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We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately
encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we
make is that a BRDFmay be viewed as a statistical distribution on a unit hemisphere.We derive a novel directional
statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-
world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters,
including the number of components, of this novel directional statistics BRDF model. We show that the model
captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also de-
monstrate the advantages of the novel BRDFmodel by showing its use for reflection component separation and for
exploring the space of isotropic BRDFs. © 2010 Optical Society of America

OCIS codes: 290.1483, 100.3190.

1. INTRODUCTION
The appearance of a real-world object is determined by how
light rays interact with the object surface. In the most general
form, this interaction can be mathematically modeled with the
general scattering function [1], which is a function of 14 vari-
ables in total. In reality, we may make various assumptions
about the object surface that lead to a significant reduction
in the number of variables of this function. If we assume that
the light interaction is strictly local (in other words, we are
only concerned with light transport at a surface point and
choose to ignore all subsurface transports, e.g., subsurface
scattering in layered translucent materials), the mathematical
model can be reduced to the bidirectional reflectance distri-
bution function (BRDF) [1].

Although limited to expressing strictly local light interac-
tion, the BRDF is arguably the most widely used description
of light transport in computer vision and graphics. This is par-
ticularly true in applications in which properties of the scene,
such as the illumination, three-dimensional (3D) geometric
structure, and reflectance properties, are inferred from
images since the pointwise description enables estimation
of these quantities at each scene point. As such, devising a
compact yet accurate representation of real-world BRDFs
goes to the heart of a number of important applications. In
particular, low-dimensional parametric BRDF models play a
vital role since they enable the formulation of such represen-
tative inverse problems as model parameter estimation. Still,
deriving a low-dimensional parametric BRDF model that can
accurately encode the drastic variability of real-world BRDFs
remains a challenging problem.

Various parametric BRDF models, either based on purely
empirical observations, such as Lambertian [2], Blinn/Phong
[3,4] (the Blinn paper is an extension of the Phong paper),
and Schlick [5]; physically based modeling of the microscopic

surface geometry, including Torrance–Sparrow [6,7], Ward
[8], and Oren-Nayar [9]; or phenomenological modeling
using linear/nonlinear bases, such as Zernike polynomials
[10], spherical harmonics [11], cosine lobes [12], and two-
dimensional (2D) Gaussians on halfway disks [13], have been
introduced in the past. Unfortunately, each parametric BRDF
model is limited to representing only a specific type of reflec-
tion, e.g., glossiness around the reflection vector [3,4,12] or
the halfway vector [6–8,13], and cannot express the whole
spectrum of BRDFs in a single parametric form; they require
a (linear) combination of separate analytical models leading
to complex expressions whose parameter estimation be-
comes challenging [13]. Although phenomenological models
aim to represent all BRDFs with a common set of bases,
the use of generic bases inevitably leads to high-dimensional
representations of real-world BRDF that can have various fre-
quencies and shapes.

Owing to the development of novel gonioreflectometers
(e.g., [14–16]), as well as computational illumination setups
to directly measure surface properties [17], extensive mea-
surements of real-world BRDFs have been collected. These
data sets have inspired the use of various nonparametric
BRDF models [14,18–21], which essentially provide tabulated
views of the measured BRDF data accessible with two- to
four-dimensional (4D) indices that encode the combination
of incident and exitant directions. Since nonparametric mod-
els are essentially raw measurements of real material, they
undoubtedly have strong advantages in photorealistic appear-
ance synthesis. Still, when using such nonparametric models
for solving inverse problems in computer vision, we are
cursed by the high dimensionality of BRDF data. Although
compression techniques, including linear/nonlinear dimen-
sionality reduction, can help in deducing a lower-dimensional
nonparametric representation, they hardly result in a compact
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one that can make solving inverse problems tractable, nor do
they provide physically meaningful descriptions of the BRDF.
Furthermore, the accuracy of nonparametric models essen-
tially depends on the sampling of the data and, thus, necessi-
tates dense measurements to achieve certain accuracy. This,
in turn, naturally means that one will need more data when
solving inverse problems using such models compared to
parametric models.

The goal of this paper is to derive a low-dimensional para-
metric BRDF model that can achieve accuracy comparable to
nonparametric representations. That is, we aim to accurately
express the wide variety of real-world BRDFs with an analy-
tical model consisting of a small number of parameters. In
order to make the problem tractable, we focus on isotropic
BRDFs. Our approach to this challenging, long-standing pro-
blem is based on a novel perspective of a BRDF. We view the
BRDF as a directional statistics distribution, a probability den-
sity function that takes in an incident light ray direction and
returns a distribution of reflected light ray directions. Note
that this is very different from using nonparametric [18] or
analytical distributions to model microfacet orientations (e.g.,
[7]). We directly model scattered radiance distributions with
parametric directional distributions, resulting in a very com-
pact, yet flexible, BRDF model. To this end, we derive a novel
hemispherical directional statistics distribution and model
real-world isotropic BRDF as a mixture of it. The novel direc-
tional statistics BRDFmodel (DSBRDF) can encode the whole
spectrum of BRDFs ranging from purely Lambertian to perfect
mirror reflection in the exact same functional form. This al-
lows us to capture various types of real-world isotropic
BRDFs in a low-dimensional analytical expression and also
derive a canonical probabilistic method for estimating its pa-
rameter values, including the optimal number of mixture com-
ponents. Experimental results show that the model achieves
accuracy comparable to the state-of-the-art nonparametric
model [20].

We believe the novel DSBRDF model has direct implica-
tions in a broad range of applications. Most important, it en-
ables the encoding of a wide variety of real-world isotropic
BRDFs with a common low-dimensional analytical form. This
is in sharp contrast to previous work in which the appropriate
model had to be chosen and combined among different BRDF
models or the representations were left high dimensional, in-
curring burden on further analysis. We demonstrate the signif-
icance of the novel model by showing that it can achieve
higher accuracy than nonparametric models when the sam-
pling of measurements is sparse, can naturally decompose
real-world measured BRDFs into physically meaningful and
intuitive constituents (reflection components), and, most sig-
nificantly, provides powerful means to explore and character-
ize the entire space of isotropic BRDFs.

