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Abstract

Information describing the materials that make up scene
constituents provides invaluable context that can lead to a
better understanding of images. We would like to obtain
such material information at every pixel, in arbitrary im-
ages, regardless of the objects involved. In this paper, we
introduce visual material traits to achieve this. Material
traits, such as “shiny,” or “woven,” encode the appearance
of characteristic material properties. We learn convolution
kernels in an unsupervised setting to recognize complex
material trait appearances at each pixel. Unlike previous
methods, our framework explicitly avoids influence from
object-specific information. We may, therefore, accurately
recognize material traits regardless of the object exhibiting
them. Our results show that material traits are discrimi-
native and can be accurately recognized. We demonstrate
the use of material traits in material recognition and image
segmentation. To our knowledge, this is the first method to
extract and use such per-pixel material information.

1. Introduction
Information regarding what an object is made of, i.e.,

its material, can provide crucial cues for image understand-
ing. If a robot detects soft dirt or a smooth metal surface
ahead, it can adjust its movement in advance. Material can
sometimes be the only discerning factor between different
objects. For example, material information can enable an
object detection method to distinguish between a person and
a stone statue despite the similarities in their shapes.

Ideally, we would like to extract information regarding
the underlying materials at each pixel, without any prior
knowledge of what objects are in the scene. This per-pixel
material information may potentially facilitate many im-
age understanding methods including image segmentation,
object detection, and recognition. For this, we argue that
material information should be extracted without higher-
level knowledge of the scene, in particular about the object.
Only by disentangling visual cues of materials and objects
may we exploit material estimates to aid the recognition of

Figure 1. Materials like the plastic in these images exhibit a wide
range of appearances depending on the object and scene, mak-
ing extraction of material information without the use of object
information challenging. We propose to locally recognize visual
material traits, distinct appearances of material properties such as
"translucent," to provide contextual cues for challenging vision
tasks including material category recognition and segmentation.
Images from [20].

objects and the scene. If our material estimates depend on
prior knowledge of the object, they are precluded from use
in any object recognition or scene understanding process.

Extracting material information in the form of general
material categories, such as fabric or metal, has proven
difficult [9, 13, 19]. As shown in Figure 1, the appearance
of a single material category exhibits large intra-class vari-
ability. Each image contains a sample of plastic material,
but the material appearance varies based on the object and
scene conditions. Recently, Sharan et al. [19] introduced
a framework that directly recognizes material categories by
extracting features and providing a single prediction for the
material of an entire image. In their work, they show that
material categories are strongly intertwined with features
such as their edge slices and edge ribbons. These features
convey object-specific information, such as boundary con-
tours. In fact, when their method is run on globally scram-
bled images, thus removing object-specific information, ac-
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Input Image Organic Fuzzy
Figure 2. Example material trait recognition. Non-masked pixels
in (b) and (c) correspond to pixels with high probability (p > 0.5)
of exhibiting the given trait. Note that the recognized material
traits appear consistently across regions of related materials. Im-
ages from [16].

curacy drops from 57.1% to 42.6%. Hu et al. [9] also show
that explicitly supplying object-specific information (out-
put from object recognition) significantly increases material
category recognition accuracy. Our method achieves 49.2%
accuracy while explicitly excluding object information.

Instead of looking at materials at the category level,
we may view material information as a form of visual
attribute. Patterson and Hays [18] include a variety of
specific materials, e.g. asphalt, in their scene-wide attribute
framework. Existing techniques recognize a single set of
attributes describing an entire image or region. Even in
methods that use local features, the framework makes only
a single global prediction [5].

How can we then extract material information at each
pixel regardless of the object? Looking at the images in
Figure 1, one can see that plastic tends to have properties
that are associated with a distinct visual appearance, such as
“smooth and translucent.” To extract material information,
we exploit the fact that each material exhibits a certain set of
characteristic properties that are shared across appearances
of that material in different objects. These properties can
include tactile ones such as “hard,” or purely visual ones
such as “shiny.” We propose to model the local visual
appearance of these characteristic material properties as a
novel intermediate representation: visual material traits.

