal fields using the angle differ-
ences,

S(Gσ
u1

,Gσ
u2

) =
π

2
− 1

|A ∩ B|
∑

v∈A∩B

arccos(Gσ
u1

(v) ·Gσ
u2

(v)) , (4)

where A and B are the set of points in the domain of Gσ
u1

and Gσ
u2

, respectively.
Here, the similarity measure is defined in terms of the scale-dependent descrip-
tors, but the definition for the scale-invariant descriptors is the same with Ĝ
substituted for G.

5.2 Pairwise Registration with Scale-Dependent Descriptors

The hierarchical structure of the set of scale-dependent local 3D shape descrip-
tors can be exploited when aligning a pair of range images {R1,R2} with the
same global scale. Note that if we know that the range images are captured with
the same range scanner, or if we know the metrics of the 3D coordinates, e.g.
centimeters or meters, we can safely assume that they have, or we can covert
them to, the same global scale.

Once we have a set of scale-dependent local 3D shape descriptors for each
range image, we construct a set of possible correspondences by matching each
descriptor to the n most similar1. The consistency of the global scale allows
us to consider only those correspondences at the same scale in the geometric
scale-space, which greatly decreases the number of correspondences that must
be later sampled. We find the best pairwise rigid transformation between the
two range images by randomly sampling this set of potential correspondences
and determining the one that maximizes the area of overlap between the two

1 In our our experiments n is set in the range of 5 ∼ 10.
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(a) (b)

Fig. 2. (a) Aligning two range images with the same global scale using a set of scale-
dependent local 3D shape descriptors. On the left we show the 67 point correspondences
found with our matching algorithm and on the right the result of applying the rigid
transformation estimated from the correspondences. (b) Aligning two range images
with inconsistent global scales using a set of scale-invariant local 3D shape descriptors.
On the left we show the 24 point correspondences found with our matching algorithm
and on the right the results of applying the estimated 3D similarity transformation.
Both the scale-dependent and -invariant descriptors realize very accurate and efficient
automatic pairwise registration of range images.

range images, similar to RANSAC [23]. However, rather then sampling the cor-
respondences at all scales simultaneously, we instead sample in a coarse-to-fine
fashion, beginning with the descriptors with the coarsest scale and ending with
descriptors with the finest scale. This enables us to quickly determine a rough
alignment between two range images, as there are, in general, fewer features at
coarser scales.

For each scale σi we randomly construct Nσi sets of 3 correspondences, where
each correspondence has a scale between σ1 and σi. For each correspondence
set C we estimate a rigid transformation T , using the method proposed by
Umeyama [24], and then add to C all those correspondences (uj ,vj , σj) where
‖ T · R1(uj) − R2(vj) ‖≤ α and σj ≤ σi. Throughout the sampling process we
keep track of the transformation and correspondence set that yield the maximum
area of overlap. Once we begin sampling the next finer scale σi+1 we initially test
whether the correspondences at that scale improve the area of overlap induced
by the current rigid transformation. This allows us to quickly add a large num-
ber of correspondences at finer scales efficiently without drawing an excessive
number of samples.

Figure 2(a) shows the results of applying our pairwise registration algorithm
to two views of the Buddha model. The number of correspondences is quite
large and the correspondences are distributed across all scales. Although the
result is an approximate alignment, since for instance slight perturbations in the
scale-dependent feature locations may amount to slight shifts in the resulting
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registration, the large correspondence set established with the rich shape de-
scriptors leads to very accurate estimation of the actual transformation.

5.3 Pairwise Registration with Scale-Invariant Descriptors

We may align a pair of range images {R1,R2} with different global scales using
the scale-invariant local 3D shape descriptors, which amounts to estimating the
3D similarity transformation between the range images. Since we no longer know
the relative global scales of the range images, we must consider the possibility
that a feature in one range image may correspond to a feature detected at a
different scale in the second range image. Our algorithm proceeds by first con-
structing a potential correspondence set that contains, for each scale-invariant
local 3D shape descriptor in the first range image R1, the n most similar in the
second range image R2. We find the best pairwise similarity transformation by
applying RANSAC to this potential correspondence set. For each iteration the
algorithm estimates the 3D similarity transformation [24] and computes the area
of overlap. The transformation which results in the maximum area of overlap is
considered the best.

Figure 2(b) shows the result of applying our algorithm to two views of the
Buddha model with a relative global scale difference of approximately 2.4. De-
spite the considerable difference in the relative global scales, we can recover the
similarity transformation accurately without any initial alignments or assump-
tions about the models and their global scales.

6 Multiview Registration

Armed with the pairwise registration using scale-dependent/invariant descrip-
tors, we may derive a fully automatic range image registration framework that
exploits the geometric scale-variability. We show that the scale-dependent and
scale-invariant descriptors can be used to register a set of range images both with
and without global scale variations without any human intervention. Most im-
portant, we show that we can register a mixed set of range images corresponding
to multiple 3D models simultaneously and fully automatically2.

6.1 Fully Automatic Registration

Given a set of range images {R1, ...,Rn}, our fully automatic range image regis-
tration algorithm first constructs the geometric scale-space of each range image.
Scale-dependent features are detected at discrete scales and then combined into a
single comprehensive scale-dependent feature set, where the support size of each
feature follows naturally from the scale in which it was detected. Each feature
is encoded in either a scale-dependent or scale-invariant local shape descriptor,
depending on whether the input range images have a consistent global scale or
2 In all our experiments, we randomized the order of the range images to ensure that

no a priori information is given to the algorithm.
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not. We then apply the appropriate pairwise registration algorithm, presented
in the previous sections, to all pairs of range images in the input set to recover
the pairwise transformations. We augment each transformation with the area of
overlap resulting from the transformation. Next we construct a graph similar to
the model graph [9], where each range image is represented with a vertex and
each pairwise transformation and area of overlap is encoded in a weighted edge.
We prune edges with an area of overlap less then ε. In order to construct the
final set of meshes {M1, ...,Mm} we compute the maximum spanning tree of
the model graph and register range images in each connected component us-
ing their estimated corresponding transformations. The alignment obtained by
our algorithm is approximate yet accurate enough to be directly refined by any
ICP-based registration algorithm without any human intervention, resulting in
a fully automatic range image registration algorithm.