2. ISOTROPIC BRDF
The BRDF is defined as the ratio of the reflected differential
radiance dLo in a given exitant (view) direction ωo to the in-
cident irradiance dEi due to light from direction ωi,

f rðωi;ωoÞ ¼
dLoðωoÞ
dEiðωiÞ

¼ dLoðωoÞ
LiðωiÞðωi · nÞdωi

; ð1Þ

where n is the surface normal at the surface point of interest
and dωi is the differential solid angle of the light source in

direction ωi subtends [1]. The BRDF is thus a 4D real-valued
function f r :Ω × Ω → R, where Ω is the upper hemisphere with
its origin at the surface point and its north pole (Z axis)
aligned with the surface normal. Real-world BRDFs satisfy the
Helmholtz reciprocity f rðωi;ωoÞ ¼ f rðωo;ωiÞ and the energy
conservation law

R
Ω f rðωi;ωoÞdωi ≤ 1.

The two directions ωi and ωo can be described in spherical
coordinates ðθi;ϕiÞ and ðθo;ϕoÞ, respectively, leading to an ex-
plicit 4D notation f rðθi;ϕi; θo;ϕoÞ. Here, we denote the polar
angle with θ and azimuth angle with ϕ : θ ∈ ½0; π2� and
ϕ ∈ ½0; 2πÞ. Note that in the above definition and throughout
the rest of the paper, we abuse the notation for directional
vectors: ωi (or n) represents a unique directional vector (unit
vector) in either spherical coordinates ðθi;ϕiÞ or Cartesian co-
ordinates ðsin θ cosϕ; sin θ sinϕ; cos θÞ, whichever is appro-
priate depending on the context. For instance, the dot
product in Eq. (1) is defined over the Cartesian coordinates.

Although the BRDF is a 4D function, for many real-world
materials, its intrinsic dimensionality is less than four. This
is particularly true for those materials that exhibit so-called
isotropic BRDFs. As is also done to derive a bivariate non-
parametric BRDF model [20], we may exploit this lower-
dimensional intrinsic characteristic of real-world isotropic
BRDFs by making a few realistic assumptions and coordinate
changes.

First, for isotropic BRDFs, we may safely assume that the
BRDF is invariant to azimuthal rotations of the incident and
exitant directions f rðθi;ϕi; θo;ϕoÞ ¼ f rðθi;ϕi þ φ; θo;ϕo þ φÞ
and to reflection by the incident plane f rðθi; 0; θo;ϕoÞ ¼
f rðθi; 0; θo;−ϕoÞ. These two properties lend themselves to a
3D description of the BRDF f rðθi; θo; jϕi − ϕojÞ [21]. Second,
we leverage a common reparametrization known as the half-
way vector representation [22]. Instead of representing the
BRDF with incident and exitant directions, we model them
with the halfway direction ωh between the incident and exi-
tant directions and encode the incident light direction in a
hemisphere where the halfway direction becomes the north
pole, referred to as the difference direction ωd. This repara-
metrization can be achieved with

ωh ¼ ωi þ ωo

∥ωi þ ωo∥
ωd ¼ RY ð−θhÞRZð−ϕhÞωi; ð2Þ

where RY and RZ denote rotation matrices (∈ SOð3Þ) about
the binormal (Y) and surface normal (Z) axes, respec-
tively [22].

With the halfway representation, an isotropic distribution
around the halfway vector (i.e., axially symmetric distribution
about θh ¼ 0), becomes an anisotropic distribution around the
reflection vector (ωr ¼ 2ðωh · ωiÞωh − ωi) given an incident
light direction, whose elongation along the great circle joining
the incident and reflection directions increases as the incident
direction approaches the grazing angle [23]. This is a particu-
larly useful property since many real-world isotropic BRDFs
exhibit asymmetric reflection around the reflection direction
that cannot be captured with isotropic distributions around ωr

[3,4,12], but can be approximated with an isotropic distribu-
tion around their corresponding halfway vectors ωh. We em-
pirically found that for BRDFs that can be well approximated
with the Torrance–Sparrow reflection model [7], the center-
peaked symmetry (isotropy about θh ¼ 0) can be assumed
for a wide range of surface roughness: roughly ½0;0:4� in the
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roughness parameter value, where it generally ranges from 0
to 0.1 for real-world surfaces. This means that we may repre-
sent isotropic BRDFs as a function (s) of ðθh; θdÞ by assuming
invariance to the azimuthal angles ϕh or ϕd. Note that these
two azimuthal angles are uniquely interrelated given an inci-
dent light direction or exitant direction. Romeiro et al. experi-
mentally showed that most isotropic BRDFs can indeed be
represented with a 2D (nonparametric) function of θh and
θd by simply averaging their values over ϕd [20].

To this end, we model real-world isotropic BRDFs with es-
sentially 2D representations, as we detail next. However, we
do not simply drop the dependency on ϕd (or ϕh), but instead
seek to estimate an optimal parametric representation for
f rðθh; θd;ϕdÞ that fits measured real-world isotropic BRDFs
in the least squares sense.

3. HEMISPHERICAL EXPONENTIAL
POWER DISTRIBUTION
We now derive an analytical reflection model for representing
real-world isotropic BRDFs. In particular, we derive a para-
metric model for f rðθh;ϕd; θdÞ, where the azimuthal depen-
dency on the incident–exitant directions are represented
with ϕd. Note that we may instead choose to model
f rðθh;ϕh; θdÞ without any change in the following derivation.
Given the results of the analysis in Section 2, we model this 3D
distribution that is intrinsically 2D (f rðθh; θdÞ) with a set of 2D
slices of fixed difference directions θd (relative incident direc-
tion) and ϕh ¼ 0: f rðθh;ϕd; θd ¼ θidÞ, where θid ¼ fmπ

2M jm ¼ 0;
…; M ∈ Zg. We later discuss how the parameters of these
sampled slices can be consolidated into a smaller set of para-
meters through functional data analysis.

The key observation we make is that a 2D slice of a BRDF
can be viewed as a statistical distribution of reflected light
rays given an incident light ray (θd), where the reflected radi-
ance values f rðθh;ϕd; θdÞ represent the probability of incident
light being scattered into that specific direction ðθh;ϕdÞ. In
other words, we may view it as a probability density function
of a directional distribution: a distribution on the surface of a
unit hemisphere Ω parameterized with ðθh;ϕdÞ. Our goal is to
derive a suitable directional statistics distribution model that
has a small number of parameters while realizing the neces-

sary flexibility to encode the large variability of real-world
isotropic BRDFs.

