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Abstract

We introduce a novel parametric BRDF model that can accurately encode a wide variety of real-

world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF

may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics

distribution which we refer to as the hemispherical exponential power distribution and model real-

world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the

parameters, including the number of components, of this novel directional statistics BRDF (DSBRDF)

model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high

accuracy but with a small footprint. We also demonstrate the advantages of the novel BRDF model by

showing its use for reflection component separation and for exploring the space of isotropic BRDFs.

I. INTRODUCTION

The appearance of a real-world object is determined by how light rays interact with the object

surface. In the most general form, this interaction can be mathematically modeled with the

General Scattering Function [21] which is a function of fourteen variables in total. In reality,

we may make various assumptions about the object surface that lead to significant reduction

in the number of variables of this function. If we assume that the light interaction is strictly

local, in other words, we are only concerned with light transport at a surface point and choose

to ignore all subsurface transports, e.g., subsurface scattering in layered translucent materials,

the mathematical model can be reduced to the Bidirectional Reflectance Distribution Function

(BRDF) [21].

Although limited to expressing strictly local light interaction, the BRDF is arguably the most

widely used description of light transport in computer vision and graphics. This is particularly true

in applications where properties of the scene, such as the illumination, 3D geometric structure,

and reflectance properties are inferred from images, since the pointwise description enables

estimation of these quantities at each scene point. As such, devising a compact yet accurate

representation of real-world BRDFs goes to the heart of a number of important applications.

In particular, low-dimensional parametric BRDF models play a vital role since they enable the

formulation of such representative inverse problems as model parameter estimation. Yet, deriving

a low-dimensional parametric BRDF model that can accurately encode the drastic variability of

real-world BRDFs remains a challenging problem.
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Various parametric BRDF models, either based on purely empirical observations, such as

Lambertian [15], Phong[23], [4], Schlick [28], physically-based modeling of the microscopic

surface geometry, including Torrance-Sparrow [6], [30] Ward [31], Oren-Nayar [19], or phe-

nomenological modeling using linear/nonlinear bases such as Zernike polynomials [13], spherical

harmonics [24], cosine lobes [14], and 2D Gaussians on halfway disks [9], have been introduced

in the past. Unfortunately, each parametric BRDF model is limited to representing only a specific

type of reflection, e.g., glossiness around the reflection vector [14], [23], [4] or the halfway

vector [6], [30], [31], [9], and cannot express the whole spectrum of BRDFs in a single parametric

form; they require a (linear) combination of separate analytical models leading to complex

expressions whose parameter estimation becomes challenging [9]. Although phenomenological

models aim to represent all BRDFs with a common set of bases, the use of generic bases

inevitably lead to high-dimensional representations for real-world BRDF that can have various

frequencies and shapes.

Recently, owing to the development of novel gonioreflectometers, e.g., [8], [17], [11], extensive

measurements of real-world BRDFs have been collected. These data sets have inspired the use

of various non-parametric BRDF models [2], [8], [16], [26], [29] which essentially provide

tabulated views of the measured BRDF data accessible with two to four-dimensional indices

that encode the combination of incident and exitant directions. Since non-parametric models

are essentially raw measurements of real material, they undoubtedly have strong advantages in

photorealistic appearance synthesis. Yet, when using such non-parametric models for solving

inverse problems in computer vision, we are cursed by the high-dimensionality of BRDF data.

Although compression techniques including linear/nonlinear dimensionality reduction can help

in deducing a lower-dimensional non-parametric representation, they hardly result in a compact

one that can make solving inverse problems tractable, nor they provide physically meaningful

descriptions of the BRDF. Furthermore, the accuracy of non-parametric models essentially de-

pend on the sampling of the data and thus necessitates dense measurements to achieve certain

accuracy. This is, in turn, naturally means that one will need more data when solving inverse

problems using such models compared to parametric models.

The goal of this paper is to derive a low-dimensional parametric BRDF model that can achieve

accuracy comparable to non-parametric representations. That is, we aim to accurately express

the wide variety of real-world BRDFs with an analytical model consisting of a small number
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of parameters. In order to make the problem tractable, we will focus on isotropic BRDFs. Our

approach to this challenging, long-standing problem is based on a novel perspective of a BRDF.

We view the BRDF as a directional statistics distribution, a probability density function that takes

in an incident light ray direction and returns a distribution of reflected light ray directions1. To

this end, we derive a novel hemispherical directional statistics distribution and model real-world

isotropic BRDF as a mixture of it. The novel directional statistics BRDF model (DSBRDF)

can encode the whole spectrum of BRDFs ranging from purely Lambertian to perfect mirror

reflection in the exact same functional form. This allows us to capture various types of real-

world isotropic BRDFs in a low-dimensional analytical expression and also derive a canonical

probabilistic method for estimating its parameter values including the optimal number of mixture

components. Experimental results show that the model achieves accuracy comparable to the state-

of-the-art non-parametric model [26].

We believe the novel directional statistics BRDF model has direct implications in a broad

range of applications. Most important, it enables the encoding of a wide variety of real-world

isotropic BRDFs with a common low-dimensional analytical form. This is in sharp contrast to

previous work where the appropriate model had to be chosen and combined among different

BRDF models or the representations were left high-dimensional incurring burden on further

analysis. We demonstrate the significance of the novel model by showing that it can achieve

higher accuracy than non-parametric models when the sampling of measurements is sparse; it

can naturally decompose real-world measured BRDFs into physically meaningful and intuitive

constituents–reflection components–; and, most significant, it provides powerful means to explore

and characterize the entire space of isotropic BRDFs.