Though each material trait has an intuitive meaning,
some can be challenging to quantify; for example, what
makes a soft material look soft? Instead of focusing on
hand-tuning a large set of designed features, our framework
learns a set of image features in an unsupervised fashion
to best represent material trait appearance. We supplement
the unsupervised features with a small set of well-known
low-level features to describe the space of material trait

appearance more completely. By using a randomized de-
cision forest for supervised material trait recognition, we
are able to recognize material traits at every pixel in an
image. Figure 2 shows the per-pixel recognition results
for two material traits on two images from the dataset of
Martin et al. [16]. The traits are accurately recognized
everywhere, even in the the Koala image, despite the fact
that the training data included no Koalas or other animals.

Our results show that visual material traits can be rec-
ognized accurately in challenging image datasets, as high
as 93.1% with an average accuracy of 78.4%. To express
more complex concepts, such as material categories, we
may treat the distribution of material traits in a region as an
image descriptor. Furthermore, material traits learned from
one dataset can be recognized and used to extract material
information from an entirely different set. This is in contrast
with past methods [9, 19] that train and test on images
taken from a single source. These results show that the
representation generalizes well. We also demonstrate the
use of material traits in mid-level image understanding tasks
by augmenting segmentation algorithms with per-pixel ma-
terial information. Our results show that material traits
can provide valuable material information to processes for
which it was previously unavailable.

2. Related Work
The recent work of Fleming et al. [7] is most closely

related to our efforts in material trait recognition. In their
experiments, they found that perceptual qualities (material
traits) are highly correlated with the material classes of the
Flickr materials database [20]. Their study, however, relies
on human-provided subjective estimates of the presence of
these qualities. We directly recognize material traits.

Visual attributes have been widely used in object and
scene recognition, but largely at the image or scene level.
Ferrari and Zisserman [6] introduced a generative model
for certain pattern and color attributes such as “dots,” or
“stripes.” The attributes described in their model focus on
texture and color and do not encode any material proper-
ties. The model also requires a segmented image as input;
the attributes thus cannot provide per-pixel information to
applications, such as segmentation, that require it. Ku-
mar et al. [10] propose a face search engine with their
attribute-based FaceTracer framework. FaceTracer uses
SVM and AdaBoost to recognize attributes within fixed
facial regions. Farhadi et al. [5] apply attributes to the
object recognition task. Their results show an improvement
in accuracy over a basic approach using texture features.
Recently, Patterson and Hays [18] showed that they can
recognize a variety of visual attributes, including general
material categories. Lampert et al. [11] show that attributes
transfer information between disjoint sets of classes. In
both cases, these visual attributes are single scene-wide
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Shiny Fuzzy Metallic Soft Smooth Liquid Rough Woven
Figure 3. Successfully recognized material traits. These image
patches were recognized by our framework as exhibiting the in-
dicated material traits. Even at the patch level, we can see the
characteristic visual appearances of each material trait.

detections and not localized.
Adelson [1] first proposed material categories as a dis-

tinct concept from textures or objects. Sharan et al. [20]
introduced a new image database containing images from
the photo sharing website Flickr; Liu et al. [13] also created
a framework to recognize these material categories using
a modified LDA probabilistic topic model. Hu et al. [9]
showed improved performance on the Flickr database us-
ing kernel descriptors and large-margin nearest neighbor
distance metric learning. Their experiments showed that
providing explicit object detection information to material
category recognition results in a large improvement in accu-
racy. Sharan et al. [19] show that without information asso-
ciated with the objects, performance degrades significantly
(from 57.1% to 42.6%). Specifically, they note that material
category recognition depends heavily on non-local features
such as edge contours. In our framework, we explicitly
avoid relying on this object information.