The analysis in Section 2 suggests that we may approximate
these BRDF slices with a center-peaked (i.e., mean direction at
θh ¼ 0) isotropic probability density function of θh : p ðθhjθdÞ.
However, conventional directional statistics distributions are
not suitable tomodel these BRDF slices. For instance, a widely
used directional statistics distribution is the von Mises–Fisher
distribution [24], a Gaussian distribution on the unit sphere

pðθhjθd;ΘÞ ¼ κ
4π sinh κ exp½κ cos θh�; ð3Þ

where the only parameter is Θ ¼ fκg. κ controls the “concen-
tration” analogous to the variance of a Gaussian in Cartesian
coordinates. Although one might think that the von Mises–
Fisher distribution (or other sphere-wrapped Gaussian distri-
butions) may suffice to model isotropic BRDFs, as shown in
Fig. 1(a), it clearly lacks the flexibility (note again that even
a Torrance–Sparrow is not a Gaussian on the sphere) to model
a wide variety of real-world isotropic BRDFs. An even bigger
problem is that the domain is the entire sphere, making it un-
suitable for modeling a BRDF.

In order to model various BRDFs, we need a more flexible
directional statistics distribution model that is naturally de-
fined on the unit hemisphere. Figure 2(a) shows the one-
dimensional (1D) profiles on the incident plane of θd ¼ 0
slices of several measured BRDFs −f rðθh;ϕd ¼ f0; π2g; θd ¼
0Þ [19]. They appear center peaked and symmetric about
θh ¼ 0, as predicted by our previous analysis. They also show
that different BRDFs can have very different distribution
shapes. To this end, we derive a novel hemispherical distribu-
tion model analogous to the exponential power distribution in
Cartesian coordinates. We refer to this directional distribution
as the hemispherical exponential power distribution (hemi-
EPD):

pðθhjθd;ΘÞ ¼ CðΘÞðexp½κ cosγ θh� − 1Þ; ð4Þ

where Θ ¼ fκ; γg are the parameters of the distribution and
C is the normalization factor, which can be shown to be

−1.5 −1 −0.5 0 0.5 1 1.5
0

1

2

3

4

5

6

7

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

(b)(a)
Fig. 1. (Color online) We derive a novel directional distribution model, (b) the hemi-EPD, which has a shape parameter γ in addition to the scale
parameter κ that corresponds to the concentration of a (a) von Mises–Fisher distribution (shown as 1D profiles). The hemi-EPD model can re-
present a wide variety of hemispherical directional distributions (the corresponding colors represent different values of κ and the three distinct
distributions in (b) are drawn with different values of γ for the same κ).
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CðΘÞ ¼ γð−κÞ1γ
2πðΓð1γÞ−Γð1γ;−κÞ−γð−κÞ

1γ Þ
, where Γ is the incomplete gamma

function [25].
This hemi-EPD has various advantages for modeling real-

world BRDFs. As illustrated in Fig. 1(b), it can naturally
encode axially distributed directions with a small number of
parameters, while retaining the flexibility to represent a wide
variety of distributions on the hemisphere. We refer to κ as the
scale parameter and γ as the shape parameter. In essence, κ
controls the overall height of the distribution, corresponding
to the albedo of the reflected radiance, and γ controls the kur-
tosis of the distribution, controlling the concentration of the
reflected light directions. As extreme cases, the hemi-EPD can
model a perfect Lambertian reflection with γ ¼ 0 and a perfect
mirror reflection with γ ¼ ∞. We may also see that, by taking
Maclaurin expansion pðθhjθd;ΘÞ ¼ CðΘÞðeκ exp½− κγ

2 θ2h� − 1Þ þ
OðθnhÞ, the hemi-EPD subsumes a Gaussian distribution. This
means that a BRDF model based on the hemi-EPD embodies
the Torrance–Sparrow model, which is known to achieve high
accuracy among past analytical models.

4. MIXTURE OF HEMI-EPDS
Real-world object surfaces are rarely made of a single materi-
al; at a microscopic level, the surface usually consists of multi-
ple layers of materials. Even when subsurface scattering is
negligible, as we assume, individual layers contribute to dif-
ferent distributions of scattered reflected light rays. As a re-
sult, real-world BRDFs tend to exhibit a complex distribution
that cannot be modeled with a single analytical distribution
model. To represent such compound radiance distributions,
real-world BRDFs are often modeled with a linear combina-
tion of multiple parametric BRDF models. For instance, the
Lambertian and the Torrance–Sparrow reflection models
are often used together to model real-world surfaces [26]. In
many cases, however, the glossy or diffuse appearance itself is
generated from multiple surface materials and, thus, cannot
be captured with a single parametric model. For instance,
Cook and Torrance [6] suggest using multiple microfacet
distributions for modeling multiple layers of glossy surface
material.

The problem of taking linear combinations of different
parametric BRDF models is that the resulting model becomes
unnecessarily complex when the functional forms are not the
same, e.g., Lambertian and Torrance–Sparrow. This becomes
a large problem when we try to estimate their parameters not
just for reflectance estimation, but also in other inverse pro-
blems, including illumination estimation and geometry recon-
struction of unknown material objects. On the other hand,
when the constituent BRDFs models are the same but
overly simplistic, e.g., Gaussian distributions with different
parameters (multiple lobes of Torrance–Sparrow specular
reflection), the resulting BRDF model would lack the expres-
siveness to represent a wide variety of materials.

We model real-world isotropic BRDFs as a mixture of hemi-
EPDs. We do not suffer from the aforementioned dilemma,
since the hemi-EPD itself offers the flexibility to model a wide
range of radiance distributions in the same functional form.
An isotropic BRDF can thus be modeled as a linear combina-
tion of hemi-EPDs,

pðθhjθd;ΘÞ ¼
XK
κ¼1

αðκÞpðθhjθd;ΘðκÞÞ; ð5Þ

where Θ ¼ ½Θð1Þ…ΘðKÞ� and K is the number of constituent
hemi-EPDs. We refer to each constituent hemi-EPD as a BRDF
lobe. This parametric model can be seen as a mixture of di-
rectional distributions and readily provides a statistical inter-
pretation of the BRDF; it is the directional probability density
function of the exitant radiances given an incident light ray.
However, measured BRDFs are usually not normalized, i.e.,
the total energy is not 1. To model such real-world data,
we fit a mixture of unnormalized hemi-EPDs

pðθhjθd;ΘÞ ¼
XK
κ¼1

1

CðΘðκÞÞ pðθhjθd;Θ
ðκÞÞ ð6Þ

to them. We refer to this novel analytical reflection model as
the isotropic DSBRDF model. For brevity, we drop the term
isotropic in the rest of the paper. Note that we may interpret
the reciprocal of the normalization factors 1