6.2 Range Images with Consistent Global Scale

Figure 3 illustrates the results of applying our framework independently to 15
views of the Buddha model and 12 views of the armadillo model, with consistent
global scales. Scale-dependent local shape descriptors were detected at 5 discrete

Fig. 3. Fully automatic registration of 15 views of the Buddha model and 12 views
of the armadillo model using scale-dependent local descriptors. First column shows
the initial set of range images. Note that no initial alignment is given and they are
situated as is. Second column shows the approximate registration obtained with our
framework, which is further refined with multi-view ICP [25] in the third column. Fi-
nally a water tight model is built using a surface reconstruction algorithm [26]. The
approximate registration obtained with our framework is very accurate and enables di-
rect refinement with ICP-based methods which otherwise require cumbersome manual
initial alignment.
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Fig. 4. Automatic registration of a set of range images of multiple objects: total 42
range images, 15 views of the Buddha model, 12 views of the armadillo, and 15 views
of the dragon model. The scale-dependent local 3D shape descriptors contain rich
discriminative information that enables automatic discovery of the three disjoint models
from the mixed range image set. Note that the results shown here have not been post-
processed with a global registration algorithm.

scales, σ = {0.5, 1, 1.5, 2, 2.5}, in the geometric scale-space. The approximate
registration results after applying our matching method using scale-dependent
local 3D shape descriptors are refined using multi-view ICP [25] and a watertight
model is computed using a surface reconstruction method for oriented points[26].
We may quantitatively evaluate the accuracy of our approximate registration us-
ing the local 3D shape descriptors by measuring the displacement of each vertex
in each range image from the final watertight model. The average distances for
all the vertices in all range images for the armadillo and Buddha models, rela-
tive to the diameter of the models, were 0.17% and 0.29% percent, respectively.
The results show that the scale-dependent local 3D shape descriptors provide
rich information leading to accurate approximate registration that enables fully
automatic registration without any need of initial estimates.

Next, we demonstrate the ability of our framework to simultaneously register
range images corresponding to multiple 3D models. In order to automatically
discover and register the individual models from a mixed set of range images,
we prune the edges on the model graph that correspond to transformations with
an area of overlap less then some threshold. In practice, we found this threshold
easy to set as our framework results in approximate alignments that are very
accurate. Figure 4 summarizes the results. Note that no refinement using global
registration algorithms has been applied to these results to clarify the accuracy
of our method, but can easily be applied without any human intervention.

6.3 Range Images with Inconsistent Global Scale

Next we demonstrate the effectiveness of our framework for fully automatically
registering a number of range images with unknown global scales. Figure 5 il-
lustrates the results of applying our framework to 15 views of the Buddha and
dragon models. Each range image was globally scaled by a random factor between
1 and 4 – on average 2.21 and 2.52 for the Buddha and dragon, respectively. For
each pair of adjacent range images the average errors in the estimated scales



Scale-Dependent/Invariant Local 3D Shape Descriptors 451

Fig. 5. Automatic registration of 15 views of the Buddha and dragon models each
with a random global scaling from 1 to 4. For each model we visualize the initial set of
range images and the approximate alignment obtained by our framework. Even with the
substantial variations in the global scale, the scale-invariant local 3D shape descriptors
enables us to obtain accurate (approximate) registrations without any assumptions
about the initial poses.

Fig. 6. Automatic approximate registration of 42 randomly scaled range images con-
sisting of 15 views of the Buddha model, 12 views of the armadillo and 15 views of the
dragon model. Each range image was randomly scaled by a factor between 1 and 4.
The scale-invariant local 3D shape descriptors enables automatic (approximate) reg-
istration of the 3 models from this mixed set of range images without any a priori
information, which can be directly refined with any ICP-based registration algorithm
to arrive at a set of watertight models.

after our approximate registration using scale-invariant local 3D shape descrip-
tors were 1.6% for the dragon and 0.4% for the Buddha model. These results
show that even with substantial variations in the global scale, our method suc-
cessfully aligns the range images with high accuracy, which is good enough for
subsequent refinement with ICP-based methods as in the examples shown in
Figure 3 without any manual intervention.

Finally, Figure 6 illustrates the results of applying our framework to 42 range
images corresponding to three different models that have been randomly scaled
by a factor between 1 and 4. Again, despite the significant scale variations,
our scale-invariant representation of the underlying local geometric structures
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enables us to fully automatically discover and register all three models simulta-
neously without any human intervention.

7 Conclusion

In this paper, we introduced a comprehensive framework for analyzing and ex-
ploiting the geometric scale-variability of geometric structures captured in range
images. Based on the geometric scale-space analysis of range images, we derived
novel scale-dependent and scale-invariant local 3D shape descriptors. We demon-
strated the effectiveness of exploiting scale-variability in these descriptors by us-
ing them in fully automatic registration of range images. Most important, we
showed that the discriminative power encoded in these descriptors are extremely
strong, so much so that they enable fully automatic registration of multiple ob-
jects from a mixed set of unordered range images. To our knowledge, this work
is the first to report such capability. We strongly believe that the results indi-
cate that our framework as well as the descriptors themselves can lead to novel
robust and efficient range image processing methods in a variety of important
applications beyond registration.
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