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Abstract. In this paper, we introduce a novel training method for mak-
ing any monocular depth network learn absolute scale and estimate met-
ric road-scene depth just from regular training data, i.e., driving videos.
We refer to this training framework as FUMET. The key idea is to lever-
age cars found on the road as sources of scale supervision and to incorpo-
rate them in network training robustly. FUMET detects and estimates
the sizes of cars in a frame and aggregates scale information extracted
from them into an estimate of the camera height whose consistency across
the entire video sequence is enforced as scale supervision. This realizes
robust unsupervised training of any, otherwise scale-oblivious, monoc-
ular depth network so that they become not only scale-aware but also
metric-accurate without the need for auxiliary sensors and extra super-
vision. Extensive experiments on the KITTI and the Cityscapes datasets
show the effectiveness of FUMET, which achieves state-of-the-art accu-
racy. We also show that FUMET enables training on mixed datasets of
different camera heights, which leads to larger-scale training and better
generalization. Metric depth reconstruction is essential in any road-scene
visual modeling, and FUMET democratizes its deployment by establish-
ing the means to convert any model into a metric depth estimator.

Keywords: Unsupervised Monocular Depth Estimation · Metric Scale
· Camera Height Invariance · Object Size Prior

1 Introduction

Monocular depth estimation is essential for autonomous driving and advanced
driver assistance systems (ADAS). It underlies many of their key perceptual
tasks including 3D object detection [7,33,39,49], motion planning [31,38,51], and
road segmentation [26]. Although supervised methods have achieved impressive
accuracy, they suffer from costly ground-truth data collection. This limits their
generalizability [34] and also makes continuous learning difficult.

Many recent methods [5, 15, 18, 25, 52] leverage self-supervision to scale up
training. Most of these methods, however, suffer from scale ambiguity which
renders them difficult to use off-the-shelf. To resolve the scale ambiguity and
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recover in metric scale, the actual scene scale needs to be supervised in some
form. Past works have leveraged velocity [16], GPS [3], IMU [41, 53], or camera
height [36,45] for this. These methods require auxiliary sensors to measure these
extra quantities in addition to the monocular RGB camera, which significantly
limits the ability to scale the size of training data. Arbitrary in-the-wild driving
videos cannot be used as they lack such measurements. These self-supervised
methods often still require weak scale supervision and cannot be made fully
self-supervised as the scale changes for each sequence captured with a different
camera.

Road scenes actually have plenty of untapped sources of metric scale. Cars
found on the road are one of them as they are rigid objects whose actual sizes
do not change and are unique to each make and model. The road is also exactly
the region where we need accurate metric depth the most. If we can leverage
the sizes of cars to bridge the 3D to 2D projection, we may train a mono-depth
network to become metric-accurate. Simply employing a prior on the car size,
however, would be too brittle since the metric supervision will be as ambiguous
as the accuracy of that prior. The perspective projection and the variations in
car makes, years, and colors, lead to a large variance in the size estimates, which
will directly affect the mono-depth metric accuracy. In addition, there are no
reliable object size priors except for a few introduced as probability densities for
other tasks [20,54,57] whose parameters are not shared.

How can we train an arbitrary mono-depth estimator to become metric-
accurate by robustly leveraging prior knowledge about the 3D sizes of cars found
in driving videos? We derive fully unsupervised metric depth trainer (FUMET)
to answer this question. Our key idea is to aggregate car size cues in the frames
and the sequence into a single physical measure, namely the camera height. Re-
gardless of the scene, the camera capturing it is the same for the same sequence.
This means that, by transforming the car size cues found in different frames
into a camera height estimate, the very fact that it should not change can be
used as a supervision of invariance to achieve metric depth reconstruction. We
can formulate this as an optimization of the camera height across frames and
training epochs. This leads to gradual metric-aware learning that is stable and
accurate, which also makes the depth estimates consistent across the sequence.

We introduce a learned size prior (LSP) to estimate the size of each car found
in a frame. This prior gives us the vehicle dimensions from its appearance. It
is trained with various augmentations on a large-scale dataset without the need
for any manual annotation. By comparing these dimension estimates with those
computed from the depth estimates, we obtain a per-frame scale factor. The
multiplication of this scale estimate with the camera height estimate derived from
the estimated depth becomes the camera height estimate of the frame. These
estimated camera heights across all frames in a sequence are then consolidated
by using their median value which is then used as scale supervision with its
weighted moving average at the end of each training epoch.