CðΘðκÞÞ to be the un-
normalized mixture coefficients. Whenever necessary, we can
scale these unnormalized mixture coefficients to arrive at a
valid probability density function, which simply corresponds
to scaling the measured BRDF data with

P
K CðΘðκÞÞ to nor-

malize its total energy. This, in turn, means that as long asP
K 1

CðΘðκÞÞ ≤ 1, the energy conservation law is satisfied.
We may derive a canonical algorithm for fitting this isotro-

pic DSBRDF model to measured data by following the same
principal as that of the expectation maximization (EM) algo-
rithm [27]. This amounts to iterating between computing the
conditional expectation of the latent variable κ (E step; i.e.,
estimating the responsibilities), and then maximizing the com-
plete joint likelihood (M step; i.e., maximum likelihood esti-
mation of the parameters of each unnormalized κth lobe).
The input to the algorithm is a 2D slice of measured BRDF
data (θd ¼ const), consisting of N data points, each having dif-
ferent ðθðnÞh ;ϕðnÞ

d Þ. We formulate the maximum likelihood esti-
mation as the least squares minimization, which we solve with
the Levenberg–Marquardt algorithm. For the M step, the pa-
rameter values can be initialized by first estimating κ, and then
using it to estimate γ for each lobe. We use the same strategy
for initializing all values in the beginning: we first estimate one
set of κ and γ from all the data points, and then halve those
values as we step through the remaining lobes. We found this
initialization to work well for all 100 BRDFs that we fit.

Once we fit the DSBRDF model to the 2D slices of a mea-
sured BRDF data (fθidji ¼ 1;…; Kg), we can establish corre-
spondences among the K individual lobes across different θid
by simply sorting the lobes based on the scale parameter val-
ues κðκÞ, since we may safely assume that individual BRDF
lobes will decay or increase coherently; their height ordering
will remain in tact as θd increases. Note again that we do not
simply ignore the dependency of the BRDF slice on ϕd;
through the EM algorithm, we estimate an optimal fit of the
DSBRDF model in a least squares sense (i.e., estimate the
parameter values that explains the asymmetry with minimum
squared error).

We may further model the joint variation of the two param-
eters ðκ; γÞ across the discrete samples of the incident light
direction θd. This results in a DSBRDF model that expresses
isotropic BRDFs as mixtures of hemi-EPDs whose parameters
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are functions of θd. In particular, in Subsection 6.C, we detail
an approach based on functional principal component analy-
sis (FPCA) to extract least squares optimal, data-driven bases
for expressing these functional variations of the parameter
values from real-world measured data.

5. DETERMINING THE NUMBER OF LOBES
The number of necessary lobes for accurately encoding the
directional distribution of a real-world isotropic BRDF varies
depending on the material. For instance, a simple BRDF that
only exhibits diffuse reflection may be modeled with a single
lobe, while BRDFs with exotic distributions may require more
than three lobes, each representing different types of reflec-
tions ranging from a specular spike to a glossy specular lobe
and a Lambertian lobe. We can automatically determine the
optimal number of lobes by running the EM algorithm for dif-
ferent numbers of lobes, and then testing the quality of fits
using a statistical measure.

If we consider the Kullback–Leibler divergence between the
statistical distributions of a measured BRDF f rðθh;ϕd; θdÞ and
the fit K -lobe DSBRDF distribution pðθhjθd;ΘK Þ, it will be
minimized when the expected log probability EK

p ¼
−

1
N

P
N log pðθhjθd;ΘK Þ is minimized. Here, we have denoted

the parameters of a K -lobe DSBRDF model with ΘK . To this
end,wemayexamine the rate of changeofEK

p while decreasing
the number of lobesK from a predetermined upper bound ~K to
determine the optimal K , the smallest K that achieves a statis-
tically set error tolerance. Similar to [28], we adopt the
Williams’ statistical test [29] to determine this optimal K . We
use critical values for 1% tolerance. Details are omitted due
to limited space and readers are referred to [28,30] for further
details about the Williams’ test in general.

6. MODELING REAL-WORLD
ISOTROPIC BRDFS
We evaluate the accuracy of the DSBRDF model with the real-
world BRDF data collected by Matusik et al. [19] that is also

used in other extensive comparative studies of parametric and
nonparametric BRDF models [20,23] to provide a fair and
thorough comparison. This database consists of 100 measured
isotropic BRDFs sampled over θh ∈ ½0; π2�, θd ∈ ½0; π2�, and ϕd ∈

½0; π� 1° apart except for θh, where the sampling is nonlinear to
achieve denser sampling around the center θh ¼ 0 [19]. We
uniformly subsample the incident light direction represented
by θd with 5° spacing, resulting in 18 slices of each BRDF
f rðθh;ϕd; θd ¼ θidÞ, where θid ¼ fmπ

36 jn ¼ 0;…; 18g. For each
slice, we fit the DSBRDF model using the EM algorithm de-
scribed in Section 4. We found that data points very close
to θh ¼ 0 were unreliable for fitting the DSBRDF model since,
for several extremely shiny materials, their intensities could
be too high to reliably capture even with a high-dynamic range
imaging setup. Thus, we excluded data points with θh less than
a degree and instead added a delta term to the mixture model
to compensate for the discrepancy at θh ¼ 0, whose height
was computed after fitting the DSBRDF model.

