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Abstract. The most defining characteristic of texture is its underlying geometry.
Although the appearance of texture is as dynamic as its illumination and view-
ing conditions, its geometry remains constant. In this work, we study the fun-
damental characteristic properties of texture geometry—self similarity and scale
variability—and exploit them to perform surface normal estimation, and geomet-
ric texture classification. Textures, whether they are regular or stochastic, exhibit
some form of repetition in their underlying geometry. We use this property to
derive a photometric stereo method uniquely tailored to utilize the redundancy
in geometric texture. Using basic observations about the scale variability of tex-
ture geometry, we derive a compact, rotation invariant, scale-space representation
of geometric texture. To evaluate this representation we introduce an extensive
new texture database that contains multiple distances as well as in-plane and out-
of plane rotations. The high accuracy of the classification results indicate the
descriptive yet compact nature of our texture representation, and demonstrates
the importance of geometric texture analysis, pointing the way towards improve-
ments in appearance modeling and synthesis.

1 Introduction

With important applications in remote sensing, industrial surface inspection, and scene
segmentation, texture analysis has been a popular area of study in computer vision for
decades. Typically, this analysis is done on the 2D appearance of texture. Whereas
the appearance of a texture depends greatly on illumination and viewing conditions,
the underlying 3D geometry remains constant. We pursue a deeper understanding of
texture geometry in order to enable important tasks, such as object recognition, to be
done reliably in any condition. To do so, we study the two primary characteristics of
geometric texture—self similarity and scale variability—and exploit them to perform
surface normal estimation and geometric texture recognition.

To demonstrate the importance of texture geometry we first introduce a photometric
stereo method specifically derived to leverage the repetitious nature of geometric tex-
ture. We observe that the appearance of each point is determined fundamentally by both
the surface orientation at that point, and whether or not it is being directly illuminated.
Since each of these factors cannot be estimated without knowledge of the other, we
must estimate them jointly. To do so, we derive a probabilistic graphical formulation in
which these two conditionally independent factors are linked by their combined effect
on the appearance of each point. We sequentially order the dense set of observations as
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the light is waved over the texture. This allows us to derive novel priors for both factors.
In particular, we leverage the similarity of geometry that is present in spatially disjoint
locations as a prior on the surface normals. Pixels whose intensities vary similarly as
the light moves must have similar orientations. This increased contextual information
allows us to minimize the effect of self-occlusion and interreflection.

Our second main contribution is a rotation-invariant scale-space representation of
the geometry of texture. Our aim is to compactly encode how the apparent texture ge-
ometry varies with its distance from the observer so that a texture can be identified
reliably regardless of its distance and orientation. Since the 3D surface geometry it-
self cannot be reliably recovered due to discontinuities of the surface, we directly use
the surface normal field recovered with the proposed texture photometric stereo as the
foundation for our representation. We first represent the surface normals using their
spherical coordinates. This allows us to describe the geometry using a 2D histogram in
which rotations of the texture correspond to shifts along the azimuthal axis. By applying
the 2D Fourier transform we obtain a rotationally invariant representation of the texture
geometry. Next, we compute the scale space of the texture geometry by convolving the
surface normal field with Gaussian kernels of increasing standard deviations until the
surface normal field is completely coherent. We show that this scale space of geomet-
ric texture accurately captures the evolution of the apparent surface normal field over
increasing distance, and as such, approximates the underlying geometric scale space.

Our final contribution is a new texture database consisting of over 40, 000 images
that we use to demonstrate the descriptiveness of our scale-space representation. We
perform extensive classification experimentation with query textures at multiple dis-
tances, with varying degrees of in-plane and out-of-plane rotations as well as under
simulated noise. In total, we test our representation on 600 combinations of distance
and orientation. The high accuracy of the classification results indicate the descriptive
yet compact nature of our texture representation, and demonstrates the importance of
geometric texture analysis.