We evaluate the effectiveness of FUMET with extensive experiments using
the KITTI and the Cityscapes datasets and compare its accuracy with a number
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of weakly-supervised methods. The results clearly show that FUMET succeeds
in making monocular depth estimation methods learn metric scales and achieves
the state-of-the-art accuracy without any direct depth and scale supervision. We
also demonstrate its capability to train a model on mixed datasets collected with
different cameras, i.e., camera heights. This enables larger-scale training and
leads to higher generalization. We believe FUMET can serve as a fundamental
building block for monocular depth estimation in the wild.

2 Related work

2.1 Self-Supervision

Although, as in other tasks, supervised methods achieve the highest accuracy
in monocular depth estimation (MDE) [1, 23, 27, 29, 50], they obviously require
ground-truth data usually obtained with a LiDAR sensor. Self-supervised MDE
methods remove the need for such hardware costs for training. Garg et al . [11]
proposed the first approach to self-supervised MDE by predicting per-pixel dis-
parities between a stereo pair. Godard et al . [14] extend this idea by introducing
left-right consistency and greatly improve the accuracy. These methods require
calibrated stereo data for training which limits their applicability. Zhou et al . [56]
introduced a pioneering method for training solely from monocular videos by in-
corporating a network that estimates the relative camera poses between succes-
sive frames. Based on this idea, many MDE methods that can be trained solely
with monocular videos have been proposed [5, 15,18,25,52,55].

Despite the popularity and improvements of self-supervised MDE, directly
deploying those models in autonomous driving or ADAS systems is unrealis-
tic as they only produce relative depth up to an unknown scale. Our FUMET
overcomes this issue without the need for any external supervision.

2.2 Weak Supervision

Several works have tackled scale-aware MDE by adopting weak scale supervision
through velocity [16], GPS [3], IMU [41], or camera height [36,45] measurements.
Zhang et al . [53] use the combination of IMU, velocity, and gravity to achieve
the highest accuracy among these methods. These methods fundamentally rely
on such auxiliary measurements in addition to regular RGB images. This makes
it impossible to take advantage of the many road-scene videos on the Internet
(e.g ., YouTube) or casually installed dashcam videos for training. In contrast,
FUMET relies on a universal car size prior which is independent of the data
collection environments and does not require any such weak supervision; it can
be trained solely from monocular video sequences.

2.3 Object Size Priors

Several works for other tasks leverage priors on object sizes including single
view metrology [57], object insertion [20,54], and visual odometry [10,35]. These
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methods model the priors as normal distributions or Gaussian mixture models,
and the parameters of these distributions are predetermined. When there is a
gap between those values and the true ones, which is usually the case in the real
world, the difference directly surfaces in erroneous scale estimates.

Instead of these fixed priors, we introduce a learning-based size prior which
we refer to as LSP. This estimates vehicle dimensions based on its appearance,
thus can avoid the aforementioned problem. Furthermore, it is trained on a
large-scale dataset with various augmentations, so that it can robustly estimate
vehicle dimensions from any image.

3 Preliminaries

Our goal is to train a metric-accurate MDE model θdepth with only self-super-
vision. This self-supervision is comprised of two parts: one designed for learning
metric scale (Sec. 4) and the other dedicated to learning depth geometry. For the
latter, we follow Zhou et al . [56] and minimize the reconstruction loss between
the current frame It and the ones synthesized from temporally adjacent frames
Is, (s = t± 1). We employ a pose network θpose in addition to θdepth to estimate
the relative camera pose Tt→s ∈ SE(3) and the current dense depth map Dt,
respectively,

Dt = θdepth(It), Tt→s = θpose(It, Is) . (1)

We then synthesize the image from the current viewpoint

Is→t = Is ⟨proj(Dt,Tt→s,K)⟩ , (2)

where ⟨·⟩ is a bilinear sampling operator, proj(·) outputs the 2D coordinates
of Dt when projected into the viewpoint of Is, and K is the camera intrinsics.
Following Godard et al . [15], we use an affine combination of SSIM [42] and L1
loss as the photometric error pe and define the reconstruction loss Lrec as the
photometric error between It and Is→t for the pixels with minimum error across
source frames

Lrec = min
s

pe(It, Is→t) , (3)

pe(It, Is→t) =
λ

2
(1− SSIM(It, Is→t)) + (1− λ)|It − Is→t| , (4)

where λ = 0.85. We also employ an edge-aware smoothness loss [14]