A. Representing Measured Data
Figure 2(a) illustrates some of the results of fitting three-lobe
DSBRDF models to the θd ¼ 0 slices of different measured
BRDF data, shown as 1D profiles on the incident plane.
The results show that the DSBRDF model fits the measured
data very well. Notice that the measured BRDF data exhibit
various types of distributions, which cannot be modeled with
a simple combination of Lambertian and Torrance–Sparrow
reflection models. The flexibility of individual hemi-EPDs en-
ables us to fully capture the wide range of distribution shapes
of real-world isotropic BRDFs. Figure 3 shows the results of
fitting the DSBRDF model to different slices of two different
measured BRDF data. The results show that the novel BRDF
model can accurately model the variation, most notably the
increased overall intensity and the shape change of specular
lobes/spikes as the incident light direction approaches grazing
angles. Notice that some BRDFs (second row of Fig. 3) exhibit
noncentered lobes (the ones at the perimeter of θh). These are
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Fig. 2. (Color online) (a) DSBRDF model with three lobes (solid curve) fit to θd ¼ 0 slices of different measured BRDF data [19] (squares) shown
as a 1D profile on the incident plane. The DSBRDF model accurately fits the measured data despite the dramatically different shapes of the mea-
sured distributions (RGB corresponds to RGB color channels). (b) Lobes (red, green, blue curves) of a three-lobe isotropic DSBRDF model (black
solid curve) fit to measured data (black dots). Each lobe clearly captures a distinct characteristic reflectance component of the BRDF.
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mainly caused by subsurface scattering, which cannot be cap-
tured with the DSBRDF model. We plan to extend the model
to include such noncentered lobes. In this paper, we use a sim-
ple circular mask on ðθh;ϕdÞ with a radius proportional to θd
to discard data points at the θh perimeter.

Figure 4 shows synthetic spheres rendered under an envir-
onmental illumination (St. Peter’s Basilica light probe in [31])
using the original tabulated, measured BRDF data as well as
the fit parametric DSBRDF model with one to five lobes for
different BRDFs. We implemented the rendering in pbrt as a
new material with a new BxDF [32]. One can see that the ren-

dered spheres become visually indistinguishable from the
measured BRDF after the optimal number of lobes is used
in the DSBRDF model, which were five, four, and two, respec-
tively. These results clearly show that the DSBRDFmodel cap-
tures the behavior of the BRDF extremely well with only a
small number of parameters. Measured BRDF requires 3 ×
90 × 90 × 180 floating point values, while the DSBRDF model
with K lobes only needs 2 × 3 × K × 18, ðκ; γÞ × ðR;G; BÞ×
ðK − lobesÞ × ðθd − samplingÞ, where K is typically 3. Again,
in Subsection 6.C, we further reduce the size of this represen-
tation through FPCA on the variation of the two parameters
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(b)
Fig. 3. (Color online) DSBRDF model (solid curve) fit to different slices (θd ¼ f10°; 40°; 70°g) of two measured BRDF data (squares: (a) color-
changing-paint3 and (b) teflon in [19]). The DSBRDF model successfully captures the variation of the BRDF distributions, including the overall
intensity increase and shape changes of specular lobes/spikes as θd is varied.

Fig. 4. (Color online) Synthetic spheres rendered using the DSBRDF model with parameter values estimated from measured BRDF data (nickel,
specular-blue-phenolic, and orange-paint in [19]). Each row shows spheres rendered using the original measured BRDF data and those rendered
using the DSBRDFmodel with one to five lobes from left to right, respectively. The estimated optimal number of lobes for the DSBRDFmodels (see
Section 5) were 5, 4, and 2, respectively, which agree well with the visual quality of the rendered spheres.
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ðκ; γÞ across θd samples. Even without it, however, the
DSBRDF model is a much more compact representation
(more than 10,000 times reduced in size) compared to a
straightforward nonparametric representation.

Figure 5 shows the relative (energy-normalized) rms errors
for all the 100 BRDFs in [19] using DSBRDF models with the
optimal numbers of lobes. The results show that the DSBRDF
model can model a wide range of real-world isotropic BRDFs
accurately. The overall accuracy is comparable to the non-
parametric bivariate model (Fig. 3 in [20]), which achieves
higher accuracy than past parametric models. Again, note that
we exclude data points with θh < 1°, which may explain why
the errors are slightly less than that of [20]. The significance of
the DSBRDF model lies in the fact that we can achieve this
accuracy with a very small number of parameters and, thus,
a significantly smaller footprint.

Figure 6 shows how the relative rms errors of the DSBRDF
model and a nonparametric model with linear interpolation
varies as the sampling of the measured data is reduced.
The results clearly show that the DSBRDF model achieves
higher accuracy than the nonparametric model that heavily
relies on densely sampled measurements and interpolation
among the sampled data points, even when the data is only
reduced by a moderate amount. These results clearly demon-
strate the importance of having an accurate low-dimensional
parametric BRDF model for modeling real-world data,
since sampling densities are usually sparse in real-world
applications.

B. Reflection Component Separation
The DSBRDF model automatically provides a decomposition
of the BRDF into their constituent lobes. Figure 2(b) shows
the 1D profiles of the three individual lobes of three-lobe
DSBRDF models fit to measured data (we only show the
red channel). Each lobe clearly models a separate reflection
component with distinct characteristics. For instance, we may
interpret the first two lobes (the red and green lobes) in the
left-most DSBRDF model as the specular spike and the spec-

ular lobe. Our DSBRDF model reveals that even the specular
spike has a certain spread in the angular domain and success-
fully models it, which would otherwise be extremely hard to
model with other analytical specular reflection models. The
third lobe (blue) in the third and fourth DSBRDF models cor-
respond to the diffuse lobes representing body reflections,
which again cannot be modeled with a simple Lambertian
model.

Figure 7 shows synthetic spheres each rendered with
the individual constituent lobe (hemi-EPD) of a three-lobe
DSBRDF model fit to the measured data. The renderings
clearly visualize the distinct reflectance characteristics of in-
dividual lobes. One can see that for a very glossy BRDF, the
three lobes are dedicated to modeling specularity of different
roughness (top two rows), while for materials with some
matte appearance, the third lobe essentially separates out the
diffuse reflection that solely encodes the color of the material
(bottom two rows). Figure 7 also shows the results of using
the conventional diffuse plus specular reflectance model, in
particular when the Lambertian model is used in conjunction
with two lobes of the Torrance–Sparrow specular reflection
model so that three reflectance lobes are used in total. The
parameter values of these reflectance models were estimated
with nonlinear optimization by formulating a least squares er-
ror function using the measured BRDF data. We found this
process to be unstable as all the parameters need to be esti-
mated simultaneously, unlike the EM-like algorithm derived
for estimating the DSBRDF model parameters that canoni-
cally separate the reflectance lobes in the E step. We had
to manually tailor good initial estimates and limit the range
of θd slices used in the least squares minimization. The results
clearly show that the widely adopted linear combination of
Lambertian and Torrance–Sparrow reflectance models fails
to capture the complex reflectance of the four materials that
are representative of common materials we encounter in daily
life. The results particularly show that these conventional
models oversimplify real-world reflectances. In sharp con-
trast, the three-lobe DSBRDF model accurately reproduces