2 Related work

Past work on texture analysis has focused primarily on the 2D imaged appearance of
textures. In this domain, many methods have been proposed for rotation invariant and
scale invariant classification [9,12]. Similarly, a number of methods have been proposed
for scale-space analysis of texture appearance [7]. The appearance of texture, however,
depends fundamentally on the underlying surface geometry. Unlike its appearance, the
geometry of a texture does not change with the illumination and viewing conditions. In
this work we focus directly on the geometry of surface texture and derive a rotationally
invariant scale-space representation which we use to perform classification.

There has been some attention to illumination invariance. Smith [20] use photo-
metric stereo to recover surface normals and then encode them as a surface orientation
histogram. This approach, however, is geared at analysis to find surface defects, whereas
our method is being used to perform classification. McGunnigle and Chantler [15] and
Barsky and Petrou [2] extract and use explicit 3D shape and surface reflectance infor-
mation to perform classification. Penirschke et al. [19] propose an illumination invariant
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classification scheme based on earlier work by Chantler et al. [6] wherein they study
the effect of changes in illumination direction on the image texture. Other approaches
have involved explicitly training a classifier on multiple images of the texture from
different viewpoints and illumination conditions [13, 22]. Dana and Nayar [8] model
texture surface as a Gaussian-distributed random height field. To avoid this assump-
tion we develop a novel scale-based representation in the frequency domain. Although
some authors have considered the effect of the underlying geometry, by studying it di-
rectly we deepen the understanding of texture, and enable improvements to appearance
modeling and synthesis.

In order to analyze the scale variability of geometric texture, dense and accurate
surface normal information must be gathered. As first introduced by Woodham [23], the
technique of photometric stereo enables the extraction of accurate surface orientations
for simple Lambertian objects. As noted by Nayar et al. [16], problems arise when
self-occlusions cause shadows, or interreflection exaggerates illumination conditions.
Although there have been many advances in photometric stereo to these, and other ends,
our method tackles the less-studied problem of estimating the geometry of textures.

To address self-occlusions, Barsky and Petrou [3] assume that each pixel is directly
illuminated in at least two images. They then ignore light source directions where the
observed intensity is low. Chandraker et al. [5] model light source visibility using a
Markov Random Field with a strong spatial prior that encourages detection of large
shadows. Similarly, Sunkavalli et al. [21], cluster pixels into “visibility subspaces” by
observing the effect of large shadows. Nayar et al. [17] project a moving pattern onto
the scene to separate the effect of direct illumination from that of interreflection and
other “global” illumination phenomena. Wu and Tang [24] collect a dense set of images
and use their inherent redundancy to detect and discard the observations that are most
impacted by global illumination. We further exploit redundancy by leveraging the rep-
etitious nature of texture. In a manner similar to that of Koppal and Narasimhan [11],
we manually wave a light source over the texture and detect similarly oriented sur-
face patches in physically separate locations based on the similarity of their appearance
variation. Unlike Koppal and Narasimhan, we use the full appearance profile, not just
extrema. This allows us to establish a non-parametric distribution of orientation vectors
that we use as a prior in our expectation maximization framework.

3 Texture photometric stereo

Textures, whether they are regular or stochastic, exhibit some form of repetition in their
underlying geometry. We exploit this repetition in our texture photometric stereo in
order to recover accurate surface normals.

3.1 Robust estimation

As light passes over a Lambertian texture the intensity Ixt of a pixel x rises and falls
depending on the relative angle of the light source direction lt at that time t, and the
surface orientation nx at that point according to the basic Lambertian reflectance model

Ixt = ρxmax(0,nx · lt) , (1)
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(a) Observed intensities (b) Lighting directions

Fig. 1: Observed intensity profile and corresponding relative lighting direction at a single
pixel. We use the intensity profile of a pixel (a) to estimate its light-source visibility. Shown as
thick curves, convex regions of the (smoothed) intensity profile serve as good initial estimates of
when a pixel is directly illuminated as they correspond to times when the light source passes near
the surface normal (b).