Lsm = |∂xd∗t |e−|∂xIt| + |∂yd∗t |e−|∂yIt| , (5)

where d∗t = dt
/
d̄t is the mean-normalized inverse depth [37] to prevent the

estimated depth from shrinking. Furthermore, when computing Lrec we use auto-
masking [15] to mask out stationary pixels which generate incorrect supervisory
signals.
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Fig. 1: Overview of FUMET. At each training step n, an unscaled camera height H ′n,τ
cam

is computed differentiablly from the estimated depth. The previous epoch τ−1 provides
supervision with a scaled camera height H∗τ−1

cam . To obtain this scaled camera height
supervision, Silhouette Projector first computes the object silhouette heights H ′

obj from
the depth map. By comparing H ′

obj and the estimated one Hobj with LSP, per-frame
scale factor s is determined and we obtain the scaled camera height Hn,τ

cam = s ·H ′n,τ
cam .

At the end of each epoch, H∗
cam is optimized across a series of consecutive frames and

updated with the weighted moving average.

4 FUMET

Fig. 1 depicts the overall architecture of FUMET. Please see the caption for an
overview of the framework. Let “ ′ ” denote “not metrically scaled”.

4.1 Scale-Aware Self-Supervised Learning

In FUMET, we derive a camera height pseudo-supervision from depth estimates.
To obtain the per-frame camera height, we first compute the normal vector for
each pixel pi. We consider the 8-neighborhood of pi and form 8 pairs N (pi) =
{(pij0 , p

i
j1
)}8j=1. Each pair (pij0 , p

i
j1
) consists of two pixels whose difference vectors

w.r.t. pi are perpendicular to each other and are sorted counterclockwise. We
reproject the paired pixels onto 3D space and compute the cross-product of the
two difference vectors w.r.t. the reprojected 3D point of pi. By summing and
normalizing all the cross-product vectors of each pair, we obtain the normal
vector n̂(pi)

n(pi) =
∑
N (pi)

(ϕ(pij0)− ϕ(pi))× (ϕ(pij1)− ϕ(pi)) , n̂(pi) =
n(pi)

∥n(pi)∥
, (6)

where ϕ(·) denotes perspective reprojection.
For pixels in the road region, the negated inner product between the normal

vector and the reprojected 3D point corresponds to the camera height from the
ground plane

H ′
cam(pi) = −ϕ(pi) · n̂(pi) . (7)

We represent the median of H ′
cam(pi) as the camera height of the frame

H̃ ′
cam = med({H ′

cam(pi) | pi ∈Mr}) , (8)



6 G.Kinoshita et al.

where pi is in the road region mask Mr obtained with an off-the-shelf semantic
segmentation model [22] before training. This camera height H̃ ′

cam estimate is
unscaled and needs to be upgraded to a real-scaled value to impose the invariance
loss across frames. By using the Silhouette Projector, we aggregate the scale
information from the object height prior into a per-frame scale factor s (see
Sec. 4.2) and obtain the scaled camera height as Hcam = s · H̃ ′

cam.
We leverage the fact that the camera height does not change in a sequence and

formulate the invariance into an optimization across frames and training epochs.
Thanks to this optimization, we acquire an accurate and stable supervision,
which is also consistent across the scene. At the end of the τ -th epoch, we use the
median of {Hn,τ

cam}Nn=1 for all frames N as the representative camera height Hτ
cam

at the τ -th epoch. Then, we update the scaled camera height pseudo-invariance
H∗

cam with its weighted moving average

H∗τ
cam ←

{
τ(τ − 1)

2
·H∗τ−1

cam + τ ·Hτ
cam

}/
τ(τ + 1)

2
. (9)

When training on a dataset containing images captured at multiple camera
heights, we create pseudo-labels corresponding to each camera height and opti-
mize them individually.

To make the network learn the absolute scale and directly produce the scaled
depth map, we enforce a loss on the camera height H ′

cam using the pseudo-
invariance H∗τ−1

cam computed in the previous epoch

Lcam =
1

|Mr|
∑
i

Mr(pi) · |H ′
cam(pi)−H∗τ−1

cam | . (10)

It is worth noting that at inference, the network does not assume camera
height invariance in the input sequence; it is only assumed during training. The
computational cost at inference is exactly the same as the original MDE model
trained without FUMET.

4.2 Silhouette Projector

In the process of creating a scaled camera height supervision, we need to know
the per-frame scale factor. For this, we can consider leveraging an object of
known size. This, however, would necessitate extraction of the exact 3D object
region which is non-trivial as objects are often occluded or cropped and oriented
in various poses.

