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Materials as Visual Context

What tells us this road is unsafe?
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Material Category Recognition Methods

I Give single predictions for the
entire image

I Require object information
I object mask
I bounding box

I Predict categories that are
really object properties

I Object information not always
available

Adelson [1]

Liu et al. [4]

Hu et al. [3]

Sharan et al. [6]
Images from [2]. 4 / 22
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Intra-Class Appearance Variability

Images from [7].
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Visual Material Traits: Characteristic
Material Properties

Image from [5].
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Visual Material Traits: Characteristic
Material Properties

Fuzzy Organic Smooth
Material traits are locally-recognizable material properties.

Image from [5]. 6 / 22



Visual Material Trait Appearances

I What material
properties can we see
locally?

I Certain properties are
easy to describe

I Shiny
I Smooth

I Some are more
challenging

I Fuzzy? Soft?
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Visual Material Trait Appearances

I What material
properties can we see
locally?

I Certain properties are
easy to describe

I Shiny
I Smooth

I Some are more
challenging

I Fuzzy? Soft?

How do we represent these traits?

Images from [7].
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Learning to Represent Material Traits

I Learn features that model the appearance of material
traits

I Features should be:

I Fast to compute
I Able to be extracted anywhere
I Discriminative

I Convolution filters may satisfy all of these properties
I How do we learn them?
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Learning Filters for Trait Representation

I Convolutional Autoencoder (CAE)
model for feature learning

I Find optimal filters (W) s.t. they:

I Model trait patches
I Form a sparse encoding
I Have constrained magnitude

Ei = h (W ∗ Ii + be)

Ri = W′ ∗ Ei + br

h (x) =

1

0 1
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1
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Learned Filters

+ Supplemental
Nonlinear Features

...

... Convolution
Filters

Filter Responses

Input Images

I Describe appearances CAE
cannot:

I Color Histograms
I HOG
I LBP
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Material Trait Recognition Process

I Training data: Flickr Materials Database (FMD) [7]
images with trait annotations

Learn Filters

Select Features
Train Per-Trait

Classifiers

Extract Features Recognize Traits

Trait CAE Oriented HOG LBP Color Histograms

Shiny • •
Fuzzy • •

Transparent • • •
· · · (13 Material Traits )

Total Uses 7 4 6 9 7
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Material Trait Recognition Accuracy
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Patch Recognition Results
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Shiny Fuzzy Metallic Soft Smooth Liquid Rough Woven
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Per-Pixel Material Trait Maps

Fuzzy Organic Smooth

Image from [5].
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Per-Pixel Material Trait Maps

Shiny Metallic Smooth

Image from [7]. 15 / 22



Per-Pixel Material Trait Maps

Shiny Metallic Smooth
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What can we do with these material traits?
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Material Recognition via Trait
Distributions
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Material Recognition Accuracy: Flickr
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Material Recognition Accuracy: ImageNet
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Segmentation with Material Traits

Baseline NCuts With Traits
Images from [5].
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Summary

I Material traits:
I may be recognized locally and

accurately

I have distributions that encode
material categories

I segment images into intuitively
separate regions

I Future work:
I Discover new traits
I Improve applications
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