II. ISOTROPIC BRDF

The BRDF is defined as the ratio of the reflected differential radiance dLo in a given exitant

(view) direction ωo to the incident irradiance dEi due to light from direction ωi,

fr(ωi, ωo) =
dLo(ωo)

dEi(ωi)
=

dLo(ωo)

Li(ωi)(ωi · n)dωi
, (1)

1Note that this is very different from using non-parametric [2] or analytical distributions to model microfacet orientations (e.g.

[30]). We directly model scattered radiance distributions with parametric directional distributions resulting in a much compact

yet flexible BRDF model.
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where n is the surface normal at the surface point of interest and dωi is the differential solid angle

the light source in direction ωi subtends [21]. The BRDF is thus a four-dimensional real-valued

function fr : Ω×Ω→ R, where Ω is the upper hemisphere with its origin at the surface point and

its north pole (Z axis) aligned with the surface normal. Real-world BRDFs satisfy the Helmholtz

reciprocity fr(ωi, ωo) = fr(ωo, ωi) and the energy conservation law
∫

Ω
fr(ωi, ωo)dωi ≤ 1.

The two directions ωi and ωo can be described in spherical coordinates (θi, φi) and (θo, φo),

respectively, leading to an explicit 4D notation fr(θi, φi, θo, φo). Here we denote the polar angle

with θ and azimuth angle with φ: θ ∈
[
0, π

2

]
and φ ∈ [0, 2π). Note that in the above definition

and throughout the rest of the paper, we abuse the notation for directional vectors: ωi (or n)

represents a unique directional vector (unit vector) in either spherical coordinates (θi, φi) or

Cartesian coordinates (sin θ cosφ, sin θ sinφ, cos θ), whichever appropriate depending on the

context2.

Although the BRDF is a four-dimensional function, for many real-world materials, its intrinsic

dimensionality is less than four. This is particularly true for those materials that exhibit so-called

isotropic BRDFs. As is also done to derive a bivariate non-parametric BRDF model [26], we may

exploit this lower-dimensional intrinsic characteristic of real-world isotropic BRDFs by making

a few realistic assumptions and coordinate change.

First, for isotropic BRDFs, we may safely assume that the BRDF is invariant to azimuthal

rotations of the incident and exitant directions fr(θi, φi, θo, φo) = fr(θi, φi + ϕ, θo, φo + ϕ) and

to reflection by the incident plane fr(θi, 0, θo, φo) = fr(θi, 0, θo,−φo). These two properties lend

themselves to a three-dimensional description of the BRDF fr(θi, θo, |φi−φo|) [29]. Second, we

leverage a common reparametrization known as the halfway vector representation [27]. Instead

of representing the BRDF with incident and exitant directions, we model them with the halfway

direction ωh between the incident and exitant directions and encode the incident light direction

in a hemisphere where the halfway direction becomes the north pole, referred to as the difference

direction ωd. This reparametrization can be achieved with

ωh =
ωi + ωo
‖ ωi + ωo ‖

ωd = RY (−θh)RZ(−φh)ωi , (2)

where RY and RZ denote rotation matrices (∈ SO(3)) about the binormal (Y ) and surface

normal (Z) axes, respectively [27].

2For instance, the dot product in Eq. 1 is defined over the Cartesian coordinates.
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With the halfway representation, an isotropic distribution around the halfway vector, i.e. axially

symmetric distribution about θh = 0, becomes an anisotropic distribution around the reflection

vector (ωr = 2(ωh · ωi)ωh − ωi) given an incident light direction, whose elongation along the

great circle joining the incident and reflection directions increases as the the incident direction

approaches the grazing angle [20]. This is a particularly useful property since many real-world

isotropic BRDFs exhibit asymmetric reflection around the reflection direction that cannot be

captured with isotropic distributions around ωr [23], [14], [4], but can be approximated with an

isotropic distribution around their corresponding halfway vectors ωh. We empirically found that

for BRDFs that can be well-approximated with the Torrance-Sparrow reflection model [30], the

center-peaked symmetry (isotropy about θh = 0) can be assumed for a wide range of surface

roughness: roughly [0, 0.4] in the roughness parameter value, where it generally ranges from 0

to 0.1 for real-world surfaces. This means that we may represent isotropic BRDFs as function(s)

of (θh, θd) by assuming invariance to the azimuthal angles φh or φd3. Recently, Romeiro et

al. experimentally showed that most isotropic BRDFs can indeed be represented with a two-

dimensional (non-parametric) function of θh and θd by simply averaging their values over φd [26].

To this end, we will model real-world isotropic BRDFs with essentially two-dimensional

representations as we detail next. We, however, do not simply drop the dependency on φd (or

φh), but instead seek to estimate an optimal parametric representation for fr(θh, θd, φd) that fits

measured real-world isotropic BRDFs in the least squares sense4.

III. HEMISPHERICAL EXPONENTIAL POWER DISTRIBUTION

We will now derive an analytical reflection model for representing real-world isotropic BRDFs.

In particular, we will derive a parametric model for fr(θh, φd, θd), where the azimuthal depen-

dency on the incident-exitant directions are represented with φd. Note that we may instead choose

to model fr(θh, φh, θd) without any change in the following derivation. Given the results of the

analysis in the previous section, we model this three-dimensional distribution that is intrinsically

two-dimensional (fr(θh, θd)) with a set of 2D slices of fixed difference directions θd (relative

incident direction) and φh = 0: fr(θh, φd, θd = θid), where θid = {mπ
2M
|m = 0, . . . ,M ∈ Z}. We

3Note that these two azimuthal angles are uniquely interrelated given an incident light direction or exitant direction.
4Averaging is also optimal in a least-square sense but cannot be adapted to incorporate more sophisticated analysis such as

robust estimator-based outlier rejection.
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will later discuss how the parameters of these sampled slices can be consolidated into a smaller

set of parameters through functional data analysis. Figure 2(a) shows the 1D profiles on the

incident plane of θd = 0-slices of several measured BRDFs [16]–fr(θh, φd = {0, π
2
}, θd = 0).