We introduce Silhouette Projector to robustly estimate this per-frame scale
factor. Silhouette Projector leverages two simple facts of road scenes. First, the
height of the object silhouette projected on the plane perpendicular to the ground
plane does not change regardless of the object pose. Second, we can compute
the silhouette height by measuring the distance from the top of the silhouette
to the ground plane even if they are partly occluded or truncated, as long as the
top is visible and the object is on the ground plane.
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We first reconstruct an object point cloud with the estimated depth map
through perspective reprojection. The object region Mobj in the image can be
obtained with an off-the-shelf instance segmentation model [22] before training.
We then orthographically project these 3D points onto a plane P⊥ perpendicular
to the ground plane, i.e., an arbitrary plane parallel to the road normal vector
ñ. We compute ñ as the median of the normal vectors n̂(pi) (see Eq. (6)) in the
road region Mr. We define the farthest distance from the 2D point on P⊥ to the
ground plane as the silhouette height. This value is unscaled because we derived
this from the estimated unscaled depth map. The ratio between a height prior
and its silhouette height corresponds to the scale factor of interest. When there
are multiple objects in an image, we use the median of the scale factors each
corresponding to each object as the scale factor of the frame for computational
simplicity and robustness.

Outlier Filtering. Some objects cannot be handled well with Silhouette Pro-
jector for various reasons including occluded upper parts, not on the ground
plane, inaccurate segmented region, and misclassified object category. We intro-
duce an algorithm to detect these as outliers based on geometric plausibility.
We first calculate the horizon l with the road normal vector ñ and the camera
intrinsics K [17]

l = K−Tñ . (11)

Based on the approximations in [20], we derive the approximate metric-scale
object height Ĥobj ≈ hobj

hcam
H∗τ−1

cam , where hcam is the farthest distance from the
pixel in the object instance mask to l, hobj is the farthest distance between two
points on the object mask on which tangent lines parallel to l lie, and H∗τ−1

cam is
the pseudo camera height at the τ -th epoch derived in Eq. (9). By comparing
the relative gap between Ĥobj and the object height prior Hobj, we determine
the outliers as {

k

∣∣∣∣ |Hk
obj − Ĥk

obj|
Hk

obj

> T
}
. (12)

In all the experiments, we set the threshold T to 0.2.

4.3 Training Losses

Auxiliary Rough Geometric Loss. We experimentally observe that esti-
mated object depths, especially those distant from the camera, often erroneously
lean towards the road surface because of the inaccurate supervisory signal from
the reconstruction loss in low-texture regions. This tendency makes silhouette
heights inaccurate. To mitigate this issue, we introduce an auxiliary rough geo-
metric loss Laux, which enforces object point clouds to be within a close region.
For each inlier object k (k = 1 . . .K), we define Laux as the gap between the
estimated depth map D in the object region Mobj and the approximate object
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depth Daprx =
Hobj

hobj
fy where fy is the focal length

Laux=
1

K

∑
k

1

|Mk
obj|

∑
i

Mk
obj(pi) ·

∣∣∣∣D(pi)−Dk
aprx

∣∣∣∣ . (13)

As a by-product, this loss accelerates learning the metric scale.
The Laux is potentially inaccurate since Daprx assumes that each object can

be represented by a plane parallel to the image plane, and we observe that it
degrades the depth accuracy in the late stage of training. On the other hand, in
the early stage, estimated depth is unreliable, so heavily relying on the camera
height loss Lcam makes the training unstable. For this, we gradually decrease
the weight of Laux and increase the one for Lcam as the training proceeds in
a logarithmic way. To ensure training stability, we stop changing these weights
after the τmid-th epoch

λaux(τ) =

{
− log(τ+1)
log(τmid+1) (τ ≤ τmid)

ϵ (τ > τmid)
, λcam(τ) =

{
log(τ+1)

log(τmid+1) (τ ≤ τmid)

1.0 (τ > τmid)
, (14)

where ϵ = 0.005.
The total loss is L = αλcamLcam + βλauxLaux + Lsm + Lrec where α = 0.01

and β = 1.0.

5 LSP

Our FUMET extracts metric scale from a prior on object heights through the
camera height loss Lcam and the auxiliary rough geometric loss Laux. To ensure
that FUMET learns the scale regardless of the particular dataset used for train-
ing, a universal prior of object heights, independent of the environment, becomes
essential. Cars are objects whose dimensions are explicitly and accurately known.
Better yet, they are abundantly located on the road, the key semantic region
whose metric depth is essential for many downstream tasks. Some methods for
other tasks have modeled the size prior as a probability distribution [20, 57].
The gap between its mean and the true expectation for each environment, how-
ever, is directly reflected in the uncertainty of the scale in the supervision. Wang
et al . [40] also report that there is a gap in car dimensions among datasets.
These facts suggest that modeling the object size prior as a single probability
distribution is problematic, especially for man-made objects like cars.