Wang et al. [22] and Liu et al. [14] demonstrate very
high material classification accuracy and do so at the per-
pixel level. Both methods require a physical measurement
apparatus (a dome of lights in fixed positions) to collect ma-
terial reflectance data. Lombardi and Nishino [15] estimate
BRDF parameters from single images but require geometry
information. Our goal is to achieve passive extraction of
material information from single ordinary images.

3. Representing Material Traits
Figure 3 shows examples of the visual material traits

recognized by our framework. Even at the local level of the
example images, each visual material trait corresponds to
the appearance of a characteristic material property. Ideally,
recognition of these material traits will enable us to extract
crucial material information from any image.

The key contribution of our material traits is their ability
to encode per-pixel material information without relying on
object-specific features. Material traits provide a compact,
local, and discriminative encoding of material properties.
To obtain a representation for these material traits, we must
avoid introducing any dependence on object information in
the recognition process. We accomplish this by learning the

best convolutional features to describe material trait patches
in an unsupervised setting. Convolutional features are ideal
for this purpose as they can be applied at any point in an
image, and do not encode object boundary contours. We
supplement these unsupervised features with selected low-
level features to describe appearance patterns that cannot be
learned by the unsupervised model.

3.1. Convolutional Material Trait Features

Expressing the appearance of material traits poses a chal-
lenge. While intuitive, traits such as “fuzzy” can be hard
to quantify. While we may attempt to do so using only
existing designed features, the space of images that may be
represented using these features is incomplete (as shown by
our feature selection results).

Rather than rely solely on handcrafted features, we de-
termine features associated with each material trait through
unsupervised feature learning. Unsupervised learning
builds a generative model for images by finding simple
components that can be combined to reproduce them. Con-
straints, such as sparsity, force optimal model components
to also act as discriminative features for classification.

Our goal is to recognize per-pixel, object-independent
visual material traits. To this end, we choose to learn
convolutional features so that we may extract them at any
pixel in an image. By operating in fixed local neighbor-
hoods, convolutional features ensure that we do not encode
object boundary contours. These boundary contours are the
primary source of undesired object-dependent features in
previous frameworks [9, 19].

We build upon the convolutional auto-encoder (CAE)
model [17] to learn the feature kernels. The model de-
fines images as the weighted sum of convolution kernel
responses. Optimal filters under the model are defined by
the following objective function:

C = Tr + αTw + βTs . (1)

The objective contains three terms: a reconstruction
error term Tr, a weight-decay (smoothness) term Tw, and
a sparsity term Ts. The weight-decay and sparsity terms
have corresponding weights α and β, and each term acts as
a constraint to help produce useful features.

Reconstruction error for N images is the squared-
difference between the input images I and their reconstruc-
tions R using the learned features,

Tr =
1

N

N∑
i=1

‖Ii −Ri‖22 . (2)

Since the features are convolution kernels, the reconstructed
images R are described in terms of the encoding in feature
space Ei by



Ei = h (W ∗ Ii + be) , (3)
Ri = W′ ∗Ei + br , (4)

h (xi) =


0 if x < 0

xi if 0 ≤ xi ≤ 1

1 if x > 1

(5)

with ∗ representing convolution with a set of filters W,
along with bias terms be and br for the encoding and re-
construction, respectively. Some formulations force the
reconstruction filters W′ to be the transpose of the encoding
filters W. We, however, found that allowing them to be
separately optimized resulted in more diverse features.

The non-linear encoding function h (xi) in Equation 3
contains a linear region between 0 and 1. If allowed, the
combination of small encoding weights and large decoding
weights could force any inputs to encode solely into this lin-
ear region. Such an encoding would result in a trivially per-
fect reconstruction. Weight decay, Tw = ‖W‖22+ ‖W′‖22 ,
is a term that prevents this trivial solution by ensuring that
the weights do not take on exceedingly large values.