They appear center-peaked and symmetric about θh = 0, as predicted by our previous analysis.

They also show that different BRDFs can have very different distribution shapes.

The key observation we make is that a 2D slice of a BRDF can be viewed as a statistical

distribution of reflected light rays given an incident light ray (θd), where the reflected radiance

values fr(θh, φd, θd) represent the probability of incident light being scattered into that specific

direction (θh, φd). In other words, we may view it as a probability density function of a directional

distribution–a distribution on the surface of a unit hemisphere Ω parameterized with (θh, φd).

Our goal is to derive a suitable directional statistics distribution model that has a small number of

parameters while realizing the necessary flexibility to encode the large variability of real-world

isotropic BRDFs.

The analysis in the previous section suggests that we may approximate these BRDF slices

with a center-peaked, i.e. mean direction at θh = 0, isotropic probability density function of θh:

p(θh|θd). Conventional directional statistics distributions are, however, not suitable to model these

BRDF slices. For instance, a widely used directional statistics distribution is the von Mises-Fisher

distribution [10], a Gaussian distribution on the unit sphere

p(θh|θd,Θ) =
κ

4π sinhκ
exp [κ cos θh] , (3)

where the only parameter is Θ = {κ}. κ controls the “concentration” analogous to the variance

of a Gaussian in Cartesian coordinates. Although one might think that the von Mises-Fisher

distribution (or other sphere-wrapped Gaussian distributions) may suffice to model isotropic

BRDFS, as shown in Figure 1(a), it clearly lacks the flexibility (note again that even a Torrance-

Sparrow is not a Gaussian on the sphere) to model a wide variety of real-world isotropic BRDFs.

An even bigger problem is that the domain is the entire sphere, making it unsuitable for modeling

a BRDF.

In order to model various BRDFs, we need a more flexible directional statistics distribution

model that is naturally defined on the unit hemisphere. To this end, we derive a novel hemispher-

ical distribution model analogous to the exponential power distribution in Cartesian coordinates.

We will refer to this directional distribution as the Hemispherical Exponential Power Distribution
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(hemi-EPD):

p(θh|θd,Θ) = C(Θ) (exp [κ cosγ θh]− 1) , (4)

where Θ = {κ, γ} are the parameters of the distribution. C is the normalization factor which

can be shown to be C(Θ) = γ(−κ)
1
γ

2π

(
Γ( 1

γ )−Γ( 1
γ
,−κ)−γ(−κ)

1
γ

) , where Γ is the incomplete gamma

function [1].

This hemi-EPD has various advantages for modeling real-world BRDFs. As illustrated in Fig-

ure 1(b), it can naturally encode axially distributed directions with a small number of parameters,

while retaining the flexibility to represent a wide variety of distributions on the hemisphere. We

will refer to κ as the scale parameter and γ as the shape parameter. In essence κ controls the

overall height of the distribution, corresponding to the albedo of the reflected radiance, and

γ controls the kurtosis of the distribution, controlling the concentration of the reflected light

directions. As extreme cases, the hemi-EPD can model a perfect Lambertian reflection with

γ = 0 and a perfect mirror reflection with γ = ∞. We may also see that, by taking Maclaurin

expansion p(θh|θd,Θ) = C(Θ)(eκ exp[−κγ
2
θ2
h]−1)+O(θnh), the hemi-EPD subsumes a Gaussian

distribution. This means that a BRDF model based on the hemi-EPD embodies the Torrance-

Sparrow model which is known to achieve high-accuracy among past analytical models.

IV. MIXTURE OF HEMI-EPDS

Real-world object surfaces are rarely made of a single material; at a microscopic level the

surface usually consists of multiple layers of materials. Even when subsurface scattering is

negligible, as we assume, individual layers contribute to different distributions of scattered

reflected light rays. As a result, real-world BRDFs tend to exhibit a complex distribution that

cannot be modeled with a single analytical distribution model. To represent such compound

radiance distributions, real-world BRDFs are often modeled with a linear combination of multiple

parametric BRDF models. For instance, the Lambertian and the Torrance-Sparrow reflection

models are often used together to model real-world surfaces [18]. In many cases, however, the

glossy or diffuse appearance itself is generated from multiple surface materials and thus cannot

be captured with a single parametric model. Cook and Torrance [6], for instance, suggest using

multiple microfacet distributions for modeling multiple layers of glossy surface material.
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The problem of taking linear combinations of different parametric BRDF models is that the

resulting model becomes unnecessarily complex when the functional forms are not the same,

e.g. Lambertian and Torrance-Sparrow. This becomes a large problem when we try to estimate

their parameters not just for reflectance estimation but also in other inverse problems including

illumination estimation and geometry reconstruction of unknown material objects. On the other

hand, when the constituent BRDFs models are the same but overly simplistic, e.g., Gaussian

distributions with different parameters (multiple lobes of Torrance-Sparrow specular reflection),

the resulting BRDF model would lack the expressiveness to represent a wide variety of materials.

We model real-world isotropic BRDFs as a mixture of hemi-EPDs. We do not suffer from the

aforementioned dilemma, since the hemi-EPD itself offers the flexibility to model a wide range

of radiance distributions in the same functional form. An isotropic BRDF can thus be modeled

as a linear combination of hemi-EPDs,

p(θh|θd,Θ) =
K∑
k=1

α(k)p(θh|θd,Θ(k)) , (5)

where Θ = [Θ(1) ... Θ(K)] and K is the number of constituent hemi-EPDs. We refer to each

constituent hemi-EPD as a BRDF lobe. This parametric model can be seen as a mixture of

directional distributions and readily provides a statistical interpretation of the BRDF; it is the

directional probability density function of the exitant radiances given an incident light ray.