Fig. 5. (Color online) Relative rms errors for all 100 BRDFs in [19]
using the DSBRDF model with the optimal number of lobes and syn-
thetic spheres rendered with the (top) DSBRDF model and (bottom)
measured data. The large errors are mainly caused by subsurface scat-
tering (see the left-most column); otherwise, the visual quality of the
DSBRDF model is very high.
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Fig. 6. (Color online) Relative rms errors of the DSBRDF model
(solid curves) and a nonparametric representation with linear inter-
polation (dashed curves) for three different BRDFs (distinct colors)
as the sampling of the measured data is reduced (we subsample θh by
the integer factors on the horizontal axis). The results show that the
DSBRDFmodel achieves higher accuracy than nonparametric models
even with moderate subsampling, demonstrating the fragility of non-
parametric models and the robustness of the DSBRDF model.
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the appearance under natural illumination, which validates its
expressiveness and accuracy. The three-lobe DSBRDF model
is not as compact as the Lambertian plus Torrance–Sparrow
reflectance model representation that requires only 3 × 5 ¼
15ðfR;G; Bg × fLambertian albedo; ðTorrance–Sparrow
albedo; roughnessÞ × 2gÞ parameters. It is, however, signifi-
cantly smaller than a nonparametric representation of the
measured BRDF, especially with the parametrization of the
values of ðκ; γÞ with respect to θd via functional principal
analysis, as described in Subsection 6.C, and strikes a balance
between compactness and accuracy as a reflectance model.

Figure 8 shows the results of modeling an interesting mate-
rial, polyoxymethylene plastic, with a three-lobe DSBRDF
model. The DSBRDF model accurately captures the overall
characteristics of the BRDF as is evident in the precise fitting
of the lobe profiles for different color channels (shown for the

θd slice in the incident plane in the second column) and the
rendered sphere under natural illumination (first column).
The reflection components are clearly separated into three
distinct lobes (third column), each capturing a constant com-
ponent in the angular domain (green curve), a shallow specu-
larlike lobe (blue curve), and a Gaussianlike lobe (red curve).
However, it is interesting to note that the second lobe, when
rendered from the estimated DSBRDF model parameters,
encodes body color anddoes not purely reflect the illumination
color. This is contrary to the widely adopted dichromatic mod-
el in which the body color is solely encoded in the diffuse com-
ponent (green curve), and the illumination color is solely
encoded in the specular component (red curve). It is important
to note that conventional reflection models often blindly used
in computer vision, i.e., Lambertian plus Torrance–Sparrow re-
flection models, cannot model such a phenomenon, while the

Fig. 7. (Color online) Synthetic spheres renderedwith the Lambertianmodel with two lobes of Torrance–Sparrowmodels, measured BRDF, three-
lobe DSBRDF model, and first to third individual lobes of the DSBRDF model from left to right, respectively. The results clearly show that the
conventional Lambertian diffuse plus Torrance–Sparrow specular reflection representation fails to capture the complex reflectance of these real-
world materials that we encounter in our daily life, even with two Torrance–Sparrow specular lobes. On the other hand, the three-lobe DSBRDF
model accurately reproduces the appearance under natural illumination, which validates its expressiveness and accuracy. The lobe decompositions
clearly visualize the distinct reflectance characteristics of individual lobes, e.g., the color is solely encoded in the third lobe for the bottom two
materials indicating body reflection.

Fig. 8. (Color online) Results of modeling the BRDF of polyoxymethylene plastic with a three-lobe DSBRDF model. (First column) Synthetic
spheres rendered with (top) measured BRDF and the (bottom) three-lobe DSBRDF model. (Second column) DSBRDF model (solid curves) fit to
θd ¼ 0 slices of the measured BRDF data [19] (squares), shown as the 1D profile on the incident plane for the red, green, and blue color channels.
(Third column) Lobes (red, green, blue curves) of a three-lobe DSBRDF model (black solid curve) fit to measured data (black dots). (Fourth
column) Synthetic sphere rendered with the DSBRDF model parameters for each lobe separately. Note that the second lobe (corresponding
to the blue curve in the third column) encodes the body color while it exhibits specular reflection, which cannot be modeled with conventional
dichromatic models.
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DSBRDFmodel accurately captures the unorthodox reflection
components.

Note that such decomposition of the BRDF cannot be
achieved with nonparametric BRDF models. We believe this
is a strong contribution that can benefit many applications in
computer vision, such as reflection component separation for
robust recognition, 3D reconstruction, etc., which we would
like to explore in the future.

C. Space of Isotropic BRDFs
The DSBRDF model can represent a continuum of real-world
isotropic BRDFs with the same low-dimensional parametric
form. This enables the analysis of the space of isotropic
BRDFs, represented with measured data of 100 samples [19],
with a unified expression. This ability is vital to study the
space and characterize it for further use in various inverse
or forward problems—for instance, to extract statistical
priors to constrain ill-posed inverse problems or to realisti-
cally vary the appearance of one material to another. To
validate the effectiveness of using the DSBRDF model for
analyzing the space of isotropic BRDFs, we demonstrate its
use for computing a low-dimensional embedding of the space.

We start the analysis by first modeling the variation of the
DSBRDF parameters across different incident light directions.
We view each κ and γ of a single lobe as the value of a bivariate
function of θd sampled at 18 uniformly spaced values. We refer
to this bivariate function as the ðκ; γÞ curve of a particular
lobe. We choose to model these ðκ; γÞ curves with quadratic
B splines with five uniform knots based on an exploratory
analysis of various functional bases with leave-one-out cross
validation. With this interpretation of κ and γ across θd, we
have reduced the number of parameters of the model by
one third, as now the 18 samples are expressed with sixth-
order B splines.

We analyze the variability of the ðκ; γÞ curves by performing
bivariate FPCA [33] on all lobes of the 100 real-world BRDFs
[19]. To properly account for the scale disparity between κ and
γ, we modify the inner product between ðκ; γÞ curves by
weighting the κ and γ portions of the product by the reciprocal
of their mean curve squared

hξ1; ξ2i ¼
1

‖μκ‖2

Z
ξκ1ðtÞξκ2ðtÞdtþ

1
‖μγ‖2

Z
ξγ1ðtÞξγ2ðtÞdt; ð7Þ

where ξ ¼ ðξκ; ξγÞT is a ðκ; γÞ curve. The principal functions
(eigenfunctions) not only capture the major variations of κ
and γ separately across θd, but also capture how κ and γ vary
together. By using these principal functions as the bases, we
arrive at a natural low-dimensional subspace representation
of the space of isotropic BRDFs encoded by individual lobes
(BRDFs decomposed into their reflectance components).