We humans not only possess rough prior knowledge about the vehicle size but
can also estimate it more accurately by extracting instance-specific information
such as car models from its appearance. Motivated by this intuition, we introduce
a learned universal vehicle size prior termed LSP. Given a masked vehicle image,
LSP estimates its dimensions.

For training, we use a dataset consisting of a large number of vehicle images
and their information such as 3D dimensions. This dataset can be easily col-
lected with web scraping and does not require manual annotations. To enhance



Unsupervised Training for Metric Monocular Road-Scene Depth Estimation 9

the robustness to various input images, in addition to common color jittering
and blur augmentation, we perform augmentations to simulate occlusion and
truncation. For occlusion augmentation, we mask out random regions with the
same shape as a vehicle or with a beam of random width. For truncation aug-
mentation, we translate the vehicle mask in a random direction. We visualize
these in the supplementary material. The abundance of training images and di-
verse augmentations enable LSP to estimate vehicle dimensions robustly across
various datasets.

Although FUMET requires only a car height prior, we construct LSP to
estimate the width and length as well as height. This enhances it to grasp an
overall car size and improves the prediction accuracy of car heights.

6 Experiments

6.1 FUMET

We evaluate the accuracy of depth estimators trained on our framework and
demonstrate the effectiveness of FUMET as a novel unsupervised metric-scale
training method through depth prediction accuracy, its applicability to any net-
work architecture, and its ability to leverage any dataset for training.

Implementation Details. We implement FUMET with PyTorch [28]. We em-
ploy Monodepth2 [15] with ResNet50 encoder pre-trained on ImageNet [30] as
the default depth estimator which is one of the most basic architectures in self-
supervised MDE. For all experiments unless mentioned otherwise, we train the
model for 50 epochs with a batch size of 8 and set τmid to 20. We use Adam
optimizer [24] with an initial learning rate of 5.0 × 10−5 decayed by half every
15 epochs. During training, we perform the following augmentations with 50%
chance in random order: horizontal flips, brightness adjustment (±0.2), satura-
tion adjustment (±0.2), contrast adjustment (±0.2), and hue jitter (±0.1). For
quantitative evaluation, we follow [9] and compute the seven standard metrics:
AbsRel, SqRel, RMSE, RMSElog, δ < 1.25, δ < 1.252, and δ < 1.253.

KITTI. Our FUMET is independent of network architectures so we experiment
on several models with FUMET as well as Monodepth2: Lite-Mono [52] with
ResNet18, HR-Depth [25] with ResNet18, and VADepth [45]. We train these
models on the KITTI raw dataset [12], which contains 39,810 images for training
and 4,424 for validation, and evaluate it with the KITTI Eigen test split [8] (697
images). For training and evaluation, all images are resized to 640×192.

We show the qualitative results in Fig. 2. The quantitative results shown in
Tab. 1 demonstrate that FUMET enables the various architectures to learn met-
ric scale properly. Even when employing the simplest network architecture, i.e.,
Monodepth2, it outperforms weakly-supervised methods that rely on ground-
truth scale labels for training which is not necessary for our method. Similar to
VADepth [45], FUMET uses the camera height invariance as supervision though
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Table 1: Quantitative results on the KITTI Eigen test split [8] (640×192 resolution).
In the Supervision column, V, G, and CamH represent velocity, gravity, and camera
height, respectively. The Scaling column represents whether to perform the median
scaling [56]. We denote the best results in bold and the second best ones with an
underline for each block. Note that we train VADepth [45] from scratch using ground-
truth camera height (1.65m) provided by KITTI, unlike its original paper. FUMET
outperforms weakly-supervised methods regardless of the network architectures and
without the need for ground truth supervision. In the rescaled results, every model
trained with FUMET achieves better results than its original one.