(a) Sample (b) Basic error (c) Our error

(d) True (e) Basic (f) Ours

(g) True normals

(h) Basic normals

(i) Our normals

Fig. 2: Synthetic scene ground truth comparison. Without any model of light-source visibility,
shadows smooth the recovered normal field (e). Using our method results in an accurate esti-
mation (f). Brighter pixels in the error fields of (b) and (c) correspond to greater angular error.
In the right half we show a slice of normals between two spheres. Note how the normals be-
tween the spheres in the basic method results (h) have been corrupted. Ray tracing interpolation
is responsible for slight inconsistencies between our results and the ground truth.

where ρx is the albedo value at that point. Following Koppal and Narasimhan [11],
as the light is waved over the texture, we take k discrete observations, and call Ix =
{Ixt | t = 1, . . . , k} the intensity profile of pixel x. Fig. 1 shows the path of the moving
light source on the unit hemisphere centered at a surface point. If we align the north
pole of the hemisphere with the surface orientation at that point, then in accordance
with Eq. 1, as the light moves closer to the pole, the observed intensity will increase.

Unfortunately, this model ignores a fundamental factor in appearance—light source
visibility. Small scale self-occlusions lead to shadows in small regions and interreflec-
tion will increase the observed intensity. As shown in Fig. 2, failure to disregard these
observations will result in inaccurate estimations of the underlying normal field. In our
synthetic experimentation, our method results in a median error of 2.3◦, while the tra-
ditional method results in a median error of 14.8◦.
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We use a binary visibility function V xt to indicate whether or not pixel x at time t is
directly illuminated,

V xt =

{
1 if pixel x is directly illuminated
0 otherwise .

(2)

By applying this function to both the observed intensity Ixt , as well as the predicted
intensity, we are able to effectively ignore misleading values. This augmented version
of the Lambertian reflectance model may be written as

V xt I
x
t = V xt ρ

xnx · lt , (3)

where the max function from Eq. 1 has been absorbed into V . Since the surface normals
are unit vectors, we simplify this notation by representing the albedo-scaled normal as
Nx = ρxnx, where ρx = ‖Nx‖.

A simple approach to estimating V would be to set V x
t = 0 for low intensity ob-

servations. For pixels with low albedo values, however, this is too limiting. A better ap-
proach is to use the portions of the light trajectory that are near the normal direction. As
shown in Fig. 1a, we estimate these regions as convex portions of the intensity profile.
To account for noise, we first smooth the intensity profile with a Gaussian distribution
of standard deviation 3 before taking the second derivative with respect to t

V x
t =

{
1 if (N (3) ∗ Ix)′′(t) < 0

0 otherwise ,
(4)

where ∗ denotes convolution. These regions, which are shown as thick solid lines in
Fig. 1a, correspond well with lighting directions near the surface orientation (b).

3.2 Joint visibility and normal estimation

Note that even under direct illumination, the effects of interreflection, subsurface scat-
tering and other global illumination phenomena are impossible to avoid. Our goal is to
utilize the observations where the appearance is dominated by the direct illumination
component which will contain a more reliable encoding of the surface normal. With this
in mind, estimating the visibility function is more akin to robust estimation wherein we
seek to ignore as many outliers as possible while simultaneously avoiding conclusions
based on sparse observations. Assuming known light source directions, estimating the
optimal visibility function will then result in accurate surface normal estimations. In or-
der to recover the visibility function, however, we must already know the correct surface
orientations or we may be misled by low albedo values. In other words, since both the
visibility function, and the surface normals contribute to the appearance of the texture,
they must be estimated jointly.

To refine the visibility V and normal field N estimates we propose a probabilistic
graphical model similar to a Factorial Markov Random Field [10]. We represent the
visibility function and the surface normals as two separate, conditionally independent
latent layers that are linked by their contribution to the observed appearance layer I .
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Using this formulation, we estimate the surface orientations and visibility functions
jointly, by maximizing the posterior probability

p(N ,V | I) ∝ p(I |N ,V )p(N)p(V ) , (5)

where p(I|N ,V ) represents the likelihood of the observations given the estimated nor-
mals and visibility function, and the priors p(N) and p(V ) encourage solutions that
characterize the repetitious nature of the texture.