Measured BRDFs are, however, usually not normalized, i.e. the total energy is not one. To

model such real-world data, we fit a mixture of unnormalized hemi-EPDs

p(θh|θd,Θ) =
K∑
k=1

1

C(Θ(k))
p(θh|θd,Θ(k)) . (6)

to them. We refer to this novel analytical reflection model as the isotropic directional statistics

BRDF model or in short the isotropic DSBRDF model. For brevity we will drop the term isotropic

in the rest of the paper. Note that we may interpret the reciprocal of the normalization factors
1

C(Θ(k))
to be the unnormalized mixture coefficients. Whenever necessary, we can scale these

unnormalized mixture coefficients to arrive at a valid probability density function, which simply

corresponds to scaling the measured BRDF data with
∑K C(Θ(k)) to normalize its total energy.

This in turn means that as long as
∑K 1

C(Θ(k))
≤ 1, the energy conservation law is satisfied.

We may derive a canonical algorithm for fitting this isotropic DSBRDF model to measured

data by following the same principal as that of the Expectation Maximization algorithm [3].
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This amounts to iterating between computing the conditional expectation of the latent variable k

(E-step), i.e. estimating the responsibilities, and then maximizing the complete joint likelihood

(M-step), i.e. maximum likelihood estimation of the parameters of each unnormalized kth lobe.

The input to the algorithm is a 2D slice of measured BRDF data (θd = const) consisting of N

data points, each having different (θ
(n)
h , φ

(n)
d ). We formulate the maximum likelihood estimation

as least square minimization which we solve with the Levenberg-Marquardt algorithm. For the

M-step, the parameter values can be initialized by first estimating κ and then using it to estimate

γ for each lobe. We use the same strategy for initializing all values in the beginning: we first

estimate one set of κ and γ from all the data points and then halve those values as we step

through the remaining lobes. We found this initialization to work well for all 100 BRDFs that

we fit.

Once we fit the DSBRDF model to the 2D slices of a measured BRDF data ({θid|i =

1, . . . , K}), we can establish correspondences among the K individual lobes across different

θid by simply sorting the lobes based on the scale parameter values κ(k), since we may safely

assume that individual BRDF lobes will decay or increase coherently–their height ordering will

remain in tact as θd increases. Note again that we do not simply ignore the dependency of the

BRDF slice on φd; through the EM algorithm, we estimate an optimal fit of DSBRDF model in a

least square sense, i.e. estimate the parameter values that explains the asymmetry with minimum

squared error.

We may further model the joint variation of the two parameters (κ, γ) across the discrete

samples of the incident light direction θd. This results in a DSBRDF model that expresses

isotropic BRDFs as mixtures of hemi-EPDs whose parameters are functions of θd. In particular,

in Section VI-C, we detail an approach based on functional principal component analysis to

extract least-square optimal, data-driven bases for expressing these functional variations of the

parameter values from real-world measured data.

V. DETERMINING THE NUMBER OF LOBES

The number of necessary lobes for accurately encoding the directional distribution of a real-

world isotropic BRDF varies depending on the material. For instance, a simple BRDF that only

exhibits diffuse reflection may be modeled with a single lobe, while BRDFs with exotic distri-

butions may require more than 3 lobes each representing different types of reflections ranging
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from a specular spike to a glossy specular lobe and a Lambertian lobe. We can automatically

determine the optimal number of lobes by running the EM algorithm for different numbers of

lobes and then testing the quality of fits using a statistical measure.

If we consider the KL-divergence between the statistical distributions of a measured BRDF

fr(θh, φd, θd) and the fit K-lobe directional statistics BRDF distribution p(θh|θd,ΘK), it will

be minimized when the expected log probability EK
p = − 1

N

∑N log p(θh|θd,ΘK) is minimized.

Here we have denoted the parameters of a K-lobe directional statistics BRDF model with ΘK .

To this end, we may examine the rate of change of EK
p while decreasing the number of lobes K

from a predetermined upper bound K̃ to determine the optimal K–the smallest K that achieves

a statistically set error tolerance. Similar to [12], we adopt the Williams’ statistical test [32] to

determine this optimal K. We use critical values for 1% tolerance. Details are omitted due to

limited space and readers are referred to [5], [12] for further details about the Williams’ test in

general.

VI. MODELING REAL-WORLD ISOTROPIC BRDFS

We evaluate the accuracy of the directional statistics BRDF model with the real-world BRDF

data collected by Matusik et al.[16] that is also used in other extensive comparative studies

of parametric and nonparametric BRDF models [20], [26], to provide a fair and thorough

comparison. This database consists of 100 measured isotropic BRDFs sampled over θh ∈ [0, π
2
],

θd ∈ [0, π
2
], and φd ∈ [0, π]5, one degree apart except for θh where the sampling is nonlinear to

achieve denser sampling around the center θh = 0 [16]. We uniformly subsample the incident

light direction represented by θd with 5 degrees spacing, resulting in 18 slices of each BRDF

fr(θh, φd, θd = θid), where θid = {mπ
36
|n = 0, . . . , 18}. For each slice, we fit the directional

statistics BRDF model using the EM algorithm described in Section IV. We found that data

points very close to θh = 0 were unreliable for fitting the DSBRDF model, since for several

extremely shiny material their intensities could be too high to reliably capture even with a high-

dynamic range imaging setup. Thus, we excluded data points with θh less than a degree and

instead added a delta term to the mixture model to compensate for the discrepancy at θh = 0

whose height was computed after fitting the DSBRDF model.