Error (↓) Accuracy (↑)
Method Supervision Scaling AbsRel SqRel RMSE RMSElog δ<1.25 δ<1.252 δ<1.253

G2S [3] GPS - 0.109 0.860 4.855 0.198 0.865 0.954 0.980
PackNet-SfM [16] V - 0.111 0.829 4.788 0.199 0.864 0.954 0.980

Wagstaff et al. [36] CamH - 0.123 0.996 5.253 0.213 0.840 0.947 0.978
VADepth [45] CamH - 0.120 0.975 4.971 0.203 0.867 0.956 0.979

DynaDepth [53] IMU+V+G - 0.109 0.787 4.705 0.195 0.869 0.958 0.981

Ours - - 0.108 0.785 4.736 0.195 0.871 0.958 0.981
Lite-Mono [52]+Ours - - 0.112 0.798 4.692 0.194 0.871 0.959 0.981
HR-Depth [25]+Ours - - 0.109 0.794 4.734 0.193 0.869 0.959 0.982
VADepth [45]+Ours - - 0.108 0.809 4.572 0.185 0.883 0.963 0.982

G2S [3] GPS ✓ 0.112 0.894 4.852 0.192 0.877 0.958 0.981
PackNet-SfM [16] V ✓ 0.111 0.785 4.601 0.189 0.878 0.960 0.982

Wagstaff et al. [36] CamH ✓ 0.117 0.952 4.989 0.197 0.867 0.957 0.981
VADepth [45] CamH ✓ 0.110 0.977 4.872 0.187 0.889 0.962 0.981

DynaDepth [53] IMU+V+G ✓ 0.108 0.761 4.608 0.187 0.883 0.962 0.982
Ours - ✓ 0.106 0.759 4.602 0.184 0.887 0.963 0.983

Monodepth2 [15] - ✓ 0.115 0.903 4.863 0.193 0.877 0.959 0.981
+Ours - ✓ 0.106 0.759 4.602 0.184 0.887 0.963 0.983

HR-Depth [25] - ✓ 0.109 0.792 4.632 0.185 0.884 0.962 0.983
+Ours - ✓ 0.108 0.759 4.584 0.184 0.885 0.963 0.983

Lite-Mono [52] - ✓ 0.110 0.802 4.671 0.186 0.879 0.961 0.982
+Ours - ✓ 0.107 0.775 4.564 0.183 0.888 0.963 0.983

VADepth [45] - ✓ 0.104 0.774 4.552 0.181 0.892 0.965 0.982
+Ours - ✓ 0.102 0.760 4.473 0.178 0.897 0.966 0.983

VADepth requires the ground-truth camera height and employs a complex net-
work architecture. FUMET with Monodepth2 (row 6 in Tab. 1) achieves higher
accuracy. This indicates that measuring camera height precisely is difficult and
using unreliable ground-truth camera height causes low accuracy in the scale of
estimated depth maps.

In the results showing the accuracy of the estimated depth map scaled
with ground-truth scale factors via median scaling [56], it is evident that every
model trained with FUMET attains superior results to the one trained without
FUMET. This shows that our training framework not only enables the models to
learn metric scale but also enhances the geometric accuracy. This improvement
owes to the camera height loss Lcam and Laux, which makes the model respect
road regions and object regions, respectively.
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Fig. 2: Qualitative comparison on KITTI. In error maps, the larger depth errors are
represented in red, smaller ones are in blue. The model trained with our FUMET
predicts more accurate depth maps compared to the weakly-supervised methods.

FUMET successfully enables a model to learn metric scale, even though the
training dataset of KITTI contains many frames with no or few detected cars.
We detail this in the supplementary material.

Cityscapes. To evaluate the ability of FUMET to leverage any dataset for
training, we train and evaluate it on the Cityscapes dataset [6]. We follow [43,
46, 48, 56] and collect 69,731 images for training and evaluate on the 1,525 test
images. In this dataset, there are multiple sets of camera intrinsics. Since this
strongly affects the metric depth estimation [47], we first align the focal lengths
of all images to 587.5 by resizing them, and crop them to 512×192 resolution. For
evaluation, we follow [2,43] and further crop the estimated image into 416×128.
In order to align the number of iterations on KITTI, we train for 29 epochs with
the same learning rate decreased by half every 8 epochs, and τmid is set to 12.

Tab. 2 shows the quantitative results and FUMET outperforms weakly-
supervised methods by wide margins. These methods assume that highly ac-
curate sensor data is available and fail to train scale-aware MDE models on
datasets consisting of unreliable sensor data such as Cityscapes. On the other
hand, FUMET does not require any sensor measurement other than RGB video,
so it can robustly leverage any driving videos for training.

Mixed datasets. To demonstrate that FUMET can train a model on a mixed
set of datasets to attain strong generalizability, we train with 235,341 images
collected from the Argoverse2 [44], Lyft [21], A2D2 [13], and DDAD [16] dataset
and evaluate it on the KITTI Eigen test split [8]. Both images for training and
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Table 2: Quantitative results on
Cityscapes [6]. We train all the models
from scratch with the same supervisions
as the Supervision column in Tab. 1.
FUMET significantly outperforms
weakly-supervised methods.