By definition, discriminative image features do not ap-
pear everywhere in an image. Figure 3 shows that certain
material traits, particularly “shiny,” exhibit strong local ap-
pearance cues. Sparsity constraints express this property
well. Sparse features are features that are only present in
a small fraction of the possible locations in each image, as
measured by their presence in the encoding Ei. As in Lee
et al. [12], we enforce sparsity by penalizing the difference
between mean filter activations and a small constant p:

Ts =

∥∥∥∥∥p− 1

N

N∑
i=1

Ei

∥∥∥∥∥
2

2

. (6)

To further constrain the learning process and obtain a
discriminative feature set, we force a fixed number of the
features to be oriented first-order Gaussian filters. Learning
these filters alone will satisfy both sparsity and reconstruc-
tion constraints, but their discriminative power is limited.
As shown in Table 1, edge filters are selected roughly half
as often as the CAE-learned features.

We optimize the full objective function using L-BFGS
with automatically-generated symbolic gradient evaluation.

Figure 4 shows a selection of the top convolution filters
by the CAE, ranked by average presence in the correspond-
ing material trait images. The filters were learned from
whitened material trait image patches. The top filters appear
to represent the presence or absence of specific local texture
patterns. For comparison, the non-ranked features on the
right exhibit far less texture variation.

3.2. Supplemental Features

Cybenko [3] showed that artificial neural networks, in-
cluding auto-encoders such as the CAE, are capable of ap-

· · ·

Soft Smooth Liquid Organic Low Ranking
Figure 4. These 7 × 7px. convolution filters learned by the CAE
represent the top three filters for the listed material traits, ranked
by average presence in the testing images. The filters represent
characteristic local texture and color patterns. The six filters on
the right do not rank in the top three for any material trait. They
exhibit significantly less texture variation than the top filters.

proximating any continuous function defined on Rn. There
are, however, local features such as HOG that are not con-
tinuous and thus cannot be learned by the CAE. These dis-
crete features may encode important properties of material
traits, such as the strong local patterns in woven material.
To address this, we supplement the learned features with
Local Binary Patterns (LBP), HOG features and color his-
tograms. We do not use other low-level features, such as
the edge slices and ribbons of Sharan et al. [19], as they
encode object-specific information and cannot be extracted
on a per-pixel basis.

The results of our feature selection process show that
these additional features supplement rather than replace the
CAE-learned features. As will be shown in Table 1 in the
following analysis of feature selection, CAE features are
selected on average as often as any of the supplemental
features. Furthermore, our analysis in Table 2 shows that
the CAE features play a crucial role in the application of
material traits.

3.3. Groupwise Feature Selection

We would like to obtain a feature set that generalizes
well to new datasets. To avoid overfitting and improve gen-
eralization, we perform feature subset selection on the sup-
plemental and CAE-learned features. Our final feature set
contains a small number of groups of conceptually related
features. Rather than separate the groups into individual
elements, we select the best combination of groups to recog-
nize each trait. This process takes advantage of the fact that
two individually useless features can have predictive power
when grouped together [8]. We are able to exhaustively
evaluate all combinations of groups (CAE features, oriented
edges, HOG, LBP, color histograms), selecting those that
maximize performance on a validation set. Feature groups
are not further divided, thus, for example, either all HOG
features are included or none are.

Table 1 shows the results of our feature selection pro-
cess1. Features are selected fairly evenly and, as the full

1A full list of all material traits and their corresponding features may



Trait CAE Oriented HOG LBP Color Histograms

Shiny • •
Fuzzy • •

Transparent • • •
· · · (13 Material Traits )

Total Uses 7 4 6 9 7
Table 1. Selected features for material traits. As “fuzziness”
is characterized by fine edge patterns, oriented filters and LBP
are useful. Since we define “shiny” only on areas that exhibit
specular highlights, it follows that color histograms and learned
convolutional filters are important features for this material trait.

table shows, in disjoint sets. A particular case of note is the
“shiny” material trait. Since we focus on recognizing visual
material traits without dependence on object-specific infor-
mation, “shiny” is synonymous with specular highlights.
This may be seen clearly in Figure 3. While there are visual
cues, such as contoured reflections on a car body, that may
lead an observer to call a material “shiny,” these features
are specific to the object and do not directly indicate the
material trait. As a result, color histograms and learned
convolutional filters prove to be more useful.