Likelihood We assume that the noise inherent in the observations is normally dis-
tributed, with a common variance σ2

p(I|N ,V ) ∝
∏
t

∏
x

N
(
V xt I

x
t − V xt Nx · lt, σ2

)
, (6)

where Nx = ρxnx. Note that without a prior on the surface orientation, pixels that
are infrequently illuminated will be difficult to analyze. Additionally, a prior on the
visibility function is necessary to avoid the trivial solution of V = 0.

Surface normal prior We exploit the repetitious nature of texture with a novel non-
parametric prior across geometrically similar, but spatially disjoint locations. As noted
above, if two pixels share similar intensity profiles, they must share similar surface ori-
entations [11]. We translate this observation into a prior on the surface normals that
encourages similar orientation for pixels with similar intensity profiles. We let Ωx be
the set of pixels in the spatially disjoint intensity profile cluster of x, and formulate the
prior using a kernel density as

p(N) =
∏
x

1

|Ωx|
∑
y∈Ωx

N (∠(Nx,Ny), h) , (7)

where |Ωx| is the set’s cardinality, N is the normal density function, with variance h,
and ∠(·, ·) is the angle between the two normals.

We let Ωx be the set of locations Ωx = {y} for which dist(x, y) is less than some
threshold. We determine the intensity profile distance between two locations using only
the portions of their intensity profiles for which both locations are directly illuminated,
i.e. {t | V xt = V yt = 1}. More precisely, we compute the distance using the cosine
similarity of the visibility-clamped intensity profiles

dist(x, y) =1− (V x ◦ V y ◦ Ĩx) · (V x ◦ V y ◦ Ĩy)
‖V x ◦ V y ◦ Ĩx‖ ‖V x ◦ V y ◦ Ĩy‖

, (8)

where ◦ denotes element-wise multiplication, i.e. visibility-clamping, Ĩxt = Ixt /ρx, and
‖ · ‖ indicates the L2 norm. By dividing by the estimated albedo, we allow pixels with
different albedos, but similar orientations to be part of the same cluster.

Fig. 3 shows the distance map for one pixel that is located on the downward-facing
slope of a carpet knot. As can be seen by the dark regions, this pixel has a low distance
value to similarly oriented surface patches. The bright regions, on the other hand, cor-
respond to areas that are not frequently illuminated at the same time, or seldom have
similar intensity values.
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(a) Texture (b) Distance map

Fig. 3: Example distance map for one pixel. In (b) each pixel is given a brightness proportional
to the distance of its intensity profile from that of the targeted pixel of (a) according to Eq. 8. Note
how other downward-facing regions on the knots of carpet have lower (darker) distance values.

Visibility function prior As the light source is waved across the texture, each pixel
will remain illuminated for consecutive observations, and in some consistency with the
pixels surrounding it. In other words, the visibility function V should be piecewise
constant both spatially, as well as temporally. Further, we impose a unary prior on the
entire visibility function to avoid the trivial solution of V = 0. The combined prior is

p(V ) = exp
(
− βVu ‖1− V ‖1

)
exp
(
− βVs

∑
t

∑
x

∑
y∈Nx

s

|V xt − V
y
t |
)

exp
(
− βVt

∑
t

∑
x

∑
y∈Nx

t

|V xt − V
y
t |
)
, (9)

where Nxs indicates the four spatial neighbors of pixel x, Nxt indicates the two temporal
neighbors (i.e. the previous and subsequent observations) and βV{u,s,t} are the relative
weights of the unary, spatial, and temporal components.

Note that setting the spatial prior weight βVs quite high, and the temporal prior βVt
to zero, would result in a similar formulation to that of Chandraker et al. [5] who assume
self-occlusions cast large shadows. In our case, however, we use a weak spatial prior to
allow for small-scale detail.