5Again, for isotropic BRDFs, the reflected radiance values are symmetric about the incident plane.

September 21, 2010 DU-CS-10-06



12

A. Representing Measured Data

Figure 2(a) illustrates some of the results of fitting 3-lobe DSBRDF models to the θd = 0

slices of different measured BRDF data, shown as the 1D profiles on the incident plane. The

results show that the directional statistics BRDF model fits the measured data very well. Notice

that the measured BRDF data exhibit various types of distributions which cannot be modeled

with a simple combination of Lambertian and Torrance-Sparrow reflection models. The flexibility

of individual hemi-EPDs enables us to fully capture the wide range of distribution shapes of

real-world isotropic BRDFs. Figure 3 shows the results of fitting the DSBRDF model to different

slices of two different measured BRDF data. The results show that the novel BRDF model can

accurately model the variation, most notably the increased overall intensity and the shape change

of specular lobes/spikes as the incident light direction approaches grazing angles. Notice that

some BRDFs (second row of Figure 3) exhibit non-centered lobes (the ones at the perimeter

of θh). These are mainly caused by subsurface scattering6, which cannot be captured with the

DSBRDF model. We plan to extend the model to include such non-centered lobes. In this paper,

we use a simple circular mask on (θh, φd) with a radius proportional to θd to discard data points

at the θh perimeter.

Figure 4 shows synthetic spheres rendered under an environmental illumination (St. Peter’s

Basilica light probe in [7]) using the original tabulated, measured BRDF data as well as the

fit parametric directional statistics BRDF model with 1 to 5 lobes, for different BRDFs. We

implemented the rendering in pbrt as a new material with a new BxDF [22]. One can see

that the rendered spheres become visually indistinguishable from the measured BRDF after the

optimal number of lobes is used in the DSBRDF model, which were 5, 4, and 2, respectively.

These results clearly show that the DSBRDF model captures the behavior of the BRDF extremely

well with only a small number of parameter. Measured BRDF requires 3 × 90 × 90 × 180

floating point values while the DSBRDF model with K lobes only needs 2 × 3 × K × 18,

(κ, γ)× (R,G,B)× (K − lobes)× (θd − sampling), where K is typically 3. Again, in Section

VI-C, we further reduce the size of this representation through functional principal component

6Since the BRDF data in [16] are collected by capturing images of a sphere painted with the specific material of interest,

subsurface scattering can contribute to strong intensities at the perimeter of the sphere, thus leading to sharp lobes centered

around the perimeter of θh for large θd.
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analysis on the variation of the two parameters (κ, γ) across θd samples. Even without it, however,

the DSBRDF model is much more compact representation (over a ten thousand times reduction

in size) compared to a straightforward non-parametric representation.

Figure 5 shows the relative (energy-normalized) RMS errors for all the 100 BRDFs in [16]

using DSBRDF models with optimal numbers of lobes. The results show that the directional

statistics BRDF model can model a wide range of real-world isotropic BRDFs accurately. The

overall accuracy is comparable to the non-parametric bivariate model introduced in (c.f. Fig. 3

in [26]), which achieves higher accuracy than past parametric models7. The significance of the

DSBRDF model lies in the fact that we can achieve this accuracy with a very small number of

parameters and thus with significantly smaller footprint.

Figure 6 shows how the relative RMS errors of the DSBRDF model and a non-parametric

model with linear interpolation varies as the sampling of the measured data is reduced. The

results clearly show that the DSBRDF model achieves higher accuracy than the non-parametric

model that heavily relies on densely sampled measurements and interpolation among the sampled

data points, even when the data is only reduced by a moderate amount. These results clearly

demonstrate the importance of having an accurate low-dimensional parametric BRDF model for

modeling real-world data, since sampling densities are usually sparse in real-world applications.

B. Reflection Component Separation

The directional statistics BRDF model automatically provides a decomposition of the BRDF

into their constituent lobes. Figure 2(b) shows the 1D profiles of the three individual lobes of

3-lobe DSBRDF models fit to measured data (we are only showing the red channel). Each lobe

clearly models a separate reflection component with distinct characteristics. For instance, we may

interpret the first two lobes, the red and green lobes, in the left most DSBRDF model as the

specular spike and the specular lobe. Our DSBRDF model reveals that even the specular spike

has a certain spread in the angular domain and successfully models it, which would otherwise

be extremely hard to model with other analytical specular reflection models. The third lobes

(blue) in the 3rd and 4th DSBRDF models correspond to the diffuse lobes representing body

reflections, which again cannot be modeled with a simple Lambertian model.

7Again, note that we exclude data points with θh < 1◦, which may explain why the errors are slightly less than that of [26].
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Figure 7 shows synthetic spheres each rendered with the individual constituent lobe (hemi-

EPD) of a 3-lobe DSBRDF model fit to the measured data. The renderings clearly visualize

the distinct reflectance characteristics of individual lobes. One can see that for a very glossy

BRDF, the three lobes are dedicated to modeling specularity of different roughness (top two

rows), while for materials with some matte appearance, the 3rd lobe essentially separates out

the diffuse reflection that solely encodes the color of the material (bottom two rows).