4. Recognizing Material Traits
For training and testing, we annotate images in the Flickr

Materials Database (FMD) [20] with masks indicating re-
gions that exhibit each material trait. From these regions,
we extract 45,500 annotated patches2. We use balanced
sets of positive and negative examples to train randomized
decision forest (RDF) classifiers for each material trait.
Though we use the same dataset as methods that include
object information, our feature set and recognition process
explicitly avoid object dependence.

Figure 2 shows the recognition results for two material
traits on an image from the Berkeley Segmentation Dataset
(BSDS) [16]. Note that the main object in the image, a
Koala, was not present in the Flickr dataset. The FMD
does not, in fact, contain any animals or any examples of
animal fur. Despite this, characteristic properties of the fur
and plants are accurately recognized.

Figure 5 contains recognition accuracies for each of the
13 material traits. Since we predict material traits inde-
pendently, and the training and testing data are balanced,
random chance performance is 50% accuracy. Most ma-
terial traits are recognized very accurately, however, some
are challenging. “Metallic” and “transparent” have the two
lowest recognition rates (66.4% and 67.0%). The appear-
ance of these material properties depends heavily on the
environment surrounding the object. In the case of a reflec-
tive metal surface or a clear glass sphere, the appearance is
determined entirely by the object and its environment. As

be found in our supplemental material.
2Our implementation uses, but is not restricted to, 32× 32px. patches.
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Figure 5. Visual material trait recognition accuracy. Material traits
are recognized via binary classification on a balanced training and
testing set, thus random chance accuracy is 50%. Most traits are
recognized well. Difficult material traits, such as metallic and
transparent, are challenging due to their object- and environment-
dependent appearances. Average accuracy is 78.4%.
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Figure 6. Material trait distributions. We compute the class-
conditional distributions for each material trait given each material
category. These are stored as histograms, examples of which
are shown above. Plastic is most often smooth, while stone is
extremely rarely smooth.

we explicitly avoid object dependence, we cannot expect to
model these particular material traits with the same level of
accuracy as others. Despite this, “metallic” and “transpar-
ent” are still recognized better than chance.

Material traits, as a form of visual attribute, should repre-
sent a discriminative set of appearances. To investigate this,
we compute the class-conditional distributions of material
traits given material categories. We use the ten categories of
the FMD for this test. For each image in each category, we
sample material traits uniformly across the masked material
region in the image. Figure 6 shows selected distributions
from the set {p (ti|mj) |i ∈ 1 . . . 13, j ∈ 1 . . . 10}3. The re-
sulting distributions do, in fact, represent the characteristic
properties of their respective material categories. Stone is

3Please see our supplemental material for a full visualization of all
class-conditional material trait distributions.



Shiny Fuzzy Metallic Soft Smooth Liquid Rough Woven
Figure 7. Our framework produced false-positive detections of
material traits in these patches. For the challenging metallic trait,
it is clear that color plays a strong role. The misclassifications
generally have a metallic color even though the material is not
metal. In some rare cases such as “smooth” there are missing
annotations and thus the false positives are actually true positives.

often rough but very rarely smooth (there are a small num-
ber of polished stone examples in the training data), plastic
is smooth, and foliage is organic. As material traits are
purely visual, they can occasionally produce false positives,
as seen in p (soft|stone). While stone is not soft, porous
stones may have a soft appearance.

Figure 7 shows a set of false positive material trait
recognition results. “Shiny,” with its characteristic bright
highlights, is prone to be recognized in over-exposed image
regions. Results for “metallic” show that color is a strong
cue for this material trait. Though the patches are metallic
in color, the material is not in fact metallic. These are lim-
itations of the representation. There are a few cases where
the material trait annotations are incomplete, generally for
the pervasive “smooth” material trait.