Method AbsRel SqRel RMSE δ<1.25

G2S [3] 4.156 276.16 58.89 0.046
PackNet-SfM [16] 0.504 6.639 14.90 0.029

VADepth [45] 0.363 7.115 11.95 0.295

FUMET 0.125 1.288 6.359 0.858

Table 3: FUMET can be trained on
mixed datasets (Argoverse2, Lyft, A2D2,
and DDAD) with various camera settings,
and attains high generalizability. The re-
sults are evaluated on the KITTI Eigen
split [8] (832×512 resolution).

Training dataset AbsRel SqRel RMSE δ<1.25

KITTI 0.103 0.675 4.708 0.903
Mixed 0.113 0.916 5.009 0.883

Mixed+KITTI 0.082 0.611 4.307 0.923

evaluation are resized and cropped to 832×512 resolution. The training images
are the sets of video sequences and each sequence is captured with its own unique
camera setting. We individually optimize each camera height for each sequence
during training. We detail the dataset composition and training settings in the
supplementary material.

As shown in Tab. 3, the model trained with FUMET on the large-scale mixed
dataset achieves comparable accuracy to the one trained on KITTI despite the
domain gap and attains high generalizability. The model trained on both the
mixed dataset and KITTI outperforms the model trained only on KITTI. This
suggests that training on various images enhances accuracy which is the strength
of fully self-supervised learning methods.

We also show that FUMET can leverage in-the-wild videos for training by
using camera intrinsics recovered with SLAM, e.g ., COLMAP [32] in the sup-
plementary material.

Ablation Studies on KITTI. To study the effect of the proposed components
in FUMET, we conduct ablation studies on the training losses, balancing the loss
weights, camera height optimization, and outlier filtering. The results are shown
in Tab. 4. Thanks to the accuracy of LSP and the robustness of Silhouette Pro-
jector, the camera height loss makes a greater contribution to the depth accuracy
than the auxiliary rough geometric loss. By introducing the camera height op-
timization, the model can learn the scale with more accurate and consistent
supervision than leveraging the size prior independently for each frame (rows 1,
2, and 6 in Tab. 4), which leads to improved accuracy. Though balancing the
loss weights (Eq. (14)) with either Laux or Lcam degrades the results due to the
insufficient strength of the supervisory signals for metric scale, it contributes to
improving accuracy when both Laux and Lcam are employed.

Our proposed method can also be used with a pre-trained MDE model in
an offline manner. We first train the original Monodepth2 [15] without FUMET,
then predict depth maps of training images. With Silhouette Projector and LSP,
we obtain per-frame scaled camera height and optimize it across frames with the
median operation. We fix this value and use it as the camera height supervision
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Table 4: Each loss contributes to learn-
ing metric scale and the others enhance
the depth accuracy. Bal: balancing the loss
weights (Eq. (14)). Opt: camera height opti-
mization. Flt: outlier filtering.

LauxLcamBalOptFlt AbsRel SqRel RMSE δ<1.25

✓ - - - ✓ 0.125 0.887 5.055 0.834
✓ - ✓ - ✓ 0.149 0.950 5.219 0.785
- ✓ - ✓ ✓ 0.116 0.875 4.874 0.863
- ✓ ✓ ✓ ✓ 0.211 1.303 6.143 0.585
✓ ✓ - ✓ ✓ 0.122 0.880 5.017 0.849
✓ ✓ ✓ - ✓ 0.115 0.822 4.811 0.858
✓ ✓ ✓ ✓ - 0.116 0.823 4.901 0.860
✓ ✓ ✓ ✓ ✓ 0.108 0.785 4.736 0.871

Table 5: Training with a fine-tuned
pseudo camera height achieves the high-
est accuracy. Online: optimizing the
camera height while training. Offline:
training with a fixed one computed from
depth maps predicted with pre-trained
Monodepth2. Fine-tune: training with
the fixed one computed offline for 20
epochs, then optimizing online.

Deriv. method AbsRel SqRel RMSE δ<1.25

Online 0.108 0.808 4.740 0.870
Offline 0.106 0.790 4.719 0.873

Fine-tune 0.105 0.782 4.682 0.876

for an untrained Monodepth2 on FUMET. We examine the difference between
the proposed camera height optimized online and the fixed one derived offline
when we use them as the pseudo-supervision. Note that we also fix λcam because
the pseudo-label can be considered sufficiently accurate from the early stage of
training. We also run another experiment in which we fix camera height supervi-
sion derived offline for the first 20 epochs, which is the same number of training
epochs as the original Monodepth2, then unfix the camera height pseudo-label
to fine-tune it via online optimization. As shown in Tab. 5, the model supervised
with the fixed camera height computed offline achieves slightly better results
than the one supervised with the camera height optimized online. This result in-
dicates that our strategy of deriving scaled camera height is highly accurate and
fixing it stabilizes the training. The model trained with the fine-tuned camera
height achieves the highest accuracy, which shows that our FUMET can attain
better accuracy with additional pre-training costs.