Figure 8 shows the results of modeling an interesting material, polyoxymethylene plastic, with

a 3-lobe DSBRDF model. The DSBRDF model accurately captures the overall characteristics

of the BRDF as is evident in the precise fitting of the lobe profiles for different color channels

(shown for the θd slice in the incident plane in the second column) and the rendered sphere

under natural illumination (first column). The reflection components are clearly separated into

three distinct lobes (third column) each capturing a constant component in the angular domain

(green curve), a shallow specular-like lobe (blue curve), and a Gaussian-like lobe (red curve). It

is, however, interesting to note that the second lobe, when rendered from the estimated DSBRDF

model parameters, encodes body color and does not purely reflect the illumination color. This

is contrary to the widely adopted dichromatic model in which the body color is solely encoded

in the diffuse component (green curve) and the illumination color is solely encoded in the

specular component (red curve). It is important to note that conventional reflection models

often blindly used in computer vision, i.e., Lambertian plus Torrance-Sparrow reflection models,

cannot model such phenomenon, while the DSBRDF model accurately captures the unorthodox

reflection components.

Note that such decomposition of the BRDF cannot be achieved with non-parametric BRDF

models. We believe this is a strong contribution that can benefit many applications in computer

vision, such as reflection component separation for robust recognition, 3D reconstruction, etc.,

which we would like to explore in the future.

C. The Space of Isotropic BRDFs

The directional statistics BRDF model can represent a continuum of real-world isotropic

BRDFs with the same low-dimensional parametric form. This enables the analysis of the space of

isotropic BRDFs, represented with measured data of 100 samples [16], with a unified expression.

This ability is vital to study the space and characterize it for further use in various inverse or
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forward problems – for instance to extract statistical priors to constrain ill-posed inverse problems

or to realistically vary the appearance of one material to another. To validate the effectiveness

of using the DSBRDF model for analyzing the space of isotropic BRDFs, we demonstrate its

use for computing a low-dimensional embedding of the space.

We start the analysis by first modeling the variation of the DSBRDF parameters across different

incident light directions. We view each κ and γ of a single lobe as the value of a bivariate function

of θd sampled at 18 uniformly-spaced values. We refer to this bivariate function as the (κ, γ)-

curve of a particular lobe. We choose to model these (κ, γ)-curves with quadratic B-splines with

five uniform knots based on an exploratory analysis of various functional bases with leave-one-

out cross validation. With this interpretation of κ and γ across θd, we have reduced the number

of parameters of the model by one third as now the 18 samples are expressed with 6th-order

B-splines.

We analyze the variability of the (κ, γ)-curves by performing bivariate functional principal

component analysis (FPCA) [25] on all lobes of the 100 real-world BRDFs [16]. To properly

account for the scale disparity between κ and γ, we modify the inner product between (κ, γ)-

curves by weighting the κ and γ portions of the product by the reciprocal of their mean curve

squared

〈ξ1, ξ2〉 =
1

||µκ||2

∫
ξκ1 (t)ξκ2 (t)dt+

1

||µγ||2

∫
ξγ1 (t)ξγ2 (t)dt , (7)

where ξ = (ξκ, ξγ)T is a (κ, γ)-curve. The principal functions (eigenfunctions) not only capture

the major variations of κ and γ separately across θd, but also capture how κ and γ vary together.

By using these principal functions as the bases, we arrive at a natural low-dimensional subspace

representation of the space of isotropic BRDFs encoded by individual lobes (BRDFs decomposed

into their reflectance components).

Figure 9 shows the projection of each lobe of all 100 BRDFs onto the first and second

bivariate principal functions. Each BRDF was first represented with a DSBRDF with an optimal

number of lobes and then each lobe was projected into the functional eigenspace individually.

The results exemplify how the principal functions naturally characterizes the isotropic BRDF

space in physically meaningful ways, with pure diffuse lobes located in the top-left of the graph

while specular surfaces are scattered in the bottom-right. This, in turn, strongly indicates that

the DSBRDF model successfully retains the physical properties of the BRDFs in its encoding.
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We further extend this analysis to characterize the BRDF space while retaining the DSBRDF

representation of each BRDF as a whole. We first establish correspondences between the lobes

across different DSBRDFs that have different optimal number of lobes. We cluster each lobe

into two classes based on the norm of their γ curve – diffuse and specular as γ encodes the

acuteness of the lobe. The lobes in one color channel of a BRDF are ordered by their γ values,

and most channels have two lobes which “straddle” this border between the two classes. We

establish lobe correspondences across different BRDFs along this border. By padding any lobes

which do not have correspondences with flat lobes, we arrive at a 9-lobe model for each color

channel and a total of 54 curves per BRDF (3 color channels per BRDF, 9 lobes per channel,

and 2 curves per lobe). We perform multivariate FPCA on these 54 curves together to obtain

principal functions of the (κ, γ)-curves that describe the variability of a BRDF as a whole rather

than of each constituent lobe.

Figure 10 shows the projections of each BRDF onto the first two bivariate principal functions.

We note that the projections give a natural clustering of the BRDFs with pure diffuse lobes

clustered very tightly in the top right of the graph, plastic-looking materials located along the

right side, and metallic-looking materials spread along the top of the graph. Because the first two

bivariate eigenfunctions account for about 54% of the variation of the data, we expect an even

better clustering when considering more than two dimensions. Using this decomposition, nine

principal components are required to represent 90% of the variability, 13 principal components

to represent 95%, and 22 principal components to represent 99%.

Note that such low-dimensional embedding results in a valid characterization of the mas-

sively high-dimensional, original space of isotropic BRDFs only because the DSBRDF model

successfully extracts a meaningful low-dimensional parameterization of each BRDF. Such low-

dimensional characterization of the space would not be possible if we used a non-parametric

BRDF model, since the implicit correspondences among different BRDFs cannot be established

with just non-linear dimensionality reduction and would require additional charting.