Figure 9 shows the projection of each lobe of all 100 BRDFs
onto the first and second bivariate principal functions. Each
BRDF was first represented with a DSBRDF with an optimal
number of lobes, and then each lobe was projected into the
functional eigenspace individually. The results exemplify
how the principal functions naturally characterize the isotro-
pic BRDF space in physically meaningful ways, with pure dif-
fuse lobes located in the top left of the graph, while specular
surfaces are scattered at the bottom right. This, in turn,
strongly indicates that the DSBRDF model successfully re-
tains the physical properties of the BRDFs in its encoding.

We further extend this analysis to characterize the BRDF
space while retaining the DSBRDF representation of each
BRDF as a whole. We first establish correspondences be-
tween the lobes across different DSBRDFs that have different
optimal numbers of lobes. We cluster each lobe into two
classes based on the norm of their γ curve: diffuse and spec-
ular as γ encodes the acuteness of the lobe. The lobes in one
color channel of a BRDF are ordered by their γ values, and
most channels have two lobes that “straddle” this border be-
tween the two classes. We establish lobe correspondences
across different BRDFs along this border. By padding any
lobes that do not have correspondences with flat lobes, we
arrive at a nine-lobe model for each color channel and a total
of 54 curves per BRDF (three color channels per BRDF, nine
lobes per channel, and two curves per lobe). We perform mul-
tivariate FPCA on these 54 curves together to obtain principal
functions of the ðκ; γÞ curves that describe the variability of a
BRDF as a whole rather than of each constituent lobe.

Figure 10 shows the projections of each BRDF onto the first
two bivariate principal functions. We note that the projections
give a natural clustering of the BRDFs with pure diffuse
lobes clustered very tightly at the top right of the graph, plas-
tic-looking materials located along the right side, and metallic-
looking materials spread along the top of the graph. Because
the first two bivariate eigenfunctions account for about 54% of
the variation of the data, we expect an even better clustering
when considering more than two dimensions. Using this de-
composition, nine principal components are required to repre-
sent 90% of the variability, 13 principal components are
required to represent 95%, and 22 principal components are
required to represent 99%.

Note that such low-dimensional embedding results in a
valid characterization of the massively high-dimensional, ori-
ginal space of isotropic BRDFs only because the DSBRDF
model successfully extracts a meaningful low-dimensional
parameterization of each BRDF. Such low-dimensional

Fig. 9. By projecting each lobe onto the computed eigenfunctions,
we can visualize how the eigenfunctions naturally characterize the
space of isotropic BRDFs and offer physically intuitive interpreta-
tions. In this image, each sphere is a single synthetically rendered lobe
of a BRDFwhose x and y coordinates are the projections onto the first
two eigenfunctions. The diffuse lobes are located at the top left with
specular surfaces scattered at the bottom right, indicating that the first
eigenfunction roughly encodes the variability of glossiness, while the
second eigenfunction roughly encodes the variability of matteness in
the BRDF space.
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characterization of the space would not be possible if we used
a nonparametric BRDF model since the implicit correspon-
dences among different BRDFs cannot be established with
just nonlinear dimensionality reduction and would require
additional charting.

7. CONCLUSION
We introduced a novel parametric BRDF model based on the
idea of modeling BRDFs as a set of directional statistics
distributions. For this, we derived a new hemispherical distri-
bution and defined the BRDF as a collection of 2D slices in
which each individual slice is modeled as a mixture of these
hemispherical distributions. We showed that the novel
DSBRDF model can accurately model a wide variety of real-
world isotropic BRDFs, achieving accuracy comparable to
nonparametric models and also achieving higher accuracy
than those with less data.

We believe that the new parametric BRDFmodel has strong
implications for a broad range of applications. We havemerely
scratched the surface of its advantages by demonstrating its
ability to automatically decompose measured BRDF into
physically meaningful reflection components and its use for
exploring the entire space of isotropic BRDFs. The advantage
of having a common low-dimensional parametric form of real-
world BRDFs is probably most significant in solving inverse
problems, such as illumination estimation, material property
estimation, and 3D reconstruction from images. Since the
DSBRDF model is also readily a probability density function,
we may reformulate many of these long-standing problems as
probabilistic inference in which we can leverage strong priors
on real-world BRDFs extracted by, for instance, the analysis
of the space of BRDFs. The new model also has strong ad-
vantages for use in image synthesis. The directional statistics
representation of the model lends powerful means for render-

ing, as it is best formulated with probabilistic distributions of
the light rays. For instance, the discretely sampled or continu-
ously parametrized BRDF slices encoded by the lobe param-
eters can be directly used as probability densities when
sampling ray directions for efficient rendering. We plan to
report on these advantages in the future.

ACKNOWLEDGMENTS
The authors thank the reviewers for insightful comments. This
work was supported in part by the National Science Founda-
tion (NSF) CAREER Award IIS-0746717 and IIS-0964420 and
the Office of Naval Research grant N00014-11-1-0099.

REFERENCES
1. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and

T. Limperis, “Geometric considerations and nomenclature for
reflectance,” (National Bureau of Standards, 1977).

2. J. H. Lambert, “Photometria sive de mensura de gratibus luminis
colorum et umbrae,” (Eberhard Klett, 1760).

3. B. T. Phong, “Illumination for computer generated pictures,”
Commun. ACM 18, 311–317 (1975).

4. J. F. Blinn, “Models of light reflection for computer sythesized
pictures,” in SIGGRAPH ’77 Proceedings of the 4th Annual

Conference on Computer Graphics and Interactive Techniques

(Association for Computing Machinery, 1977), pp. 192–198.
5. C. Schlick, “An inexpensive BRDF model for physically-based

rendering,” Computer Graphics Forum 13, 233–246 (1994).
6. R. L. Cook and K. E. Torrance, “A reflectance model for com-

puter graphics,” ACM Trans. Graph. 1, 7–24 (1982).
7. K. Torrance and E. Sparrow, “Theory for off-specular reflection

from roughened surfaces,” J. Opt. Soc. Am. 57, 1105–1114
(1967).