Expectation maximization We estimate the visibility function and surface normals
using expectation-maximization. In the expectation step we iterate back and forth, up-
dating each layer while considering the other as a pseudo-observable [10]. In both cases,
we can find the maximum a posterior by minimizing its negative log likelihood. In the
case of the visibility function, since each node can take on only two possible states (0
or 1), we can approximate the minimum quickly using graph cuts [4].

Due to the nonparametric nature of our surface normal prior, we must make an ap-
proximation to avoid intractability. Specifically, we use the previously estimated values
for the surface normals in the cluster Ny∈Ωx

in Eq. 7. This allows each surface normal
to be updated independently of the others. To minimize the negative log posterior for
each pixel we use a gradient descent method.
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Fig. 4: Resulting normal field comparison. Note the increased detail of our method.

In the maximization step, we update the noise variance σ2 using the maximum like-
lihood estimator. These two steps, updating the latent values, and maximizing the like-
lihood, are iterated until convergence which we define as an average change in surface
orientation of less than 1◦.

In Fig. 2 we show the result of our method on a synthetic scene of several spheres
embedded in a plane. In addition to self-occlusion, as the light passes over the scene,
each sphere casts large shadows on the background plane. These shadows result in
erroneous normal estimations around each sphere when the traditional approach is used.
On the right hand side of the figure we show a series of normal vectors from one slice
of the resulting normal fields. Note how our method is able to accurately recover the
sharp change from the background plane to the sphere. In Fig. 4 we compare our result
for two real-world textures to the result using the traditional method. Qualitatively, one
can see the increased clarity that results from our method over the traditional approach.

4 Encoding geometric texture

With the exception of sharp depth discontinuities, the geometry of texture is well de-
scribed by the normal field. This normal field, however, will change dramatically as the
texture is rotated, or moved towards or away from the viewer. An ideal representation
of texture geometry will be both rotation-invariant and will encode its scale variability.

4.1 Rotation-invariant base representation

In order to obtain a rotation-invariant representation of texture geometry, we first adjust
the normal field so that the global surface normal (i.e., the mean normal) is aligned
with the positive z-axis. This accounts for small out-of-plane rotations of the texture.
As shown in Fig. 5c, we then form a normalized two-dimensional histogram h(φ, θ)
from the azimuth angle φ and polar angle θ of each surface normal. For our experi-
ments, we quantize the polar and azimuth angles into 100 bins. In Fig. 5c we show
one such histogram in which brighter regions correspond to higher values. We can see
that the texture is relatively coarse by observing that it has a highly structured grouping
of normals. In this histogram, a rotation about the mean normal corresponds to a shift
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(a) Carpet texture (b) Normal field (c) Histogram (d) FFT amp.

Fig. 5: Steps to form base representation. After computing the surface normals (b), we build a
2D histogram (c) from the polar and azimuth angles of each normal vector. We use the rotation-
invariant amplitude of the frequency domain (d) as our base representation.

(a) Near (b) Far (c) Estimated

Fig. 6: Comparison of real and estimated scale. When a texture (in this case, a cloth) is imaged
at an increased distance, the apparent normal field becomes more coherent (b). We approximate
this by smoothing the original normal field (a). The resulting histogram (c) is quite similar to the
histogram of the observed texture.

along the horizontal (azimuth) axis. The final step in our base representation is to apply
Fourier transform to the histogram. The amplitude of the transform, shown in log-space
in Fig. 5d, is then a rotation invariant characterization of the normal field.

We define the similarity of two such frequency representations using the Jensen-
Shannon divergence [14]. Given two surface textures A and B, we first compute their
respective rotation-invariant representations HA(u, v) and HB(u, v). We then define
their similarity as the Jensen-Shannon divergence of HA and HB

J (HA, HB) =
1

2

(
K(H̃A, C) +K(H̃B , C)

)
, (10)

where H̃A and H̃B are the normalized distributions

H̃A =
HA∑∑
|HA|

H̃B =
HB∑∑
|HB |

, (11)

C is their mean, and K is the Kullback-Leibler divergence.