VII. CONCLUSION

We introduced a novel parametric BRDF model based on the idea of modeling BRDFs as a

set of directional statistics distributions. For this, we derived a new hemispherical distribution

and defined the BRDF as a collection of 2D slices where each individual slice is modeled as
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a mixture of these hemispherical distributions. We showed that the novel directional statistics

BRDF model can accurately model a wide variety of real-world isotropic BRDFs achieving

accuracy comparable to non-parametric models and also achieving higher accuracy than them

with less data.

We believe that the new parametric BRDF model has strong implications for a broad range of

applications. We have merely scratched the surface of its advantages by demonstrating its ability

to automatically decompose measured BRDF into physically meaningful reflection components

and its use for exploring the entire space of isotropic BRDFs. The advantage of having a

common low-dimensional parametric form of real-world BRDFs is probably most significant

in solving inverse problems, such as illumination estimation, material property estimation, and

3D reconstruction from images. Since the DSBRDF model is also readily a probability density

function, we may reformulate many of these long-standing problems as probabilistic inference

in which we can leverage strong priors on real-world BRDFs extracted by, for instance, the

analysis of the space of BRDFs. We plan to report on these in the future.
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Fig. 1

WE DERIVE A NOVEL DIRECTIONAL DISTRIBUTION MODEL, THE HEMISPHERICAL EXPONENTIAL POWER DISTRIBUTION

(B), WHICH HAS A SHAPE PARAMETER γ IN ADDITION TO THE SCALE PARAMETER κ THAT CORRESPONDS TO THE

CONCENTRATION OF A VON MISES-FISHER DISTRIBUTION (A) (SHOWN AS 1D PROFILES). THE HEMI-EPD MODEL CAN

REPRESENT A WIDE VARIETY OF HEMISPHERICAL DIRECTIONAL DISTRIBUTIONS (CORRESPONDING COLORS REPRESENT

DIFFERENT VALUES OF κ AND THE THREE DISTINCT DISTRIBUTIONS IN (B) ARE DRAWN WITH DIFFERENT VALUES OF γ FOR

THE SAME κ).

September 21, 2010 DU-CS-10-06



23

(a)
−90 −45 0 45 90
0

0.25

0.5

0.75

1

1.25

−90 −45 0 45 90
0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

−90 −45 0 45 90
0

1.75

3.5

5.25

7

−90 −45 0 45 90
0

0.075

0.15

0.225

0.3

(b)
−90 −45 0 45 90
0

0.25

0.5

0.75

1

−90 −45 0 45 90
0

0.02

0.04

0.06

0.08

−90 −45 0 45 90
0

1.75

3.5

5.25

7

−90 −45 0 45 90
0

0.075

0.15

0.225

0.3

Figure 1:

1

Fig. 2

ROW (A): THE DIRECTIONAL STATISTICS BRDF MODEL WITH 3 LOBES (SOLID LINE) FIT TO θd = 0 SLICES OF DIFFERENT

MEASURED BRDF DATA [16] (SQUARE) SHOWN AS THE 1D PROFILE ON THE INCIDENT PLANE. THE DSBRDF MODEL

ACCURATELY FITS THE MEASURED DATA DESPITE THE DRAMATICALLY DIFFERENT SHAPES OF THE MEASURED

DISTRIBUTIONS (RGB CORRESPOND TO RGB COLOR CHANNELS). ROW (B): THE LOBES (RED, GREEN, BLUE LINES) OF A

3-LOBE ISOTROPIC DSBRDF MODEL (BLACK SOLID LINE) FIT TO MEASURED DATA (BLACK DOTS). EACH LOBE CLEARLY

CAPTURES A DISTINCT CHARACTERISTIC REFLECTANCE COMPONENT OF THE BRDF (PLEASE ZOOM INTO TO SEE THE

SMALL LOBES IN THE 3RD COLUMN BRDF).
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1

Fig. 3

THE DIRECTIONAL STATISTICS BRDF MODEL (SOLID LINE) FIT TO DIFFERENT SLICES (θd = {10◦, 40◦, 70◦}) OF TWO

MEASURED BRDF DATA (SQUARE: COLOR-CHANGING-PAINT3 AND TEFLON IN [16]). THE DSBRDF MODEL

SUCCESSFULLY CAPTURES THE VARIATION OF THE BRDF DISTRIBUTIONS, INCLUDING THE OVERALL INTENSITY

INCREASE AND SHAPE CHANGES OF SPECULAR LOBES/SPIKES AS θd IS VARIED.
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Figure 3:

2

Fig. 4

SYNTHETIC SPHERES RENDERED USING THE DIRECTIONAL STATISTICS BRDF MODEL WITH PARAMETER VALUES

ESTIMATED FROM MEASURED BRDF DATA (NICKEL, SPECULAR-BLUE-PHENOLIC, AND ORANGE-PAINT IN [16]). EACH

ROW SHOWS SPHERES RENDERED USING THE ORIGINAL MEASURED BRDF DATA AND THOSE RENDERED USING THE

DSBRDF MODEL WITH 1 TO 5 LOBES FROM LEFT TO RIGHT, RESPECTIVELY. THE ESTIMATED OPTIMAL NUMBER OF LOBES

FOR THE DSBRDF MODELS (SEE SECTION) WERE 5, 4, AND 2, RESPECTIVELY, WHICH AGREE WELL WITH THE VISUAL

QUALITY OF THE RENDERED SPHERES.
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Figure 3:
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Figure 4:

2

Fig. 5

RELATIVE RMS ERRORS FOR ALL 100 BRDFS IN [16] USING THE DSBRDF MODEL WITH OPTIMAL NUMBER OF LOBES

AND SYNTHETIC SPHERES RENDERED WITH THE DSBRDF MODEL (FIRST ROW) AND MEASURED DATA (SECOND ROW).