6.2 LSP

We provide implementation details of LSP in the supplementary material.

Evaluation on KITTI and Cityscapes. We evaluate the generalizability of
our LSP with the dimensions of the annotated 3D bounding box on both the
KITTI [12] and the Cityscapes [6] datasets in the Car class. We compare the
results of LSP to a fixed car height prior (1.59m, following [20]) and MonoCI-
nIS [19], a 3D object detection model that outputs object dimensions from an
image and an instance mask. We train MonoCInIS from scratch with the KITTI
dataset. As an evaluation metric, we compute the absolute relative error for each
dimension. When we estimate car dimensions with LSP and MonoCInIS, we use
a ground-truth instance mask for making a car image mask and as input, re-
spectively. For all the experiments in LSP, input vehicle masks are cropped and
resized to 300×300 resolution. On the KITTI dataset, we extract 3,769 samples
for evaluation [4]. On the Cityscapes dataset, we evaluate on the validation split,
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Table 6: Generalizability on KITTI and Cityscapes. We evaluate LSP on Absolute
Relative Error for each dimension (height/width/length), comparing with the fixed
car height prior (1.59 m, following [20]) and MonoCInIS [19] trained on KITTI. LSP
robustly surpasses other methods in most cases and can predict accurately regardless
of the datasets.

Method Easy Moderate Hard All

K
IT

T
I Fixed Height [20] 0.065/ - / - 0.064/ - / - 0.065/ - / - 0.065/ - / -

MonoCInIS [19] 0.069/0.065/0.093 0.112/0.106/0.133 0.268/0.263/0.269 0.159/0.155/0.177

LSP (only height) 0.057/ - / - 0.089/ - / - 0.106/ - / - 0.087/ - / -
LSP 0.046/0.136/0.130 0.060/0.144/0.139 0.073/0.155/0.150 0.062/0.147/0.145

C
it
y
sc

a
p
es Fixed Height [20] 0.093/ - / - 0.093/ - / - 0.076/ - / - 0.092/ - / -

MonoCInIS [19] 0.578/0.599/0.584 0.759/0.766/0.767 0.843/0.852/0.852 0.851/0.859/0.856

LSP (only height) 0.063/ - / - 0.075/ - / - 0.103/ - / - 0.096/ - / -
LSP 0.056/0.069/0.067 0.068/0.068/0.078 0.069/0.059/0.075 0.080/0.064/0.077

which has 500 samples. On the KITTI dataset, each object is separated into 3
levels based on detection difficulty: Easy, Moderate, and Hard. Considering the
difference in focal lengths between KITTI and Cityscapes, we also separate ob-
jects on Cityscapes into the same levels as on KITTI.

As shown in Tab. 6, LSP outperforms the other two methods in most cases.
Particularly, the accuracy of MonoCInIS drops on Cityscapes since it overfits
to the training dataset, i.e., KITTI and cannot address the domain gap. In
contrast, thanks to the large training data and various augmentations, our LSP
obtains the highest generalizability and robustly estimates dimensions on any
dataset. Learning not only car height but also width and length also improves
the prediction accuracy as this facilitates estimation of the overall car sizes.

7 Conclusion

In this work, we proposed FUMET, a novel training framework for any MDE
model to learn metric scale. FUMET aggregates the scale information obtained
from a learned car size prior into the camera height and uses it as pseudo-
supervision formulated as optimization across frames and epochs by leveraging
its invariance. We showed that FUMET enables monocular depth estimators
to embody metric scale regardless of the underlying network architectures and
achieves state-of-the-art absolute-scale depth estimation accuracy on both the
KITTI and the Cityscapes datasets, and demonstrated that it can leverage any
dataset for training. We also proposed LSP, which can be easily trained on a
large-scale dataset without manual annotations and robustly estimates vehicle
dimensions from their appearances. We showed that the learned size prior is
superior to a fixed one and outperforms a similar 3D object detection model.
FUMET can be leveraged as a drop-in training scheme for any monocular depth
estimation method. We hope it will be a versatile tool for road scene understand-
ing research.
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