4.2 Scale-space representation

In Fig. 6 we show the surface normal field for a cloth at two distances. On the far left, the
cloth is relatively close to the camera, and in the middle the cloth has been moved twice
the distance away. Although the geometry of the cloth has not changed, the number of
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(a) Normal fields (b) Our representation

Fig. 7: Building of scale-space representation. We represent the scale space of geometric texture
with frequency histograms (b) built from the polar histogram (not shown) of the incrementally
smoothed normal field (a).

microfacet surface normals subtended by each pixel has increased. In other words, as
scale increases, the appearance of each pixel is determined by an increasing number of
surface orientations. In effect, the average surface normal captured by a given pixel is
computed across a greater area as scale increases. This observation, also underlying the
recent work on geometric scale space of range images [1, 18], motivates our approach
to modeling the scale variability of geometric texture.

We describe the scale space of geometric texture by filtering the surface normal
field with Gaussian kernels of increasing standard deviation. In Fig. 6 we illustrate the
result of this approach by comparing the resulting normal histogram (c) with that of the
texture at a greater distance (b). The result is quite similar to the observed histogram.

Fig. 7 summarizes the creation process of our scale-space representation. Starting in
the lower left, we begin with the observed normal field of texture. As shown in (a), we
then smooth this normal field at small intervals. At each interval, the polar histogram
is formed and its Fourier transform is computed (b). This process is repeated until the
normal field is sufficiently coherent (has an angular standard deviation of 2◦). Note that
as this happens, the polar histogram becomes nondescript, and corresponding frequency
image flattens out, as can be seen at the top of the stack. Smooth textures, whose normal
fields are already quite coherent, require few scales to describe their scale variability,
while coarse textures will have larger stacks.

5 Classification

We evaluate the effectiveness of our rotation-invariant scale-space representation of
texture geometry by performing classification on a new database.

5.1 Classifying a query texture

When a query texture is imaged, and its normal field is estimated, classification is
performed on its frequency amplitude histogram. In order to find the correct texture,
we must also find the correct scale. One approach would be to compute the similarity
(Eq. 10) between the query texture and every scale of every database texture. Needless
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(a) Base distance, no rotation (b) Assorted distances and rotations

Fig. 8: Select database samples. Each of our 20 textures is imaged with 30 combinations of
orientation and distance.

to say, this process quickly becomes too computationally expensive as the number of
textures and scales increases. To more quickly estimate the likely textures we first com-
pare the total energy of the query texture to that of each database texture at each scale.
The total energy is computed as the sum of the unnormalized frequency amplitudes.

5.2 Geometric texture database

As depicted in Fig. 8, we introduce a new database that covers 20 textures at different
distances, with different in-plane and out-of-plane rotations1. To our knowledge, this
is the only public database that offers multiple distances for each texture in addition to
multiple in-plane and out-of-plane rotations. Our database, which contains stochastic
as well as regular textures, includes organic materials such as bark and toast, woven
materials such as cloth crocheted fabric, and synthetic materials such as a carpet and
sandpaper. For practical reasons, we did not construct a lighting apparatus for each
distance. Instead, each dataset was lit by manually waving a light source around in a
spiral pattern like the one shown in Fig. 1b. The lighting direction was estimated using
a reflective sphere. Each dataset consists of approximately 65 images. Every effort was
made to keep the distance from the subject constant, but some amount of light attenua-
tion will necessarily be present. To address this, each image is white-balanced using the
light source direction and a white paper in the scene. Since each texture is imaged with
more than 2, 000 different combinations of orientation, distance, and lighting direction,
it is also useful for appearance modeling.