5. Using Visual Material Traits

Our analysis shows that we may accurately recognize
material traits. The material trait distributions also show
that material traits encode discriminative material informa-
tion. Each material category exhibits characteristic class-
conditional material trait distributions. From these results,
we expect to be able to inform higher-level processes with
material information from material traits. Material trait
distributions allow us to recognize material categories in
arbitrary images without dependence on prior object knowl-
edge. We also demonstrate a preliminary application of
material traits to the problem of segmentation.

5.1. Material Categories from Visual Material
Traits

Sharan et al. [19] showed that material category recog-
nition depends on object-specific information. Despite this,
our class-conditional trait distributions suggest that the in-
formation encoded in material traits does provide a discrim-
inative set of features for material category recognition. We
rely on these visual material trait distributions to encode and
recognize material categories.
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(a) Flickr
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(b) ImageNet
Figure 8. Confusion matrices showing true class vs. predicted class
on the Flickr Material Database and ImageNet images. Average
accuracy is 49.2% in (a) and 60.5% in (b). Though metal and glass
both have an appearance that is environment-dependent, glass is
more accurately classified. This is likely due to the tendency of
glass to create characteristic local distortions.

We recognize material categories via material traits by
training a randomized decision forest (RDF) classifier on
the material trait distributions. Distributions are computed
from material traits recognized in uniformly sampled ran-
dom patches. We select features and train material trait
classifiers using half of the FMD for training, then predict
their class-conditional distributions. We further supplement
the distributions, in a cascade fashion, with the output of a
RDF classifier trained to directly predict the material cate-
gory of a patch using our feature set. The cascade process
is responsible for improvements in the more recognizable
categories such as foliage (11% improvement), with minor
changes in other categories. Accuracy without the cascade
process is 46.5%, only a 2.7% reduction.

Using the computed class-conditional distributions, we
train an SVM classifier with a histogram intersection kernel
to recognize material categories. The histogram intersection
kernel, defined as

k (x,y) =
∑
i

min (xi, yi) , (7)

for histogram feature vectors x and y with elements xi
and yi, measures the similarity between the two normal-
ized histograms [2]. As the material trait distributions
are histograms, they are ideally suited for the histogram
intersection kernel SVM.

Figure 8 shows the average and per-class accuracy for
our method on the FMD. We split the dataset of 1000
images in half for training and testing. Our accuracy
(49.2%) does not surpass the final results of Sharan et al.
(57.1%) but again, their method relies heavily on features
that encode the shape of the objects. We do find that our
method achieves higher accuracy than that of theirs (42.6%)
when object context is removed. These results show that
material traits provide important information to the material
recognition process.

To demonstrate the ability of material traits to generalize



Wood (Stone) Plastic (Glass) Paper (Foliage)
Figure 9. Three misclassified ImageNet [4] images, with true
classes for each prediction is in parentheses. The left two are a
result of confusing appearances (striped and translucent are more
often associated with wood and plastic respectively) while the
rightmost is due to the bounding box poorly fitting the object.

FS Traits SF CAE Accuracy
• • 34.2%

• • • 43.5%
• • 42.5%

• • • • 49.2%
Table 2. Performance breakdown. FS: feature selection, SF: sup-
plemental features, CAE: convolutional auto-encoder features. For
the first row we performed direct material category recognition
using the concatenation of all feature sets. This shows that the
trait representation is indeed providing crucial information.

well between datasets, we collected a second set of material
images from a different source: ImageNet [4]. ImageNet
obtains images from a variety of sources; they are thus more
diverse than solely Flickr images. We collected 3480 im-
ages from ImageNet via searches for each material category.
Images without bounding boxes were discarded.

To evaluate the use of material traits for material recog-
nition on this ImageNet dataset, we first train material trait
classifiers on the full set of FMD images. We then split
the ImageNet images evenly into training and test sets and
compute the distributions of recognized material traits on
the training and test sets. We train an SVM classifier with
the histogram intersection kernel of Equation 7 using the
distribution of material traits on the training set.