8. G. J. Ward, “Measuring and modeling anisotropic reflection,” in
SIGGRAPH ’92 Proceedings of the 19th Annual Conference on

Computer Graphics and Interactive Techniques (Association
for Computing Machinery, 1992), pp. 265–272.

9. S. K. Nayar and M. Oren, “Generalization of the Lambertian
model and implications for machine vision,” Int. J. Comput.
Vis. 14, 227–251 (1995).

10. J. J. Koenderink and A. J. van Doorn, “Phenomenological de-
scription of bidirectional surface reflection,” J. Opt. Soc. Am.
A 15, 2903–2912 (1998).

11. R. Ramamoorthi and P. Hanrahan, “A signal-processing frame-
work for inverse rendering,” in SIGGRAPH ’01 Proceedings of

the 28th Annual Conference on Computer Graphics and Inter-

active Techniques (Association for Computing Machinery,
2001), pp. 117–128.

12. E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P.
Greenberg, “Non-linear approximation of reflectance func-
tions,” in SIGGRAPH ’97 Proceedings of the 24th Annual Con-

ference on Computer Graphics and Interactive Techniques

(Association for Computing Machinery, 1997), pp. 117–126.
13. D. Edwards, S. Boulos, J. Johnson, P. Shirley, M. Ashikhmin,

M. Stark, and C. Wyman, “The halfway vector disk for BRDF
modeling,” ACM Trans. Graph. 25, 1–18 (2006).

14. P. Debevec, T. Hawkins, C. Tchou, H.-P.Duiker, and W. Sarokin,
“Acquiring the reflectance field of a human face,” in SIGGRAPH

’00 Proceedings of the 27th Annual Conference on Computer

Graphics and Interactive Techniques (Association for Comput-
ing Machinery, 2000), pp. 145–156.

15. W. Matusik, H. Pfister, M. Brand, and L. McMillan, “Efficient
isotropic BRDFmeasurement,” in Proceedings of the 14th Euro-

graphics Workshop on Rendering Techniques, P. H.
Christensen, D. Cohen-Or, and S. N. Spencer, eds., Vol. 44 of
ACM International Conference Proceeding Series (Euro-
graphics Association, 2003), pp. 241–248.

16. A. Ghosh, S. Achutha, W. Heidrich, and M. O’Toole., “BRDF ac-
quisition with basis illumination,” in Proceedings of the IEEE

11th International Conference on Computer Vision (IEEE,
2007), pp. 1–8.

Fig. 10. (Color online) We project each BRDF (represented as 54
curves) onto the first two bivariate eigenfunctions obtained via FPCA
on the ðκ; γÞ curves computed by representing each BRDF, as a whole,
with a DSBRDF model with the optimal number of lobes. Note the
natural clustering in this low-dimensional embedding of the BRDF
space, with pure-diffuse surfaces located in a tight cluster in the upper
right-hand corner. Metallic surfaces are scattered toward the left, and
plastic surfaces are scattered toward the bottom. These results sug-
gest that the DSBRDF model provides a sound foundation for extract-
ing physically meaningful low-dimensional bases for encoding the
otherwise massively high-dimensional space of real-world BRDFs.

K. Nishino and S. Lombardi Vol. 28, No. 1 / January 2011 / J. Opt. Soc. Am. A 17



17. A. Ghosh, T. Chen, P. Peers, C. A. Wilson, and P. Debevec, “Es-
timating specular roughness and anisotropy from second order
spherical gradient illumination,” Computer Graphics Forum 28,
1161–1170 (2009).

18. M. Ashikhmin and S. Premoze, “Distribution-based BRDFs,”
Tech. Rep. (University of Utah, 2007).

19. W. Matusik, H. Pfister, M. Brand, and L. McMillan, “A data-
driven reflectance model,” ACM Trans. Graph. 22, 759–769
(2003).

20. F. Romeiro, Y. Vasilyev, and T. E. Zickler, “Passive reflectome-
try,” in Proceedings of the 10th European Conference on Com-

puter Vision: Part IV (Springer, 2008), pp. 859–872.
21. M. Stark, J. Arvo, and B. Smits, “Barycentric parameterizations

for isotropic BRDFs,” IEEE Trans. Vis. Comput. Graph. 11, 126–
138 (2005).

22. S. Rusinkiewicz, “A new change of variables for efficient BRDF
representation,” presented at the 1998 Eurographics Workshop
on Rendering, Vienna, Austria, 29 June–1July 1998.

23. A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of
BRDFmodels,” in Proceedings of the Eurographics Symposium

on Rendering 2005, (Eurographics Association, 2005), pages
117–226.

24. R. A. Fisher, “Dispersion on a sphere,” Proc. R. Soc. Lond. A
217, 295–305 (1953).

25. M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions: with Formulas, Graphs, and Mathematical Tables

(Dover, 1965).
26. S. K. Nayar, K. Ikeuchi, and T. Kanade, “Surface reflection: phys-

ical and geometrical perspectives,” IEEE Trans. Pattern Anal.
Mach. Intell. 13, 611–634 (1991).

27. C. M. Bishop, Pattern Recognition and Machine Learning

(Springer, 2007).
28. K. Hara, K. Nishino, and K. Ikeuchi, “Mixture of spherical distri-

butions for single-view relighting,” IEEE Trans. Pattern Anal.
Mach. Intell. 30, 25–35 (2008).

29. D. A. Williams, “A test for differences between treatment means
when several dose levels are compared with a zero dose con-
trol,” Biometrics 27, 103–117 (1971).

30. S. Cang and D. Partridge, “Determining the number of compo-
nents in mixture models using Williams’ statistical test,” pre-
sented at the 8th International Conference on Neural
Information Processing, Shanghai, China, 14–18 Nov. 2001.

31. P. Debevec, “Light probe image gallery,” http://www.debevec
.org/Probes.

32. M. Pharr and G. Humphreys, Physically Based Rendering: from

Theory to Implementation (Morgan Kaufmann, 2004).
33. J. O. Ramsay and B. W. Silverman, Functional Data Analysis,

2nd ed., Springer Series in Statistics (Springer, 2005).

18 J. Opt. Soc. Am. A / Vol. 28, No. 1 / January 2011 K. Nishino and S. Lombardi

http://www.debevec.org/Probes
http://www.debevec.org/Probes
http://www.debevec.org/Probes