THE LARGE ERRORS ARE MAINLY CAUSED BY SUBSURFACE SCATTERING (SEE THE LEFT MOST COLUMN); OTHERWISE THE

VISUAL QUALITY OF THE DSBRDF MODEL IS VERY HIGH.
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Fig. 6

RELATIVE RMS ERRORS OF THE DSBRDF MODEL (SOLID LINES) AND A NON-PARAMETRIC REPRESENTATION WITH

LINEAR INTERPOLATION (DASHED LINES) FOR THREE DIFFERENT BRDFS (DISTINCT COLORS) AS THE SAMPLING OF THE

MEASURED DATA IS REDUCED (WE SUBSAMPLE θh BY THE INTEGER FACTORS ON THE HORIZONTAL AXIS). THE RESULTS

SHOW THAT THE DSBRDF MODEL ACHIEVES HIGHER ACCURACY THAN NON-PARAMETRIC MODELS EVEN WITH

MODERATE SUBSAMPLING, DEMONSTRATING FRAGILITY OF NON-PARAMETRIC MODELS AND THE ROBUSTNESS OF THE

DSBRDF MODEL.
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Fig. 7

SYNTHETIC SPHERES RENDERED WITH MEASURED BRDF, 3-LOBE DSBRDF MODEL, AND 1ST TO 3RD INDIVIDUAL LOBES

OF THE DSBRDF MODEL FROM LEFT TO RIGHT, RESPECTIVELY. THE LOBE DECOMPOSITIONS CLEARLY VISUALIZE THE

DISTINCT REFLECTANCE CHARACTERISTICS OF INDIVIDUAL LOBES, E.G., THE COLOR IS SOLELY ENCODED IN THE 3RD

LOBE FOR THE BOTTOM TWO MATERIALS INDICATING BODY REFLECTION.
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Fig. 8

RESULTS OF MODELING THE BRDF OF POLYOXYMETHYLENE PLASTIC WITH A 3-LOBE DSBRDF MODEL. FIRST COLUMN:

SYNTHETIC SPHERES RENDERED WITH MEASURED BRDF (TOP) AND THE 3-LOBE DSBRDF MODEL (BOTTOM). SECOND

COLUMN: THE DSBRDF MODEL (SOLID CURVE) FIT TO θd = 0 SLICES OF THE MEASURED BRDF DATA [16] (SQUARE)

SHOWN AS THE 1D PROFILE ON THE INCIDENT PLANE FOR THE RED, GREEN, AND BLUE COLOR CHANNELS. THIRD

COLUMN: THE LOBES (RED, GREEN, BLUE CURVES) OF A 3-LOBE DSBRDF MODEL (BLACK SOLID LINE) FIT TO

MEASURED DATA (BLACK DOTS). FOURTH COLUMN: SYNTHETIC SPHERE RENDERED WITH THE DSBRDF MODEL

PARAMETERS FOR EACH LOBE SEPARATELY. NOTE THAT THE SECOND LOBE (CORRESPONDING TO THE BLUE CURVE IN THE

THIRD COLUMN) ENCODES THE BODY COLOR WHILE IT EXHIBITS SPECULAR REFLECTION, WHICH CANNOT BE MODELED

WITH CONVENTIONAL DICHROMATIC MODELS.
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Fig. 9

BY PROJECTING EACH LOBE ONTO THE COMPUTED EIGENFUNCTIONS, WE CAN VISUALIZE HOW THE EIGENFUNCTIONS

NATURALLY CHARACTERIZE THE SPACE OF ISOTROPIC BRDFS AND OFFER PHYSICALLY INTUITIVE INTERPRETATIONS. IN

THIS IMAGE, EACH SPHERE IS A SINGLE SYNTHETICALLY RENDERED LOBE OF A BRDF WHOSE x AND y COORDINATES ARE

THE PROJECTIONS ONTO THE FIRST TWO EIGENFUNCTIONS. THE DIFFUSE LOBES ARE LOCATED IN THE TOP-LEFT WITH

SPECULAR SURFACES SCATTERED IN THE BOTTOM-RIGHT INDICATING THAT THE FIRST EIGENFUNCTION ROUGHLY

ENCODES THE VARIABILITY OF GLOSSINESS AND THE SECOND EIGENFUNCTION THE VARIABILITY OF MATTENESS IN THE

BRDF SPACE.
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Fig. 10

WE PROJECT EACH BRDF (REPRESENTED AS 54 CURVES) ONTO THE FIRST TWO BIVARIATE EIGENFUNCTIONS OBTAINED

VIA FPCA ON THE (κ, γ)-CURVES COMPUTED BY REPRESENTING EACH BRDF, AS A WHOLE, WITH A DSBRDF MODEL

WITH OPTIMAL NUMBER OF LOBES. NOTE THE NATURAL CLUSTERING IN THIS LOW-DIMENSIONAL EMBEDDING OF THE

BRDF SPACE, WITH PURE-DIFFUSE SURFACES LOCATED IN A TIGHT CLUSTER IN THE UPPER RIGHT-HAND CORNER.

METALLIC SURFACES ARE SCATTERED TOWARDS THE LEFT AND PLASTIC SURFACES TOWARDS THE BOTTOM. THESE

RESULTS SUGGEST THAT THE DSBRDF MODEL PROVIDES A SOUND FOUNDATION FOR EXTRACTING PHYSICALLY

MEANINGFUL LOW-DIMENSIONAL BASES FOR ENCODING THE OTHERWISE MASSIVELY HIGH-DIMENSIONAL SPACE OF

REAL-WORLD BRDFS.
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