Figure 8 shows the average accuracy for our method on
this dataset. The average accuracy of 60.5% on ImageNet
images shows that material traits encode material informa-
tion that depends on neither the particular type of object
exhibiting a material, nor the scene context in which that
material appears. While Hu et al. [9] do not provide an
exact value, visual inspection of their results indicates an
accuracy of roughly 60% as well.

Figure 9 contains three misclassification examples from
ImageNet images. The stone in the first image has brown
color stripes characteristic of wood. The glass in the second
image looks translucent due to condensation, and translu-
cent is a trait associated with plastic more than glass. The
final image is a misclassification due to localization. The
ImageNet database only provides object bounding boxes,
not masks. This box contains mostly smooth regions and
light colors, traits representative of paper.

We ran a set of tests, summarized in Table 2, to examine

the impact of each major component of the material trait and
category recognition process. The first row, accuracy when
performing direct category recognition, with all features,
without material traits, shows that the trait representation
provides crucial information for the material recognition
process. By excluding either CAE-learned features or sup-
plemental features (HOG, LBP, Color Histograms) from the
trait recognition process, we see that both feature sets are
necessary in order to best represent material categories.

5.2. Segmenting Images with Visual Material Traits

Segmenting images is a challenging process partially
because the concept of a good segmentation is subjective. In
the Berkeley Segmentation Dataset (BSDS) benchmark of
Martin et al. [16], evaluation relies on multiple human seg-
mentations as ground truth, since each one is a potentially
correct solution. Visual material traits, with their accurate
encoding of characteristic and intuitive material properties,
should contribute valuable contextual cues to this process.

As an investigation of the potential for image segmen-
tation via material traits, we augment the Normalized Cuts
(NCuts) algorithm of Shi and Malik [21] with material trait
information. In their method, they treat image segmentation
as a graph partitioning problem and show that the optimal
solution can be obtained from the solution to a generalized
eigensystem (specifically, the eigenvector y2 corresponding
to the second-smallest eigenvalue):

(D−W)y = λDy , (8)

where W is a matrix of weights representing pairwise pixel
similarities and D is a diagonal matrix containing the sum
of all weights for a given pixel. We add an additional term,

exp

{
−‖ti − tj‖22

σT

}
, (9)

to the similarity score function used to obtain W. ti
represents the predicted per-trait probabilities for pixel i in
the image and σT is a scaling parameter. This term should
cause pixels that exhibit similar material traits to be grouped
together in the segmentation.

Figure 10 shows images segmented using the original
NCuts algorithm and our modified version. The first exam-
ple shows that material traits can help discriminate between
regions exhibiting different material properties (fuzzy grass
and rocks). The expanded border around the penguin in
the second segmentation is likely due to the fact that the
traits are recognized in part using learned convolution ker-
nels. The size of these kernels is likely to be an important
parameter for good segmentations. These results show that
contextual cues from material traits can indicate regions
of similar materials that should be merged, or regions that
should be split despite similar color or texture.



Figure 10. Comparing segmentation with and without material
traits. Images on the left were segmented using the original NCuts
algorithm, while those on the right were segmented with our mod-
ified version. Material traits can indicate the difference between
fuzzy grass in the foreground and rocks in the background, despite
the fact that they have similar colors. Images from [16].

6. Conclusion

We introduce the recognition of visual material traits as
a representation of object-independent, per-pixel material
information. Our results show that material traits contribute
useful information to the material category recognition pro-
cess. Furthermore, we show that material traits generalize
well to new and diverse datasets.

Our preliminary image segmentation results show that
the per-pixel recognition of material traits can contribute
useful material information to new applications in which it
was previously unavailable.

Results from material category recognition, segmenta-
tion, and from recognition of the material traits alone,
demonstrate that visual material traits form a compact and
discriminative representation for crucial object-independent
material information. We expect material traits to prove
useful in future exploration of image understanding.
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