6 Experimental validation
Distance For each texture in the model database, acquired at a distance D1, we acquired
additional real data to be used as query instances for classification at two increasing
distances D2 and D3. All 20 query textures at D2 were classified correctly, while 19
were correctly classified at D3. These are the the starting points in the top left of Fig. 9.

Noise Fig. 9 shows the robustness of our method to increasing levels of Gaussian noise
in the normal field. The horizontal axis corresponds to the standard deviation of the

1 This database is available on-line at http://cs.drexel.edu/˜kon/texture.
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Fig. 9: Recognition rates under increasing Gaussian noise. The horizontal axis is the standard
deviation of Gaussian noise added to the normal field. A sample region is shown for every third
level of noise to illustrate the degree of corruption. Note that high accuracy is achieved even with
significant corruption.
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(a) In-plane rotation
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(b) Out-of-plane rotation.

Fig. 10: Recognition rates for rotations Out-of-plane rotations expose previously unseen struc-
tures, causing novel normal fields which are more challenging to classify. Although recognition
rates decline slightly at increased angles, high accuracy is persistent.

Gaussian noise applied to each dimension of normal field. Below the graph are sample
patches of a normal field at every third level of noise corruption. The fourth sample
patch shows the high degree of noise at σ = 9%. As shown in red, at this level 70% of
the original textures are classified correctly. The blue and green lines correspond to the
increased distances of D2 and D3, respectively. Since each surface normal captures an
increased amount of surface area at these distances, noise has a greater effect.

In-Plane Rotation At distances D1 and D2 we rotated each texture 6 times in incre-
ments of 15◦, stopping at a rotation of 90◦. Moving beyond 90◦ would be redundant,
since the same result can be achieved by rotating the images 90◦. Overall, at distance D1
we correctly classify 88% of the 120 query textures, and at distance D2 we correctly
classify 81% of the query textures. In Fig. 10a we show the results for each rotation
increment.

Out-of-Plane Rotation At distances D1 and D2 we performed out-of-plane rotations
as well. These were done in increments of 10◦, stopping at 60◦. The results are summa-
rized in Fig. 10b. Out-of-plane rotations present a unique challenge in that the rotations
expose geometry that was previously hidden. In essence, out-of-plane rotations present
novel textures as the side of the original texture becomes visible.
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15◦ 30◦ 45◦ 60◦ 75◦ 90◦
∑

10◦ 3/3 5/5 3/5 3/4 1/1 1/2 16/20

20◦ 4/5 2/2 1/2 1/2 2/6 1/3 11/20

30◦ 0/4 3/4 1/2 1/2 2/4 4/4 11/20∑
7/12 10/11 5/9 5/8 5/11 6/9 38/60
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Table 1: Recognition rates for combinations of in-plane and out-of-plane rotations. For quick
inspection, higher recognition rates are given a brighter background coloring. The last row and
column are sums. Note the high success rates for the top row and upper left region.

Arbitrary Rotations At distance D3 we tested 3 arbitrary combinations of in-plane
and out-of-plane rotations for each texture. Table 1 shows the results of all 60 tests.
Each row corresponds to an increased out-of-plane rotation angle, while each column
corresponds to an increased in-plane rotation angle. Each entry in the table shows the
total correct classifications and the number of experiments run with that combination
of in-plane and out-of-plane rotation angles as a fraction. The shading of each cell
indicates the overall success rate. Note that successful cases tend to have lower out-of-
plane rotations, as expected.

7 Conclusion

In this work we have directly studied the geometry of texture. Through careful analysis
of its two key characteristics—self similarity and scale variability—we have derived a
photometric stereo method specifically tailored to exploit the repetitive nature of texture
geometry, and have introduced a compact representation for the scale space of geomet-
ric texture. To evaluate our methods we have also introduced an extensive new texture
database. Experimentally, we have shown that our compact scale-space representation
is highly discriminative. We believe these results provide a sound foundation to explore
the use of geometric texture in longstanding problems in computer vision, including
exploiting texture geometry to aid object recognition and scene understanding.
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